Outline	Operators	Multipliers	Bochner-Riesz multipliers

Bochner-Riesz multipliers

... or, How to Get a PhD by Colouring in a Picture

George Kinnear

March 9, 2010

George Kinnear Bochner-Riesz multipliers

Outline	Operators	Multipliers	Bochner-Riesz multipliers

George Kinnear Bochner-Riesz multipliers

ヘロト 人間 ト 人造 ト 人造 トー

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Operators			

An **operator** is a function of functions.

George Kinnear Bochner-Riesz multipliers

ヘロト 人間 ト 人造 ト 人造 トー

2

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Operators			

An **operator** is a function of functions.

Examples

• Differentiation

 $D: f \mapsto f'$

George Kinnear Bochner-Riesz multipliers

・ロト ・四ト ・ヨト ・ヨト

э

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Operators			

An **operator** is a function of functions.

Examples

• Differentiation

$$D: f \mapsto f'$$

• Fourier transform

$$\mathfrak{F}: f \mapsto \widehat{f}$$

 $\widehat{f}(\xi) = \int f(x) e^{-2\pi i x \cdot \xi} dx$

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

э

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Spaces	of functions		

• The Lebesgue spaces, $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$.

$$f \in L^p(\mathbb{R}^n) \Leftrightarrow \left\|f\right\|_p = \left(\int |f(\mathbf{x})|^p d\mathbf{x}\right)^{1/p} < \infty$$

(with $\|f\|_{\infty} = \sup |f(x)|$).

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

ъ

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Spaces	of functions		

• The Lebesgue spaces, $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$.

$$f \in L^p(\mathbb{R}^n) \Leftrightarrow \|f\|_p = \left(\int |f(\mathbf{x})|^p d\mathbf{x}\right)^{1/p} < \infty$$

(with $\|f\|_{\infty} = \sup |f(x)|$).

The Schwartz space, S(Rⁿ), of smooth, rapidly decreasing functions.

 $f \in C^{\infty}(\mathbb{R}^n)$ $\sup |x^{\alpha}D^{\beta}f(x)| < \infty$

イロト イポト イヨト イヨト

3

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Aside			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Aside			

Karl Hermann Amandus Schwarz (1843-1921)

Laurent Schwartz (1915-2002)

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness of opera	tors	

We say the operator T is **bounded** from L^p to L^q if there is an absolute constant C such that

 $\|Tf\|_q \leq C \|f\|_p \quad \forall f \in L^p.$

イロト イポト イヨト イヨト 二日

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness of opera	tors	

We say the operator T is **bounded** from L^p to L^q if there is an absolute constant C such that

 $\|Tf\|_q \leq C \|f\|_p \quad \forall f \in L^p.$

Examples

 $\bullet~ \ensuremath{\mathcal{F}}$ is bounded on $L^2,$ since the Plancherel theorem says

 $\|\widehat{f}\|_2 = \|f\|_2$.

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness of opera	tors	

We say the operator T is **bounded** from L^p to L^q if there is an absolute constant C such that

$$\|Tf\|_q \leq C \|f\|_p \quad \forall f \in L^p.$$

Examples

• \mathcal{F} is bounded on L^2 , since the Plancherel theorem says

$$\|\widehat{f}\|_2 = \|f\|_2.$$

• \mathcal{F} is bounded from L^p to L^q , $1 \leq p \leq 2$ and $\frac{1}{p} + \frac{1}{q} = 1$. This comes from the Hausdorff-Young inequality

$$\|\widehat{f}\|_q \leqslant \|f\|_p$$
.

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Interpo	lation		

Theorem (Riesz-Thorin Interpolation)

$$\begin{split} If \left\|Tf\right\|_{q_0} \lesssim \left\|f\right\|_{p_0} \text{ and } \left\|Tf\right\|_{q_1} \lesssim \left\|f\right\|_{p_1} \text{ then} \\ \left\|Tf\right\|_q \lesssim \left\|f\right\|_p \end{split}$$

イロト イロト イヨト イヨト

э

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Interpo	lation		

Theorem (Riesz-Thorin Interpolation)

