Reading Summary

George Kinnear, University of Edinburgh

November 9, 2009

KAKEYA MAXIMAL CONJECTURE J. Ellenberg, R. Oberlin, T. Tao

This is [1], mainly §2.

1 Notation

 \mathbb{F} is a finite field, $|\mathbb{F}|$ is its size.

We shall consider $f : \mathbb{F}^n \to \mathbb{R}$, with the norm

$$||f||_n = ||f||_{\ell^n(\mathbb{F}^n)} = \left(\sum_{v \in \mathbb{F}^n} |f(v)|^n\right)^{1/n}.$$

Definition 1. The maximal function $f^* : \mathbb{F}^{n-1} \to \mathbb{R}$ is given by

$$f^*(w) = \sup_{\gamma \ni w} \sum_{v \in \gamma(\mathbb{F}) \setminus \mathbb{F}^{n-1}} |f(v)|$$
(1.1)

where the supremum is over all lines γ in \mathbb{F}^n which pass through w. [In the paper, lines are replaced with algebraic curves of degree at most d].

2 Result

Theorem 2 (Kakeya maximal conjecture).

$$\|f^*\|_{\ell^n(\mathbb{F}^{n-1})} \lesssim \|\mathbb{F}\|^{\frac{n-1}{n}} \|f\|_{\ell^n(\mathbb{F}^n)}$$

Remark. We will tend to write this more succinctly as $||f^*||_n \leq |\mathbb{F}|^{\frac{n-1}{n}} ||f||_n$.

2.1 Why is this the "correct" conjecture?

Specifically, where does the $\frac{n-1}{n}$ come from? Well, we want an identity like

 $\|f^*\|_n \lesssim |\mathbb{F}|^a \, \|f\|_n$

for some *a*. We can easily see that $\frac{n-1}{n}$ would be optimal by considering the example

$$f(x) = \begin{cases} 1 & \text{if } x = x_0 \notin \mathbb{F}^{n-1} \\ 0 & \text{otherwise,} \end{cases}$$

for which $||f||_n = 1$. We have $f^*(w) = 1$ for all w, since the supremum is achieved by taking γ to be the line through w and x_0 . Hence $||f^*||_n = (\mathbb{F}^{n-1})^{1/n}$, showing that we need $a \ge \frac{n-1}{n}$ for our conjectured inequality to have any chance of being true.

3 Proof

We prove the maximal conjecture using the following:

Proposition 3 (Distributional estimate (Prop 2.3)). *There exists a constant* $K = K_n \ s.t. \ if$

- (*i*) A > 0
- (*ii*) $f: \mathbb{F}^n \to \{0\} \cup [A, \infty)$
- (*iii*) $K \|f\|_n \le \lambda \le A \|\mathbb{F}\|$

then

$$|\{w \in \mathbb{F}^{n-1} : f^*(w) \ge \lambda\}| \lesssim \frac{|\mathbb{F}|^{n-2}}{A\lambda^{n-1}} ||f||_n^n.$$

We will assume this for now, and look at how it is used to prove the maximal conjecture.

I just want to give a flavour of this bit, as it's quite technical.

Proof of Theorem 2. We have $f : \mathbb{F}^n \to \mathbb{R}$, but we only need to consider f non-negative, and not identically zero. We also normalize so $||f||_n = 1$. The desired result is then

$$\|f^*\|_n \lesssim |\mathbb{F}|^{(n-1)/n}.$$

Using FTC¹ then Fubini, we get the (familiar?) identity

$$\|f^*\|_n^n = n \underbrace{\int_0^\infty |\{w \in \mathbb{F}^{n-1} : f^*(w) \ge \alpha\}|\alpha^{n-1} d\alpha}_{\text{so, want this } \lesssim |\mathbb{F}|^{n-1}.}$$

We split the integral at C_0 , some large constant to be fixed later. The $\int_0^{C_0}$ part is easily dealt with, since the $|\{w \cdots\}| \leq |\mathbb{F}|^{n-1}$. So we are reduced to showing

$$\int_{C_0}^{\infty} |\{w \in \mathbb{F}^{n-1} : f^*(w) \ge \alpha\}| \alpha^{n-1} d\alpha \lesssim |\mathbb{F}|^{n-1}.$$

