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To determine when we have the Fourier inversion formula,
fx)= [ Fe)eerag
RH
we consider the partial sum operators Sg,

sef(x) = [ _ Fle)emeag

|Z|<R

and then by some functional analysis we have that limg_,. Sgf = f in L?
if and only if

ISrfIl, S IfIl, -

so we have turned the problem into studying the boundedness of certain
operators on L spaces. In this case, we have a complete answer:

e for n = 1, we can write Si in terms of the Hilbert transform, and
obtain LP-boundedness for 1 < p < oo.

e for n > 2, Fefferman [3] showed the Sg are only bounded on 12.

We now consider the family of operators Ty, A > 0, defined on R" by

TAf (&) = maf(&), where m, (&) = (1— &%)}

These are the Bochner-Riesz multipliers, which can be viewed as an at-
tempt to smooth out the singularity of the disc multiplier to see if we can
obtain boundedness on a wider range of L? spaces. Note that when A = 0
we obtain Sj, and that as A increases, the multiplier m, becomes smoother
hence more likely to produce a bounded operator.

The main references for the following discussion are [2, Ch 8, §5] and [1,
pp143-157].



1 Useful tools

The following is a useful “duality” result, which allows us to consider only
p < 2or p > 2 as necessary.

Theorem 1. [5, Ch IV, §3.1]If , + 5, =1,1 < p < oo, then M), = M,y with
equality of norms.
Proof. Let o denote the involution o (f)(x) = f(—x). We see that ¢ T,,0 =

T, and since ¢ is an isometry of L” this means that Hm”/vl,, = HWHMP

Now by Plancherel, and the definition of T,

[rse- [T~ [ [

SO
I, = sup | [Tusg
I£11,=llgll =1
= sup /meg = |7, -
I£11,=llgll,y=1
Combining this with HmHM,, = ||WHMP we have ||m||Mp = ||m|| o ,- O
P

We will also need to make use of interpolation. Generally it will be enough
to use Riesz-Thorin or Marcinkiewicz interpolation, but we note the fol-
lowing “complex interpolation” result due to Stein [4].

Theorem 2. For a nice' family of operators T,, 0 < Rez < 1, suppose

Ty flly S Ay, and | Togiyfll, S AL, -

Then for 0 < 8 < 1 we have

I To-iufll, < 11,

where
1 1-60 6 1 1-6 6
+ = +

p Po P1 q qo 71
1see [4] for the full details, or [2, pp22-23] for a summary.




2 Known results

Following [2, pp171-172], the kernel of T} is
Ki(x) = m DA+ 1) x| 754y (27]x])

where [, is the Bessel function

Applying the known behaviour J, = O(t*) ast — O and ], ~ t /2 as
t — oo, we have

<C as x| — 0

Ky (x B n
[Ka >|{% 1G24 s x| oo

Theorem 3. If A > "L then T) is bounded on all L?.

Proof. For A > ”771, the bounds for K, above show that Ky € L!. So by

Young’s inequality,
ITafll, = 1K+ £l < KT AT, S 1A
i.e. T) is bounded on LP. O
Theorem 4. If ‘% — %‘ > 23t then T), is unbounded.
Proof. Now if m € M, has compact support, it follows? that /i € LP. This

shows that a necessary condition for T to be bounded on L7 is that K, &
LP.

Again using the bounds on K, we have K, € L? only if p (5 + ) > n.

2A+1 0

By duality, this becomes ‘% — %‘ > e

Remark. We can interpolate the result for A > ”Tfl with the disc multiplier
result to get a whole region of boundedness, shaded in blue, as well as the
region of unboundedness in red.

2Choose f € S such that f = 1 on the support of m. Then f € L?, so Ty, f € L? by
assumption. But T;,, f = mf =m,som = Ty f € LF hence 11 € LP.
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We now essentially re-prove the result about boundedness; but the method
of proof is interesting.

Theorem 5. T) is bounded on LP when ‘% — %) < ﬁ

Proof. We follow the proof in [2, pp170-171], with some modifications.