If
$$\|Tf\|_{q_0} \lesssim \|f\|_{p_0}$$
 and $\|Tf\|_{q_1} \lesssim \|f\|_{p_1}$ then
 $\|Tf\|_q \lesssim \|f\|_p$

for p,q such that for some $0<\theta<1$

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}\qquad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$$

イロト イロト イヨト イヨト

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Interno	lation		

Theorem (Riesz-Thorin Interpolation)

$$\begin{split} If \, \|Tf\|_{q_0} \lesssim \|f\|_{p_0} \, \, and \, \|Tf\|_{q_1} \lesssim \|f\|_{p_1} \, \, then \\ \|Tf\|_q \lesssim \|f\|_p \end{split}$$

for p,q such that for some $0<\theta<1$

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}\qquad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$$

Example

The Hausdorff-Young inequality comes from

$$\|\widehat{f}\,\|_{\infty}\leqslant \|f\|_1\quad\text{and}\quad \|\widehat{f}\,\|_2=\|f\|_2\,.$$

George Kinnear

Bochner-Riesz multipliers

イロト イポト イヨト イヨト

э

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Multipliers			

Given $m \in L^{\infty}(\mathbb{R}^n)$ we can define an operator T_m by

$$\widehat{T_mf}(\mathbf{x}) = m(\mathbf{x})\widehat{f}(\mathbf{x}).$$

イロト イロト イヨト イヨト

ъ

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Multipliers			

Given $m \in L^{\infty}(\mathbb{R}^n)$ we can define an operator T_m by

$$\widehat{T_mf}(\mathbf{x})=m(\mathbf{x})\widehat{f}(\mathbf{x}).$$

We say *m* is an L^p **multiplier** if T_m is bounded on L^p .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Multipliers			

Given $m \in L^{\infty}(\mathbb{R}^n)$ we can define an operator T_m by

$$\widehat{T_mf}(x)=m(x)\widehat{f}(x).$$

We say *m* is an L^p **multiplier** if T_m is bounded on L^p .

Theorem

An L^p multiplier is automatically an $L^{p'}$ multiplier, where $\frac{1}{p} + \frac{1}{p'} = 1, 1 \leq p \leq \infty.$

・ ロ ト ・ 西 ト ・ ヨ ト ・

Operators

Multipliers

Bochner-Riesz multipliers

イロト イロト イヨト イヨト

2

Spherical summation multipliers

$$S_R f(\mathbf{x}) = \int_{|\xi| \leqslant R} \widehat{f}(\xi) e^{2\pi i \xi \cdot \mathbf{x}} d\xi$$

Operators

Multipliers

Bochner-Riesz multipliers

イロト イロト イヨト イヨト

2

Spherical summation multipliers

$$S_R f(x) = \int_{|\xi| \leq R} \widehat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi$$
$$\lim_{R \to \infty} S_R f = f \quad \Leftrightarrow \quad \|S_R f\|_p \leq \|f\|_p$$

Operators

Multipliers

Bochner-Riesz multipliers

イロト イ理ト イヨト イヨト

э

Spherical summation multipliers

$$S_R f(\mathbf{x}) = \int_{|\xi| \leqslant R} \widehat{f}(\xi) e^{2\pi i \, \xi \cdot \mathbf{x}} d\xi$$
 $\lim_{R o \infty} S_R f = f \quad \Leftrightarrow \quad \|S_R f\|_p \leqslant \|f\|_p$

S_R is the operator corresponding to the **disc multiplier**;

$$\widehat{S_R f}(\xi) = \chi_{\{|\xi| \leqslant R\}} \widehat{f}(\xi).$$

Operators

Multipliers

Bochner-Riesz multipliers

イロト イポト イヨト イヨト

ъ

Spherical summation multipliers

$$S_R f(\mathbf{x}) = \int_{|\xi| \leqslant R} \widehat{f}(\xi) e^{2\pi i \, \xi \cdot \mathbf{x}} d\xi$$
 $\lim_{R o \infty} S_R f = f \quad \Leftrightarrow \quad \|S_R f\|_p \leqslant \|f\|_p$

 S_R is the operator corresponding to the **disc multiplier**;

$$\widehat{S_R f}(\xi) = \chi_{\{|\xi| \leqslant R\}} \,\widehat{f}(\xi).$$

• n = 1: bounded on $L^p(\mathbb{R})$, 1 .