Now for each fixed $\alpha > C_0$ we split *f* up into pieces of various sizes:

This actually uses Proposition 3; specifically the fixed value of *K*. The "top" piece f_{α} is defined in terms of j_{α} , the largest integer s.t.

$$\frac{\alpha}{2^{j_{\alpha}+1}} \geq K, \quad \text{so } K \approx \frac{\alpha}{2^{j_{\alpha}}}.$$

So we write

$$f = f_{0,\alpha} + \sum_{j=1}^{j_{\alpha}-1} f_{j,\alpha} + f_{\alpha}$$

$$f^{*}(w) \stackrel{\Delta-\text{ineq}}{\leq} f_{0,\alpha}^{*}(w) + \sum_{j=1}^{j_{\alpha}-1} f_{j,\alpha}^{*}(w) + f_{\alpha}^{*}(w)$$

$$\leq \sum_{j=1}^{j_{\alpha}-1} f_{j,\alpha}^{*}(w) + f_{\alpha}^{*}(w) + \frac{\alpha}{2}$$

since $f_{0,\alpha}^* \leq \alpha / \sqrt{C_0}$, and just take C_0 large enough.

 ${}^{1}\|f^{*}\|_{n}^{n} = \sum_{v \in \mathbb{F}^{n-1}} \int_{0}^{f(v)} n\alpha^{n-1} \, d\alpha$

So to have $f^*(w) \ge \alpha$ we must have either

$$f_{1,\alpha}^*(w)\geq rac{lpha}{4} \quad ext{or} \quad \sum_{j=2}^{j_lpha-1}f_{j,lpha}^*(w)+f_lpha^*(w)\geq rac{lpha}{4}.$$

"the first term $\geq \frac{\alpha}{4}$, or all the other terms $\geq \frac{\alpha}{4}$ "

Proceeding in this way, at least one of the following is true:

$$f_{j,\alpha}^*(w) \ge rac{lpha}{2^{j+1}}, \quad 1 \le j \le j_lpha - 1, \quad ext{ or } \quad f_lpha^*(w) \ge rac{lpha}{2^j_lpha} \ge K$$

Hence

$$\begin{aligned} |\{w \in \mathbb{F}^{n-1} : f^*(w) \ge \alpha\}| \\ \le |\{w \in \mathbb{F}^{n-1} : f^*_{\alpha}(w) \ge K\}| + \sum_{j=1}^{j_{\alpha}-1} |\{w \in \mathbb{F}^{n-1} : f^*_{j,\alpha}(w) \ge \frac{\alpha}{2^{j+1}}\}| \end{aligned}$$

The idea is then to apply Proposition 3 to each of these terms.

To illustrate: for f_{α} we use $\lambda = K$ and $A = 100^{n(j_{\alpha}-1)} \frac{\alpha}{\sqrt{C_0}|\mathbb{F}|}$. This yields

$$\begin{split} |\{w \in \mathbb{F}^{n-1} : f_{\alpha}^{*}(w) \ge K\}| \lesssim \frac{|\mathbb{F}|^{n-2}}{AK^{n-1}} \\ \vdots \\ \lesssim_{\sqrt{C_{0}}} \frac{|\mathbb{F}|^{n-1}}{\alpha^{2n}} \end{split}$$

The $f_{j,\alpha}$ are treated similarly, it's just a little bit more technical.

To prove the estimate in Proposition 3, we make simplifications:

- 1. take A = 1 (by dividing f and λ by A),
- 2. let $\{w \in \mathbb{F}^{n-1} : f^*(w) \ge \lambda\} = \{w_1, \dots, w_I\},\$
- 3. let γ_i be the line attaining the supremum in the definition of $f^*(w_i)$.

