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To determine when we have the Fourier inversion formula,

f (x) =
∫

Rn
f̂ (ξ)e2πiξ·xdξ

we consider the partial sum operators SR,

SR f (x) =
∫
|ξ|≤R

f̂ (ξ)e2πiξ·xdξ

and then by some functional analysis we have that limR→∞ SR f = f in Lp

if and only if
‖SR f ‖p . ‖ f ‖p ,

so we have turned the problem into studying the boundedness of certain
operators on Lp spaces. In this case, we have a complete answer:

• for n = 1, we can write SR in terms of the Hilbert transform, and
obtain Lp-boundedness for 1 < p < ∞.

• for n ≥ 2, Fefferman [3] showed the SR are only bounded on L2.

We now consider the family of operators Tλ, λ ≥ 0, defined on Rn by

T̂λ f (ξ) = mλ f̂ (ξ), where mλ(ξ) = (1− |ξ|2)λ
+.

These are the Bochner-Riesz multipliers, which can be viewed as an at-
tempt to smooth out the singularity of the disc multiplier to see if we can
obtain boundedness on a wider range of Lp spaces. Note that when λ = 0
we obtain S1, and that as λ increases, the multiplier mλ becomes smoother
hence more likely to produce a bounded operator.

The main references for the following discussion are [2, Ch 8, §5] and [1,
pp143-157].
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1 Useful tools

The following is a useful “duality” result, which allows us to consider only
p < 2 or p > 2 as necessary.

Theorem 1. [5, Ch IV, §3.1] If 1
p + 1

p′ = 1, 1 ≤ p ≤ ∞, thenMp =Mp′ with
equality of norms.

Proof. Let σ denote the involution σ( f )(x) = f (−x). We see that σ−1Tmσ =
Tm, and since σ is an isometry of Lp this means that ‖m‖Mp

= ‖m‖Mp
.

Now by Plancherel, and the definition of Tm,∫
Tm f g =

∫
T̂m f ĝ =

∫
f̂ T̂mg =

∫
f Tmg,

so

‖m‖Mp
= sup
‖ f ‖p=‖g‖p′=1

∣∣∣∣∫ Tm f g
∣∣∣∣

= sup
‖ f ‖p=‖g‖p′=1

∣∣∣∣∫ f Tmg
∣∣∣∣ = ‖m‖Mp′

.

Combining this with ‖m‖Mp
= ‖m‖Mp

we have ‖m‖Mp
= ‖m‖Mp′

.

We will also need to make use of interpolation. Generally it will be enough
to use Riesz-Thorin or Marcinkiewicz interpolation, but we note the fol-
lowing “complex interpolation” result due to Stein [4].

Theorem 2. For a nice1 family of operators Tz, 0 ≤ Re z ≤ 1, suppose∥∥Tiy f
∥∥

q0
. ‖ f ‖p0

and
∥∥T1+iy f

∥∥
q1

. ‖ f ‖p1
.

Then for 0 < θ < 1 we have ∥∥Tθ+iy f
∥∥

q . ‖ f ‖p

where
1
p

=
1− θ

p0
+

θ

p1

1
q

=
1− θ

q0
+

θ

q1

1see [4] for the full details, or [2, pp22-23] for a summary.
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2 Known results

Following [2, pp171-172], the kernel of Tλ is

Kλ(x) = π−λΓ(λ + 1)|x|− n
2−λ J n

2 +λ(2π|x|)

where Jµ is the Bessel function

Jµ(t) =
( t

2 )µ

Γ(µ + 1
2 )Γ( 1

2 )

∫ 1

−1
eits(1− s2)µ− 1

2 ds.

Applying the known behaviour Jµ = O(tµ) as t → 0 and Jµ ≈ t−1/2 as
t→ ∞, we have

|Kλ(x)|
{
≤ C as |x| → 0

≈ |x|−(
n+1

2 +λ) as |x| → ∞.

Theorem 3. If λ > n−1
2 then Tλ is bounded on all Lp.

Proof. For λ > n−1
2 , the bounds for Kλ above show that Kλ ∈ L1. So by

Young’s inequality,

‖Tλ f ‖p = ‖Kλ ∗ f ‖p ≤ ‖K‖1 ‖ f ‖p . ‖ f ‖p

i.e. Tλ is bounded on Lp.