Operators

Multipliers

Bochner-Riesz multipliers

イロト イポト イヨト イヨト 二日

Spherical summation multipliers

$$S_R f(x) = \int_{|\xi| \leqslant R} \widehat{f}(\xi) e^{2\pi i \, \xi \cdot x} d\xi$$
 $\lim_{R o \infty} S_R f = f \quad \Leftrightarrow \quad \|S_R f\|_p \leqslant \|f\|_p$

 S_R is the operator corresponding to the **disc multiplier**;

$$\widehat{S_R f}(\xi) = \chi_{\{|\xi| \leqslant R\}} \,\widehat{f}(\xi).$$

- n = 1: bounded on $L^p(\mathbb{R})$, 1 .
- $n \ge 2$
 - trivially bounded on $L^2(\mathbb{R}^n)$ by Plancherel.

Operators

Multipliers

Bochner-Riesz multipliers

イロト イポト イヨト イヨト 二日

Spherical summation multipliers

$$S_R f(\mathbf{x}) = \int_{|\xi| \leqslant R} \widehat{f}(\xi) \mathrm{e}^{2\pi i\,\xi\cdot\mathbf{x}} d\xi$$
 $\lim_{R o \infty} S_R f = f \quad \Leftrightarrow \quad \|S_R f\|_p \leqslant \|f\|_p$

 S_R is the operator corresponding to the **disc multiplier**;

$$\widehat{S_R f}(\xi) = \chi_{\{|\xi| \leqslant R\}} \,\widehat{f}(\xi).$$

- n = 1: bounded on $L^p(\mathbb{R})$, 1 .
- $n \ge 2$
 - trivially bounded on $L^2(\mathbb{R}^n)$ by Plancherel.
 - not bounded on $L^p(\mathbb{R}^n)$ if $p \neq 2$.

Operators

Multipliers

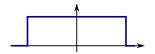
Bochner-Riesz multipliers

ヘロト 人間 ト 人造 ト 人造 トー

э

Spherical summation multipliers

The multiplier $\chi_{\{|\xi| \leq R\}}$ has a jump:



Operators

Multipliers

Bochner-Riesz multipliers

Spherical summation multipliers

The multiplier $\chi_{\{|\xi| \leq R\}}$ has a jump:

What if we smooth it out? e.g. $\left(1 - \frac{|\xi|}{R}\right)_{\perp}$



George Kinnear Bochner-Riesz multipliers

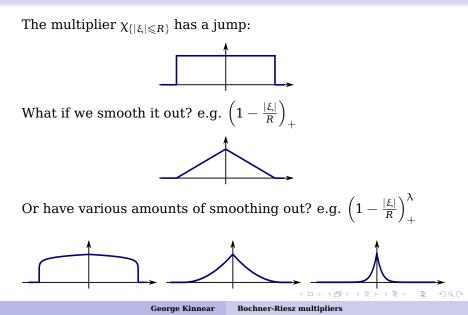
・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト ・

Operators

Multipliers

Bochner-Riesz multipliers

Spherical summation multipliers



Operators

Multipliers

Bochner-Riesz multipliers

イロト イ理ト イヨト イヨト

э

Bochner-Riesz multipliers

Instead of
$$\left(1 - \frac{|\xi|}{R}\right)_+^{\lambda}$$
 we consider a closely related family.

Definition

The Bochner-Riesz multipliers are defined for $\lambda>0$ by

$$m_\lambda(\xi) = \left(1 - |\xi|^2\right)_+^\lambda.$$

The corresponding operators are

$$\widehat{T_{\lambda}f}(\xi) = m_{\lambda}(\xi)\widehat{f}(\xi).$$

Operators

Multipliers

Bochner-Riesz multipliers

Bochner-Riesz multipliers

Instead of
$$\left(1 - \frac{|\xi|}{R}\right)_+^{\lambda}$$
 we consider a closely related family.