So we now want to prove

Proposition 4 (Distributional estimate, simplified (Prop 2.4)). Let $w_1, \ldots, w_J \in \mathbb{F}^{n-1}$ be distinct, with γ_j $(1 \le j \le J)$ lines through w_j not in \mathbb{F}^{n-1} . Then there is a constant $K = K_n$ s.t. if

(*i*) $f : \mathbb{F}^n \to \{0\} \cup [1, \infty)$

(*ii*)
$$K ||f||_n \le \lambda \le |\mathbb{F}|$$

(*iii*) $\sum_{v \in \gamma_j(\mathbb{F}) \setminus \mathbb{F}^{n-1}} f(v) \ge \lambda, \forall 1 \le j \le J$

then

$$J \lesssim \frac{|\mathbb{F}|^{n-2}}{\lambda^{n-1}} \|f\|_n^n.$$

It actually suffices to consider just a special case of this estimate.

Proposition 5 (Distributional estimate, special case). Let $w_1, \ldots, w_J \in \mathbb{F}^{n-1}$ be distinct, with γ_j $(1 \le j \le J)$ lines through w_j not in \mathbb{F}^{n-1} . Then there is a constant K_0 depending on n s.t. if

- (*i*) $f: \mathbb{F}^n \to \{0\} \cup [1, \infty)$
- (*ii*) $K_0 \|f\|_n \le |\mathbb{F}|$
- (iii) $\sum_{v \in \gamma_j(\mathbb{F}) \setminus \mathbb{F}^{n-1}} f(v) \ge K_0 \|f\|_n, \forall 1 \le j \le J$

then

$$J \lesssim \frac{|\mathbb{F}|^{n-2}}{(K_0 \|f\|_n)^{n-1}} \|f\|_n^n \quad i.e. \quad J \lesssim_{K_0} |\mathbb{F}|^{n-2} \|f\|_n^n.$$

Proposition 6 (Reduction (Prop 2.5)). It suffices to prove the special case.

Proof. The idea is to take f satisfying the hypotheses of the full result, and produce a related function f_M to which we can apply the special case; this then allows us to deduce the conclusion for f.

We define $M \ge 1$ for a particular choice of f and λ satisfying the hypotheses in the full result. The detail of M is not important here.

The definition of f_M comes from the probabilistic method. We select M points $u_1, \ldots, u_M \in \mathbb{F}^{n-1}$ independently and uniformly at random, and set

$$\Omega = \{ w_j + u_m : 1 \le j \le J, 1 \le m \le M \}.$$

For each $w \in \mathbb{F}^{n-1}$, $\mathbb{P}(w \in \Omega) = 1 - \left(1 - \frac{J}{|\mathbb{F}|^{n-1}}\right)^M \approx \min\left(\frac{MJ}{|\mathbb{F}|^{n-1}}, 1\right)$, so

$$\mathbb{E}|\Omega| \approx \min(MJ, |\mathbb{F}|^{n-1}).$$

Thus for a particular choice of u_1, \ldots, u_M we have

$$|\Omega| \gtrsim \min(MJ, |\mathbb{F}|^{n-1})$$

and set

$$f_M(v) = \left(\sum_{m=1}^M f(v-u_m)^n\right)^{1/n}.$$

We have, by changing the order of summation,

$$||f_M||_n^n = \sum_{m=1}^M ||f(\cdot - u_m)||_n^n = M ||f||_n^n$$

and we can check that f_M in fact satisfies the requirements (*i*)–(*iii*) of the special case. So applying the result to f_M (with the set of points Ω), we have

$$|\Omega| \lesssim \frac{|\mathbb{F}|^{n-2}}{(K_0 \|f_M\|_n)^{n-1}} \|f_M\|_n^n$$

but the denominator can be replaced by λ^{n-1} since the definition of *M* gives us $\lambda \leq K_0 \|f_M\|_n$.

Combining this with the lower bound on $|\Omega|$ and $||f_M||_n^n = M ||f||_n^n$ we get

$$\min(MJ, |\mathbb{F}|^{n-1}) \lesssim \frac{|\mathbb{F}|^{n-2}}{\lambda^{n-1}} M \|f\|_n^n.$$

If *MJ* is smallest, then we're done. Otherwise, we can force a contradiction by taking K_0 large enough.