Theorem 4. If
∣∣∣ 1

p −
1
2

∣∣∣ ≥ 2λ+1
2n then Tλ is unbounded.

Proof. Now if m ∈ Mp has compact support, it follows2 that m̂ ∈ Lp. This
shows that a necessary condition for Tλ to be bounded on Lp is that Kλ ∈
Lp.

Again using the bounds on Kλ, we have Kλ ∈ Lp only if p
( n+1

2 + λ
)

> n.

By duality, this becomes
∣∣∣ 1

p −
1
2

∣∣∣ ≥ 2λ+1
2n .

Remark. We can interpolate the result for λ > n−1
2 with the disc multiplier

result to get a whole region of boundedness, shaded in blue, as well as the
region of unboundedness in red.

2Choose f ∈ S such that f̂ = 1 on the support of m. Then f ∈ Lp, so Tm f ∈ Lp by
assumption. But T̂m f = m f̂ = m, so m̌ = Tm f ∈ Lp hence m̂ ∈ Lp.
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λ

1
p1

2
0 1

n−1
2

n−1
2n

n+1
2n

We now essentially re-prove the result about boundedness; but the method
of proof is interesting.

Theorem 5. Tλ is bounded on Lp when
∣∣∣ 1

p −
1
2

∣∣∣ < λ
n−1 .

Proof. We follow the proof in [2, pp170-171], with some modifications.

Decompose Tλ on dyadic anulli as follows. Take a partition of unity φk
subordinate to the open cover (1− 2−k+1, 1− 2−k−1) of [0, 1] 3, so that

(1− |ξ|2)λ
+ =

∞

∑
k=0

(1− |ξ|2)λφk(|ξ|).

Now, φk is supported near 1− 2−k (on an annulus of width ∼ 2−k), where
we have

(1− |ξ|2)λ =
(
(1 + |ξ|)(1− |ξ|)

)λ
∼ (2× 2−k)λ ∼ 2−kλ.

We define φ̃k(|ξ|) = 2kλ(1− |ξ|2)λφk(|ξ|) so that φ̃k . 1, and then

Tλ f =
∞

∑
k=0

2−kλTk f

where Tk is the operator with multiplier φ̃k.

We apply Minkowski’s inequality to get

‖Tλ f ‖p ≤
∞

∑
k=0

2−kλ ‖Tk f ‖p

and then estimating each of these norms, we will see that the series con-
verges for the hypothesised range of λ and p.

3this only makes sense for k ≥ 1, so we need to just add in the φ0 manually
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The estimate for these norms is produced in a Lemma in [2], but we get
them via a slightly different method. There is the trivial L2 boundedness,
‖Tk f ‖2 . λ ‖ f ‖2 using the fact that φ̃k . λ1. Then by Young’s inequality,
for q = 1, ∞ we have

‖Tk f ‖q =
∥∥∥ ˇ̃φk ∗ f

∥∥∥
q
≤
∥∥∥ ˇ̃φk

∥∥∥
1
‖ f ‖q

so the problem reduces to estimating
∥∥∥ ˇ̃φk

∥∥∥
1
.

We do this by decomposing φ̃k smoothly in segments of the annulus; if the
annulus is δ thick then all other dimensions of the segments are δ1/2. Each
segment ν supports a piece φν of φ̃k.

• If φν is one of the pieces, then
∥∥φ̌ν

∥∥
1 . 1.

Each piece has the same norm since they are all rotations of each
other, so we may assume φν is perpendicular to the ξ1 axis; then φν is
a translate of Ψ( ξ1

δ , ξ ′

δ1/2 ), for some fixed Ψ ∈ S , hence

∥∥φ̌ν

∥∥
1 =

∥∥φ̂ν

∥∥
1 =

∥∥∥∥∥ ̂
Ψ(

ξ1

δ
,

ξ ′

δ1/2 )

∥∥∥∥∥
L1(ξ)

=
∥∥Ψ̌
∥∥

1 = C.

• Hence by the triangle inequality,
∥∥∥ ˇ̃φk

∥∥∥
1
. num. segments.

Now each segment will have surface area (δ1/2)n−1, and since the
radius is bounded by 1, the total surface area of the outside of the
annulus is O(1); hence there are ≈ δ−(n−1)/2 segments, and δ ≈ 2−k,
giving

∥∥∥ ˇ̃φk

∥∥∥
1
. 2k(n−1)/2.

