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This is [1], mainly §2.

1 Notation

F is a finite field, |F| is its size.

We shall consider f : Fn → R, with the norm

‖ f ‖n = ‖ f ‖`n(Fn) =

(
∑

v∈Fn
| f (v)|n

)1/n

.

Definition 1. The maximal function f ∗ : Fn−1 → R is given by

f ∗(w) = sup
γ3w

∑
v∈γ(F)\Fn−1

| f (v)| (1.1)

where the supremum is over all lines γ in Fn which pass through w. [In the paper,
lines are replaced with algebraic curves of degree at most d].

2 Result

Theorem 2 (Kakeya maximal conjecture).

‖ f ∗‖`n(Fn−1) . |F|
n−1

n ‖ f ‖`n(Fn) .

Remark. We will tend to write this more succinctly as ‖ f ∗‖n . |F| n−1
n ‖ f ‖n.
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2.1 Why is this the “correct” conjecture?

Specifically, where does the n−1
n come from? Well, we want an identity like

‖ f ∗‖n . |F|a ‖ f ‖n

for some a. We can easily see that n−1
n would be optimal by considering the

example

f (x) =

{
1 if x = x0 6∈ Fn−1

0 otherwise,

for which ‖ f ‖n = 1. We have f ∗(w) = 1 for all w, since the supremum
is achieved by taking γ to be the line through w and x0. Hence ‖ f ∗‖n =
(Fn−1)1/n, showing that we need a ≥ n−1

n for our conjectured inequality to
have any chance of being true.

3 Proof

We prove the maximal conjecture using the following:

Proposition 3 (Distributional estimate (Prop 2.3)). There exists a constant
K = Kn s.t. if

(i) A > 0

(ii) f : Fn → {0} ∪ [A, ∞)

(iii) K ‖ f ‖n ≤ λ ≤ A|F|

then

|{w ∈ Fn−1 : f ∗(w) ≥ λ}| . |F|
n−2

Aλn−1 ‖ f ‖n
n .

We will assume this for now, and look at how it is used to prove the maxi-
mal conjecture.

I just want to give a flavour of this bit, as it’s quite technical.

Proof of Theorem 2. We have f : Fn → R, but we only need to consider f
non-negative, and not identically zero. We also normalize so ‖ f ‖n = 1.
The desired result is then

‖ f ∗‖n . |F|(n−1)/n.
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Using FTC1 then Fubini, we get the (familiar?) identity

‖ f ∗‖n
n = n

∫ ∞

0
|{w ∈ Fn−1 : f ∗(w) ≥ α}|αn−1 dα︸ ︷︷ ︸

so, want this .|F|n−1.

We split the integral at C0, some large constant to be fixed later. The
∫ C0

0
part is easily dealt with, since the |{w · · · }| ≤ |F|n−1. So we are reduced to
showing ∫ ∞

C0

|{w ∈ Fn−1 : f ∗(w) ≥ α}|αn−1 dα . |F|n−1.

Now for each fixed α > C0 we split f up into pieces of various sizes:

This actually uses Proposition 3; specifically the fixed value of K. The “top”
piece fα is defined in terms of jα, the largest integer s.t.

α

2jα+1 ≥ K, so K ≈ α

2jα
.

So we write

f = f0,α +
jα−1

∑
j=1

f j,α + fα

f ∗(w)
∆-ineq
≤ f ∗0,α(w) +

jα−1

∑
j=1

f ∗j,α(w) + f ∗α (w)

≤
jα−1

∑
j=1

f ∗j,α(w) + f ∗α (w) +
α

2

since f ∗0,α ≤ α/
√

C0, and just take C0 large enough.

1‖ f ∗‖n
n = ∑v∈Fn−1

∫ f (v)
0 nαn−1 dα
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So to have f ∗(w) ≥ α we must have either

f ∗1,α(w) ≥ α

4
or

jα−1

∑
j=2

f ∗j,α(w) + f ∗α (w) ≥ α

4
.

“the first term ≥ α
4 , or all the other terms ≥ α

4 ”

Proceeding in this way, at least one of the following is true:

f ∗j,α(w) ≥ α

2j+1 , 1 ≤ j ≤ jα − 1, or f ∗α (w) ≥ α

2j
α

≥ K

Hence

|{w ∈ Fn−1 : f ∗(w) ≥ α}|

≤ |{w ∈ Fn−1 : f ∗α (w) ≥ K}|+
jα−1

∑
j=1
|{w ∈ Fn−1 : f ∗j,α(w) ≥ α

2j+1 }|

The idea is then to apply Proposition 3 to each of these terms.

To illustrate: for fα we use λ = K and A = 100n(jα−1) α√
C0|F|

. This yields

|{w ∈ Fn−1 : f ∗α (w) ≥ K}| . |F|
n−2

AKn−1

...

.√C0

|F|n−1

α2n

The f j,α are treated similarly, it’s just a little bit more technical.

To prove the estimate in Proposition 3, we make simplifications:

1. take A = 1 (by dividing f and λ by A),

2. let {w ∈ Fn−1 : f ∗(w) ≥ λ} = {w1, . . . , wJ},

3. let γj be the line attaining the supremum in the definition of f ∗(wj).

So we now want to prove

Proposition 4 (Distributional estimate, simplified (Prop 2.4)). Let w1, . . . , wJ ∈
Fn−1 be distinct, with γj (1 ≤ j ≤ J) lines through wj not in Fn−1. Then there is
a constant K = Kn s.t. if

(i) f : Fn → {0} ∪ [1, ∞)

4



(ii) K ‖ f ‖n ≤ λ ≤ |F|

(iii) ∑
v∈γj(F)\Fn−1

f (v) ≥ λ, ∀1 ≤ j ≤ J

then

J .
|F|n−2

λn−1 ‖ f ‖n
n .