We now come to the use of Dvir's polynomial method, or at least a variant of it, to prove this special case of the distributional estimate.

Proof of Proposition 5. We simplify even further by rounding *f* down to the nearest integer², and then replacing it with $\min(f, |\mathbb{F}|)$.

So we want to show

$$J \lesssim \|\mathbf{F}\|^{n-2} \, \|f\|_n$$

for *f* taking values in $\{0, 1, \ldots, |\mathbb{F}|\}$.

• There exists a nonzero poly $p \in V_f = \{q \text{ poly on } \mathbb{F}^n : \deg(q) \leq D, \operatorname{mult}(q, v) \geq f(v)\}$, i.e.

p is a polynomial on \mathbb{F}^n of degree $\leq D$ (to be set later) which vanishes to order at least f(v) at *v*.

²valid since $\frac{1}{2}f \leq \lfloor f \rfloor \leq f$ gives $\|f\|_n \approx \|\lfloor f \rfloor\|_n$

Pf. Note that $\dim_{\mathbb{F}}(\mathcal{P}_D) = \binom{D+n}{n} \approx D^n$. The multiplicity condition imposes $\binom{n+f(v)-1}{n}$ constraints on the coefficients of *p*, at each *v*. So

$$\dim_{\mathbb{F}} \mathcal{P}_D - \dim_{\mathbb{F}} V_f \leq \text{num. constraints} \lesssim \sum_{v \in \mathbb{F}^n} f(v)^n = \|f\|_n^n.$$

Taking $D = k ||f||_n$ for large enough k ensures dim_{**F**} $V_f > 0$, so there is a nonzero $p \in V_f$.

• With $\mathbb{F}^{n-1} = \{x \in \mathbb{F}^n : x_n = 0\}$, we factor p as

$$p = x_n^j q$$

taking $j \ge 0$ as large as possible, so that the polynomial q has no x_n factor. This q is a poly of degree $\le D$ and $\operatorname{mult}(q, v) \ge f(v)$ for $v \in \mathbb{F}^n \setminus \mathbb{F}^{n-1}$.

• For each line γ_i , we have $q|_{\gamma_i} = 0$.

Pf. Otherwise, $\{v \in \gamma_i : q(v) = 0\}$ has dimension 0.

But by Bezout's Theorem, this set has degree $O(1.D) = O(||f||_n)$. More precisely, counting multiplicity on the LHS, we have

$$|\{v \in \gamma_j | q(v) = 0\}| \lesssim ||f||_n$$

but the LHS is larger than $\sum_{v \in \gamma_j \setminus \mathbb{F}^{n-1}} \text{mult}(q, v)$, and by construction of *q* and by the hypothesis (*iii*),

$$K_0 \left\|f\right\|_n \le \sum_{v \in \gamma_j \setminus \mathbb{F}^{n-1}} f(v) \le \sum_{v \in \gamma_j \setminus \mathbb{F}^{n-1}} \operatorname{mult}(q, v) \lesssim \left\|f\right\|_n$$

giving a contradiction if K_0 is chosen large enough.

• So $q(w_j) = 0$ for each *j*, giving

$$J \le |\{w \in \mathbb{F}^{n-1} : q(w) = 0\}|.$$

On the other hand, the restriction of *q* to 𝔽ⁿ⁻¹ is nontrivial, and has degree ≤ *D*. So by Schwartz-Zippel,

$$J \le |\{w \in \mathbb{F}^{n-1} : q(w) = 0\}| \le D|\mathbb{F}|^{n-2}$$

and since $D \leq ||f||_n$ we have the desired estimate

$$J \lesssim \left\| \mathbb{F} \right\|^{n-2} \left\| f \right\|_n$$

			٦
	_	_	

References

[1] J. Ellenberg, R. Oberlin, and T. Tao. The Kakeya set and maximal conjectures for algebraic varieties over finite fields, 2009. http://arxiv.org/abs/0903.1879.