Definition

The Bochner-Riesz multipliers are defined for $\lambda>0$ by

$$m_\lambda(\xi) = \left(1 - |\xi|^2
ight)_+^\lambda.$$

The corresponding operators are

$$\widehat{T_{\lambda}f}(\xi) = m_{\lambda}(\xi)\widehat{f}(\xi).$$

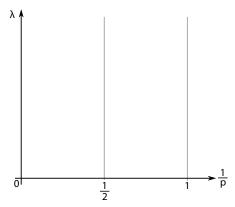
Question

For which combinations of λ and p is T_{λ} bounded on $L^{p}(\mathbb{R}^{n})$?

イロト イポト イヨト イヨト

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness diagram		

Shade in where T_{λ} is bounded on $L^{p}(\mathbb{R}^{n})$.



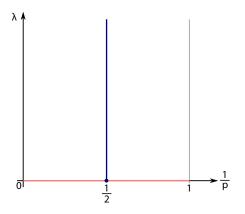
- symmetrical about $\frac{1}{p} = \frac{1}{2}$ (i.e. p = 2)
- any two shaded-in points can be joined by a line

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness diagram	L	

Boundedness on L^2 is easy by Plancherel. The $\lambda = 0$ case is the disc multiplier, so only bounded on L^2 .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Boundedness on L^2 is easy by Plancherel. The $\lambda = 0$ case is the disc multiplier, so only bounded on L^2 .

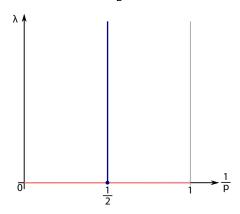


イロト イヨト イヨト イヨト

 Outline
 Operators
 Multipliers
 Bochner-Riesz multipliers

 Boundedness diagram

Above the critical index $\lambda = \frac{n-1}{2}$, T_{λ} is bounded.

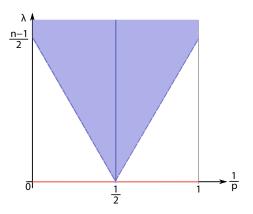


ヘロト 人間 ト 人間 ト 人間 トー

Outline Operators Multipliers Bochner-Riesz multipliers

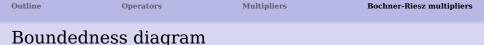
Boundedness diagram

Above the critical index $\lambda = \frac{n-1}{2}$, T_{λ} is bounded.

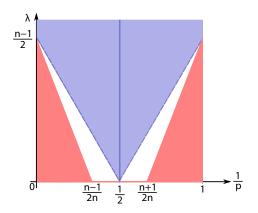


First proved by E. M. Stein in 1956, using interpolation.

ヘロト 人間 トメヨト 人口 ト



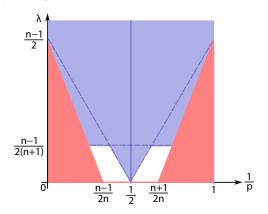
An argument involving Bessel functions shows where T_{λ} is definitely not bounded.



・ロト ・ 四ト ・ ヨト ・ ヨト

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness diagram		

Using Fourier restriction estimates gets us a little further (Fefferman, 1970).

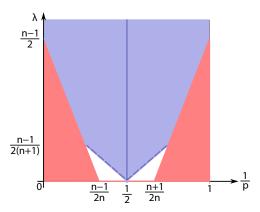


イロト イヨト イヨト イヨト

э

Outline	Operators	Multipliers	Bochner-Riesz multipliers
Bounde	dness diagram		

Using Fourier restriction estimates gets us a little further (Fefferman, 1970).

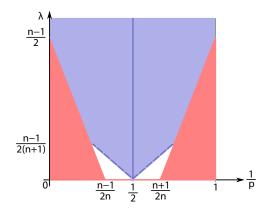


We complete the picture by interpolation.

4 E 5

Outline	Operators	Multipliers	Bochner-Riesz multipliers

Boundedness diagram

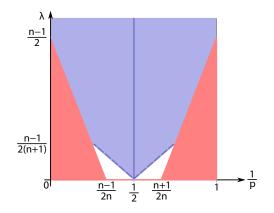


• when n = 2, we have boundedness in the white region (Carleson and Sjölin, 1972).

イロト イヨト イヨト イヨト

Outline	Operators	Multipliers	Bochner-Riesz multipliers

Boundedness diagram



- when n = 2, we have boundedness in the white region (Carleson and Sjölin, 1972).
- **unknown** for higher dimensions (the conjecture is that T_{λ} is bounded there).