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This is [1], mainly §2.

1 Notation

FF is a finite field, |IF| is its size.

We shall consider f : F* — R, with the norm

1/n
151l = 1 lleny = ( Y| f(v),n> |

velF?

Definition 1. The maximal function f* : F"~! — R is given by

frw)=sup 3} |f(v)] (1.1)

yow UG’y(]F)\]F"_l

where the supremum is over all lines <y in I[F" which pass through w. [In the paper,
lines are replaced with algebraic curves of degree at most d].

2 Result

Theorem 2 (Kakeya maximal conjecture).

n-1
Hf*H/,n(]anl) S || n ||f“en(11:")-

Remark. We will tend to write this more succinctly as || f*||, < |F]| A -



2.1 Why is this the “correct” conjecture?

Specifically, where does the ! come from? Well, we want an identity like

£ < TR AL

for some a. We can easily see that ”Tfl would be optimal by considering the
example

) = {1 if x = xo ¢ F"1

0 otherwise,

for which ||f]|, = 1. We have f*(w) = 1 for all w, since the supremum
is achieved by taking 7 to be the line through w and xo. Hence | f*|, =
(F"~1)1/", showing that we need a > ! for our conjectured inequality to
have any chance of being true.

3 Proof

We prove the maximal conjecture using the following:

Proposition 3 (Distributional estimate (Prop 2.3)). There exists a constant
K - Kn s.t. l:f

(i) A>0
(i) f:F" — {0} U[A, o)
(iii) K| fl, <A < AlF|

then

B i} IFn—Z
{w e P £ (w) 2 A} S oL

We will assume this for now, and look at how it is used to prove the maxi-
mal conjecture.

I just want to give a flavour of this bit, as it’s quite technical.

Proof of Theorem 2. We have f : F" — IR, but we only need to consider f

non-negative, and not identically zero. We also normalize so ||f]|, = 1.
The desired result is then

L S =D/,



Using FTC! then Fubini, we get the (familiar?) identity

Hf*HZ = 71/000|{w eF 1 *(w) > IX}|1Xn_1d0é

so, want this <|F|#— L.

We split the integral at Cp, some large constant to be fixed later. The CO

part is easily dealt with, since the [{w - - - }| < [F|"~!. So we are reduced to
showing

/ Hwe F . fr(w) > a}|a™ da < |E" L.
Co

Now for each fixed a« > Cy we split f up into pieces of various sizes:
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This actually uses Proposition 3; specifically the fixed value of K. The “top”
piece f, is defined in terms of j,, the largest integer s.t.

o o
> K, K~ —.
2jatl = S0 D

So we write

Ja—1

f:fO,a+ 'Z;fj,a+fa
j=

A-ineq Ja—l
f*(ZU) < fOtX +2f]u¢ +fzx )
Ja—1

wa )+ fu (w) +

N\?

since fg, < a/+/Co, and just take Cy large enough.

£l = Zoepr f({(v) na1da



So to have f*(w) > a we must have either

fra(w) =

INE
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“the first term > 7, or all the other terms > %

Proceeding in this way;, at least one of the following is true:

14 o

fjfa(w)zﬁz 1<j<ju—1, or f;(W)ZZ{X > K
Hence
{w e B2 fH(w) > a}|
Ja—1 N
<Hwe P! fi(w) > K} + 21 {w e B fi(w) > sl
]:

The idea is then to apply Proposition 3 to each of these terms.

To illustrate: for f, we use A = K and A = 100"Ux—1) —&__This yields

VColF|*
n—1 . r* < |IF|H_2
“I::’nfl
S“\/Cio a2n
The f; . are treated similarly, it’s just a little bit more technical. O

To prove the estimate in Proposition 3, we make simplifications:

1. take A =1 (by dividing f and A by A),
2. let{w e F" ! : f*(w) > A} = {wy,..., wy},

3. let v; be the line attaining the supremum in the definition of f*(wj).

So we now want to prove

Proposition 4 (Distributional estimate, simplified (Prop 2.4)). Let wy, ..., w; €
IF"=1 be distinct, with «vj (1 < j < ]) lines through w; not in F"~1. Then there is
a constant K = K, s.t. if

(i) f:TF" — {0} U[1,00)



(ii) K|f]l, <A < [F|
(iii) Y floy=Avi<ji<]

vy (IF)\FFr—1

then | )
F|"—
]SJ /\nfl ||f||Z .