Decompose T) on dyadic anulli as follows. Take a partition of unity ¢y
subordinate to the open cover (1 — 271 1 —27k=1) of [0,1] 3, so that

(- 2Pk = Yo (1 — B (2.

k=0

Now, ¢y is supported near 1 — 2% (on an annulus of width ~ 27F), where
we have

(116" = (A +1EDa - 18D ~ @x 24~ 2

We define ¢ (|¢]) = 24 (1 — |&]2)* ¢ (€]) so that ¢ < 1, and then
Tof = iz—“ka
k=0

where Ty is the operator with multiplier ¢y.

We apply Minkowski’s inequality to get

ITafll, < 327 ITif I,
k=0

and then estimating each of these norms, we will see that the series con-
verges for the hypothesised range of A and p.

3this only makes sense for k > 1, so we need to just add in the ¢y manually
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The estimate for these norms is produced in a Lemma in [2], but we get
them via a slightly different method. There is the trivial L? boundedness,
I Tefll, < allfll, using the fact that ¢ < 11. Then by Young’s inequality,
for g = 1,00 we have

I1Tiflly = £, <l 171,

Pr
We do this by decomposing ¢, smoothly in segments of the annulus; if the

annulus is ¢ thick then all other dimensions of the segments are §'/2. Each
segment v supports a piece ¢, of ¢y.

so the problem reduces to estimating

U

e If ¢, is one of the pieces, then H(ﬁv Hl <1.

Each piece has the same norm since they are all rotations of each

other, so we may assume ¢, is perpendicular to the ¢; axis; then ¢, is

a translate of ‘P(%l, 5%), for some fixed ¥ € S, hence

—

~

Pv

A

$u ¥

5’ 61/2

1= 1 =C

LY(g)

e Hence by the triangle inequality,

¢TkH1 < num. segments.

Now each segment will have surface area (6'/2)"~!, and since the
radius is bounded by 1, the total surface area of the outside of the
annulus is O(1); hence there are ~ §~("~1)/2 segments, and 6 ~ 2%,

giving Hngl < kn=1)/2,

n1l2
Finally, interpolation gives || T f[[, < 2k ‘P 1‘ |f1|, and putting this into

the summation we see that the geometric series converges if ‘ % -1 ‘ < A
O

There is another important known result, which uses restriction theory.

3 Using restriction estimates

There is an intimate connection* between estimates for Bochner-Riesz oper-
ators and estimates on the size of the Fourier transform of a function when

4Gee [8] for more on this.



restricted to a hypersurface (generally the sphere), i.e. “restriction theo-
rems”. This is illustrated in the proof of Theorem 7 below, which makes
use of the following.

Theorem 6 (Tomas-Stein). Forall1 < p < % we have

(L. U?(C)qua(é)>1/q S Wl

where q = (451) P/ 5+ 5 =1

Proof. See [6, p386] for the full proof. The following is a sketch proof of the
“restricted” result (i.e. with f = xg for some set E) in the endpoint case

p= 2,1”:32, where g = 2 — it is this endpoint case which we will later make
use of.

We write the L? norm as
[ Ffao= [Flof) = [Florsf)+ [ Flosep)
4
A

where we have split 0() = 0'V<4§)(])(%) +07&)(1 —¢(5)) with ¢ a standard
bump. Thus o77is supported on || < A and 0x’'on || 2 A. The appropriate
choice of A will be made later.

Using the fact that |o(&)| < |&]~("~1/2, we have
. _n-1
Q) SA 7.
On the other hand, 01 = 0 * 47/1/\A, so 0 is 0 spread out on scale % maintain-
ing mass 1. So ||oy ||, ~ A.