It actually suffices to consider just a special case of this estimate.

Proposition 5 (Distributional estimate, special case). Let w1, . . . , wJ ∈ Fn−1

be distinct, with γj (1 ≤ j ≤ J) lines through wj not in Fn−1. Then there is a
constant K0 depending on n s.t. if

(i) f : Fn → {0} ∪ [1, ∞)

(ii) K0 ‖ f ‖n ≤ |F|

(iii) ∑
v∈γj(F)\Fn−1

f (v) ≥ K0 ‖ f ‖n, ∀1 ≤ j ≤ J

then

J .
|F|n−2

(K0 ‖ f ‖n)n−1 ‖ f ‖n
n i.e. J .K0 |F|n−2 ‖ f ‖n

n .

Proposition 6 (Reduction (Prop 2.5)). It suffices to prove the special case.

Proof. The idea is to take f satisfying the hypotheses of the full result, and
produce a related function fM to which we can apply the special case; this
then allows us to deduce the conclusion for f .

We define M ≥ 1 for a particular choice of f and λ satisfying the hypotheses
in the full result. The detail of M is not important here.

The definition of fM comes from the probabilistic method. We select M
points u1, . . . , uM ∈ Fn−1 independently and uniformly at random, and set

Ω = {wj + um : 1 ≤ j ≤ J, 1 ≤ m ≤ M}.

For each w ∈ Fn−1, P(w ∈ Ω) = 1−
(

1− J
|F|n−1

)M
≈ min

(
MJ
|F|n−1 , 1

)
, so

E|Ω| ≈ min(MJ, |F|n−1).

Thus for a particular choice of u1, . . . , uM we have

|Ω| & min(MJ, |F|n−1)
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and set

fM(v) =

(
M

∑
m=1

f (v− um)n

)1/n

.

We have, by changing the order of summation,

‖ fM‖n
n =

M

∑
m=1
‖ f (· − um)‖n

n = M ‖ f ‖n
n

and we can check that fM in fact satisfies the requirements (i)–(iii) of the
special case. So applying the result to fM (with the set of points Ω), we
have

|Ω| . |F|n−2

(K0 ‖ fM‖n)n−1 ‖ fM‖n
n

but the denominator can be replaced by λn−1 since the definition of M gives
us λ . K0 ‖ fM‖n.

Combining this with the lower bound on |Ω| and ‖ fM‖n
n = M ‖ f ‖n

n we get

min(MJ, |F|n−1) .
|F|n−2

λn−1 M ‖ f ‖n
n .

If MJ is smallest, then we’re done. Otherwise, we can force a contradiction
by taking K0 large enough.

We now come to the use of Dvir’s polynomial method, or at least a variant
of it, to prove this special case of the distributional estimate.

Proof of Proposition 5. We simplify even further by rounding f down to the
nearest integer2, and then replacing it with min( f , |F|).

So we want to show
J . |F|n−2 ‖ f ‖n

for f taking values in {0, 1, . . . , |F|}.

• There exists a nonzero poly p ∈ Vf = {q poly on Fn : deg(q) ≤
D, mult(q, v) ≥ f (v)}, i.e.

p is a polynomial on Fn of degree≤ D (to be set later) which vanishes
to order at least f (v) at v.

2valid since 1
2 f ≤ b f c ≤ f gives ‖ f ‖n ≈ ‖b f c‖n
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Pf. Note that dimF(PD) = (D+n
n ) ≈ Dn. The multiplicity condition

imposes (n+ f (v)−1
n ) constraints on the coefficients of p, at each v. So

dimF PD − dimF Vf ≤ num. constraints . ∑
v∈Fn

f (v)n = ‖ f ‖n
n .

Taking D = k ‖ f ‖n for large enough k ensures dimF Vf > 0, so there
is a nonzero p ∈ Vf .

• With Fn−1 = {x ∈ Fn : xn = 0}, we factor p as

p = xj
nq

taking j ≥ 0 as large as possible, so that the polynomial q has no
xn factor. This q is a poly of degree ≤ D and mult(q, v) ≥ f (v) for
v ∈ Fn \Fn−1.

• For each line γj, we have q|γj = 0.

Pf. Otherwise, {v ∈ γj : q(v) = 0} has dimension 0.

But by Bezout’s Theorem, this set has degree O(1.D) = O(‖ f ‖n).
More precisely, counting multiplicity on the LHS, we have

|{v ∈ γj q(v) = 0}| . ‖ f ‖n

but the LHS is larger than ∑v∈γj\Fn−1 mult(q, v), and by construction
of q and by the hypothesis (iii),

K0 ‖ f ‖n ≤ ∑
v∈γj\Fn−1

f (v) ≤ ∑
v∈γj\Fn−1

mult(q, v) . ‖ f ‖n

giving a contradiction if K0 is chosen large enough.

• So q(wj) = 0 for each j, giving

J ≤ |{w ∈ Fn−1 : q(w) = 0}|.

• On the other hand, the restriction of q to Fn−1 is nontrivial, and has
degree ≤ D. So by Schwartz-Zippel,

J ≤ |{w ∈ Fn−1 : q(w) = 0}| . D|F|n−2

and since D . ‖ f ‖n we have the desired estimate

J . |F|n−2 ‖ f ‖n .
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