It actually suffices to consider just a special case of this estimate.

Proposition 5 (Distributional estimate, special case). Let wy, ..., w; € Fr-1
be distinct, with y; (1 < j < ]) lines through w;j not in "1, Then there is a
constant Ko depending on n s.t. if

(i) f:F"— {0} U[1,00)
(i) Kollfl, < [F|
(i) ), flo) >Kollf

v€y;(F)\F~1

V1 <j<]

then

S |IF|n72 n ] < n—2 n
RS o If -1 IFIE de TSk B 2IF)0.
n

Proposition 6 (Reduction (Prop 2.5)). It suffices to prove the special case.

Proof. The idea is to take f satisfying the hypotheses of the full result, and
produce a related function f); to which we can apply the special case; this
then allows us to deduce the conclusion for f.

We define M > 1 for a particular choice of f and A satisfying the hypotheses
in the full result. The detail of M is not important here.

The definition of f); comes from the probabilistic method. We select M
points u1,...,uy € F""! independently and uniformly at random, and set

Q:{wj+um:1§j§],1§m§M}.

For each w € [F" 1,1P(ZUEQ):1—<1—W) %mln(W,l),SO

E|Q| ~ min(M], |F|"1).
Thus for a particular choice of uy, ..., up we have

|Q = min(M], [F|"1)
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and set
M 1/n
fulo) = (Z_:lf(v—um)”> .

We have, by changing the order of summation,

M
Il = Zl £ G = wn)lly = MILFIL,

and we can check that fj; in fact satisfies the requirements (i)—(iii) of the
special case. So applying the result to fu; (with the set of points (), we

have

(S i P
(Ko || fmll,.)

but the denominator can be replaced by A"~ since the definition of M gives
us A S Ko ||fMHn

Combining this with the lower bound on |Q] and || fm||;, = M || f||;; we get

in(M IF”*l <MM n
min(M], |F|"™") < i I -

If M] is smallest, then we're done. Otherwise, we can force a contradiction
by taking Ky large enough. O

We now come to the use of Dvir’s polynomial method, or at least a variant
of it, to prove this special case of the distributional estimate.

Proof of Proposition 5. We simplify even further by rounding f down to the
nearest integer?, and then replacing it with min(f, |IF]).

So we want to show
TS IE" 2L
for f taking valuesin {0,1,...,|F|}.

e There exists a nonzero poly p € Vy = {gpolyonF" : deg(q) <
D, mult(q,v) > f(v)}, ie.

p is a polynomial on IF" of degree < D (to be set later) which vanishes
to order at least f(v) at v.

2valid since 3 f < [ f] < f gives ||fll, = | Lf]ll,




Pf. Note that dimg(Pp) = (P 1) & D". The multiplicity condition

n+f(v)—1

./ ~7) constraints on the coefficients of p, at each v. So

imposes (

dimg Pp — dimg Vy < num. constraints < Y f(v)" = ||f|7
velF"

Taking D = k ||f||, for large enough k ensures dimg V; > 0, so there
is a nonzero p € Vy. O

With F"~! = {x € F"* : x, = 0}, we factor p as

p =g

taking j > 0 as large as possible, so that the polynomial g has no
x, factor. This g is a poly of degree < D and mult(g,v) > f(v) for
veF\F 1

For each line 7;, we have q|,, = 0.

Pf. Otherwise, {v € ; : q(v) = 0} has dimension 0.

But by Bezout’s Theorem, this set has degree O(1.D) = O(||f]|,)-
More precisely, counting multiplicity on the LHS, we have

{v e q(0) =0} < IS,

but the LHS is larger than ¥ ¢, \ -1 mult(g,v), and by construction
of g and by the hypothesis (iii),

Kollfll, <} flo)< ) mult(go) S |f],

vey \Fr-1 vey \Fr-1
giving a contradiction if Ky is chosen large enough. O
So q(wj) = 0 for each j, giving
J < {we " : g(w) =0},

On the other hand, the restriction of g to F"1 is nontrivial, and has
degree < D. So by Schwartz-Zippel,

J<H{weF"": q(w) =0}| < D|F|"?
and since D < ||f||, we have the desired estimate

J < E2IfIL -
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