So applying Holder and Plancherel to the first term, and Holder and Young
on the second, we get

J1Rde = [ Fors )+ [Flozep)
<l e 11 + 11 ol 11

n—1

2 2,11
< ClflRA+IfIRAT
Taking f = xr we have

[ \fi2do S B+ |EPA-

and choosing A so that both terms are the same (i.e. taking A = |E|?/("+1))
we get

7 nt3
[ \fRdo S 1EFH = £
n+3

i.e. that the restriction estimate holds from p = % to L2(S"1). O
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Theorem 7. If A > i) then T) is bounded on LP when ‘p 2’ <
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Proof. We again decompose T, on annuli, putting
Ky =) K where Ki(x) = Ky (x)n(2 % %) (k> 1),
k=0

with 7 € C® radial and supported on ; < |x| < 1, so that each K is
supported on |x| € [2572,2F].

We want [Ty f||, < [ f[|, for suitable p, A. If we can show
If * Kill,y < A27F|fll,,  (3e>0) (3.1)

for some py < 2 then with the triangle inequality we get

)
HT)\prOZ Zf*Kk
k=0

o0 6H &
<YM Kell,, < 30 A2Z7F(fll S Al
py k=0 k=0
because the geometric series is summable. Then by interpolation with the
obvious L? estimate, we have that T, is bounded on L? for po<p <2

Now the multiplier corresponding to Kj is
mi(8) = Ki(§) = (Ky +7(27)) ()
= [ma@ -y dy

and we can show?’, using the compact support and smoothness of (1 —
&|*)A away from |¢| = 1, that for [1 — ||| > 3,

Im(&)] < AN27 N1 412N YN >0.

SWe exploit the fact that [ &%} = (D*5)(0) = 0 Va to introduce extra terms in the
integrand. For large |&| we replace m, (§ — y) with (m, (¢ —y) — m, ({)) and use the mean
value theorem, while for small || we subtract the degree N Taylor approximation of m,.
Then use the fact thaty € S.




Now since Ky is supported in the ball of radius 2¥, we only need to consider
f with this support® in (3.1). But for such f we can perform a neat trick with
Holder’s inequality (since pg < 2):

1/po
I * Killyy, = |xa29f Kl |

1/po H|f*K |p0H1/p0

< HXB(ozk

) I * Kl

and now we can use Plancherel to write

1f * Kl =/ F(&) PIme(&) [ d + F@)PIme(&) P dg

-lgll<3 1-1gl1>3

We use the estimate on |m(¢)| as well as the fact that (by Holder),

F @1 < [ eldr < [xuoz| w171, =275 1,
Po—

to get the second term
Ck
< Hf||p0 22Nk / %d@ < p—k(1+21) Hfo?o
22N Jp—jel>3 (1+¢1)
by taking N large enough.

For the first term, we use polar coordinates and then apply the LF0-L2(S"~1)
restriction theorem:

/3/2/ T’M ’ ‘ ( )|2 n= 1d d
my uar
1 gn—1

~ ’ 3/2 N
< | sup /SH |f(ru)|*du /1/2 |my(r)|7r" " dr

1 3
25r<;

< (1F15,) Kl

- 2
S 27 Y £

where py = zn”faz here (see [6, IX§2.1]). Putting this together, we have (3.1)

when with e = A + % —n <% — %), and since we require ¢ > 0 to ensure
convergence of T), this means we need

1 1 2A+1

——=-<

po 2 2n

®This is a general principle; see Lemma 1.6 in Lecture 3 of [7]. It is basically because the
convolution with K will kill any contribution from outside the ball anyway.



in order to get boundedness of T, on LF with py < p < 2. Since we must

have pg = 2;132 from the use of the restriction theorem, this implies
n—1
A>—.
2(n+1)

So for A in this range, we have boundedness of T) on L7 if

2771 < < <2
+nt1 P0=P=
and by duality this means for p such that ‘% - %) < 2);;1. O

4 More recent progress

The main reference here is Tao’s set of notes, [8, Lecture 5].

Lee has shown that bilinear restriction estimates can imply Bochner-Riesz.
Combining this with bilinear restriction estimates due to Tao, we have that
the Bochner-Riesz conjecture is true for

2(n+2) 2(n+2)
> — d < ——"
p= n an P= n+4 "’
so the range A > 2(’;7111) of the previous theorem has been improved to
A > =2
2(n+2)"
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