Finally, interpolation gives ‖Tk f ‖p . 2k n−1
2

∣∣∣ 2
p−1

∣∣∣ ‖ f ‖p and putting this into

the summation we see that the geometric series converges if
∣∣∣ 1

p −
1
2

∣∣∣ < λ
n−1 .

There is another important known result, which uses restriction theory.

3 Using restriction estimates

There is an intimate connection4 between estimates for Bochner-Riesz oper-
ators and estimates on the size of the Fourier transform of a function when

4See [8] for more on this.
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restricted to a hypersurface (generally the sphere), i.e. “restriction theo-
rems”. This is illustrated in the proof of Theorem 7 below, which makes
use of the following.

Theorem 6 (Tomas-Stein). For all 1 ≤ p ≤ 2n+2
n+3 we have(∫

Sn−1
| f̂ (ξ)|q dσ(ξ)

)1/q

. ‖ f ‖Lp(Rn)

where q =
( n−1

n+1

)
p′, 1

p + 1
p′ = 1.

Proof. See [6, p386] for the full proof. The following is a sketch proof of the
“restricted” result (i.e. with f = χE for some set E) in the endpoint case
p = 2n+2

n+3 , where q = 2 — it is this endpoint case which we will later make
use of.

We write the L2 norm as∫
f̂ f̂ dσ =

∫
f (σˇ∗ f ) =

∫
f (σ1̌ ∗ f ) +

∫
f (σ2̌ ∗ f )

where we have split σ (̌ξ) = σ (̌ξ)φ( ξ
λ ) + σ (̌ξ)(1− φ( ξ

λ )) with φ a standard
bump. Thus σ1̌ is supported on |ξ| . λ and σ2̌ on |ξ| & λ. The appropriate
choice of λ will be made later.

Using the fact that |σ (̌ξ)| . |ξ|−(n−1)/2, we have

|σ2̌(ξ)| . λ−
n−1

2 .

On the other hand, σ1 = σ ∗ φ̂1/λ, so σ1 is σ spread out on scale 1
λ maintain-

ing mass 1. So ‖σ1‖∞ ∼ λ.

So applying Hölder and Plancherel to the first term, and Hölder and Young
on the second, we get∫

| f̂ |2 dσ =
∫

f (σ1̌ ∗ f ) +
∫

f (σ2̌ ∗ f )

≤ ‖ f ‖2 ‖σ1‖∞ ‖ f ‖2 + ‖ f ‖1 ‖σ2̌‖∞ ‖ f ‖1

≤ C ‖ f ‖2
2 λ + ‖ f ‖2

1 λ−
n−1

2 .

Taking f = χE we have∫
| f̂ |2 dσ . |E|λ + |E|2λ−

n−1
2

and choosing λ so that both terms are the same (i.e. taking λ = |E|2/(n+1))
we get ∫

| f̂ |2 dσ . |E| n+3
n+1 = ‖ f ‖2

2(n+1)
n+3

i.e. that the restriction estimate holds from p = 2(n+1)
n+3 to L2(Sn−1).
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Theorem 7. If λ > n−1
2(n+1) then Tλ is bounded on Lp when

∣∣∣ 1
p −

1
2

∣∣∣ < 2λ+1
2n .

λ

1
p1

2
0 1

n−1
2

n−1
2n

n+1
2n

n−1
2(n+1)

Proof. We again decompose Tλ on annuli, putting

Kλ =
∞

∑
k=0

Kk where Kk(x) = Kλ(x)η(2−kx) (k ≥ 1),

with η ∈ C∞ radial and supported on 1
4 ≤ |x| ≤ 1, so that each Kk is

supported on |x| ∈ [2k−2, 2k].

We want ‖Tλ f ‖p . ‖ f ‖p for suitable p, λ. If we can show

‖ f ∗ Kk‖p0
≤ A2−εk ‖ f ‖p0

(∃ε > 0) (3.1)

for some p0 ≤ 2 then with the triangle inequality we get

‖Tλ f ‖p0
=

∥∥∥∥∥ ∞

∑
k=0

f ∗ Kk

∥∥∥∥∥
p0

≤
∞

∑
k=0
‖ f ∗ Kk‖p0

(3.1)
≤

∞

∑
k=0

A2−εk ‖ f ‖p0
. ‖ f ‖p0

because the geometric series is summable. Then by interpolation with the
obvious L2 estimate, we have that Tλ is bounded on Lp for p0 ≤ p ≤ 2.

Now the multiplier corresponding to Kk is

mk(ξ) = K̂k(ξ) = (K̂λ ∗ η̂(2−k·))(ξ)

=
∫

mλ(ξ − y)2nkη̂(2ky) dy

and we can show5, using the compact support and smoothness of (1 −
|ξ|2)λ

+ away from |ξ| = 1, that for |1− |ξ|| > 1
2 ,

|mk(ξ)| ≤ AN2−Nk(1 + |ξ|)−N ∀N ≥ 0.
5We exploit the fact that

∫
ξαη̂ = (Dαη)(0) = 0 ∀α to introduce extra terms in the

integrand. For large |ξ| we replace mλ(ξ − y) with (mλ(ξ − y)−mλ(ξ)) and use the mean
value theorem, while for small |ξ| we subtract the degree N Taylor approximation of mλ.
Then use the fact that η ∈ S .
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Now since Kk is supported in the ball of radius 2k, we only need to consider
f with this support6 in (3.1). But for such f we can perform a neat trick with
Hölder’s inequality (since p0 ≤ 2):

‖ f ∗ Kk‖p0
=
∥∥∥χB(0,2k)| f ∗ Kk|p0

∥∥∥1/p0

1

≤
∥∥∥χB(0,2k)

∥∥∥1/p0

2
2−p0

∥∥| f ∗ Kk|p0
∥∥1/p0

2
p0

= C2nk
(

1
p0
− 1

2

)
‖ f ∗ Kk‖2

and now we can use Plancherel to write

‖ f ∗ Kk‖2
2 =

∫
|1−|ξ||≤ 1

2

| f̂ (ξ)|2|mk(ξ)|2 dξ +
∫
|1−|ξ||> 1

2

| f̂ (ξ)|2|mk(ξ)|2 dξ

We use the estimate on |mk(ξ)| as well as the fact that (by Hölder),

| f̂ (ξ)| ≤
∫
| f (x)| dx ≤

∥∥∥χB(0,2k)

∥∥∥ p0
p0−1

‖ f ‖p0
= 2Cn,p0 k ‖ f ‖p0

to get the second term

. ‖ f ‖2
p0

2Ck

22Nk

∫
|1−|ξ||> 1

2

1
(1 + |ξ|)2N dξ . 2−k(1+2λ) ‖ f ‖2

p0

by taking N large enough.

For the first term, we use polar coordinates and then apply the Lp0-L2(Sn−1)
restriction theorem:∫ 3/2

1/2

∫
Sn−1
| f̂ (ru)|2|mk(r)|2rn−1 du dr

≤

 sup
1
2≤r≤ 3

2

∫
Sn−1
| f̂ (ru)|2 du

 ∫ 3/2

1/2
|mk(r)|2rn−1 dr

.
(
‖ f ‖2

p0

)
‖Kk‖2

2

. 2−k(1+2λ) ‖ f ‖2
p0

where p0 = 2n+2
n+3 here (see [6, IX§2.1]). Putting this together, we have (3.1)

when with ε = λ + 1
2 − n

(
1
p0
− 1

2

)
, and since we require ε > 0 to ensure

convergence of Tλ, this means we need

1
p0
− 1

2
<

2λ + 1
2n

6This is a general principle; see Lemma 1.6 in Lecture 3 of [7]. It is basically because the
convolution with Kk will kill any contribution from outside the ball anyway.
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in order to get boundedness of Tλ on Lp with p0 ≤ p ≤ 2. Since we must
have p0 = 2n+2

n+3 from the use of the restriction theorem, this implies

λ >
n− 1

2(n + 1)
.

So for λ in this range, we have boundedness of Tλ on Lp if

2n
2λ + n + 1

< p0 ≤ p ≤ 2

and by duality this means for p such that
∣∣∣ 1

p −
1
2

∣∣∣ < 2λ+1
2n .

4 More recent progress

The main reference here is Tao’s set of notes, [8, Lecture 5].

Lee has shown that bilinear restriction estimates can imply Bochner-Riesz.
Combining this with bilinear restriction estimates due to Tao, we have that
the Bochner-Riesz conjecture is true for

p ≥ 2(n + 2)
n

and p ≤ 2(n + 2)
n + 4

,

so the range λ > n−1
2(n+1) of the previous theorem has been improved to

λ > n−2
2(n+2) .
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