Maths Education in Scotland A Rough Guide

George Kinnear PG Colloquium, 23 September 2010

Year Groups

		Age	England (US?)	
	1	5	Reception/Year 1	
	2	6	Year 1/2	
	3	7	Year 2/3	
	4	8	Year 3/4	
PI	5	9	Year 4/5	
	6	10	Year 5/6	
	7	11	Year 6/7	
	1	12	Year 7/8	
	2	13	Year 8/9	
	3	14	Year 9/10	
	4	15	Year 10/11	
S	5	16	Year 11/12	
	6	17	Year 12/13	

Secondary School – Overview

		Age	What you do	Subjects
	1	12	Nothing much!	Lots, no choice
	2	13	Nothing much:	
	3	14	In my day: Standard Grade	Choice of 8
	4	15	<i>Recently:</i> Intermediate 1 & 2 <i>Soon:</i> National 4 & 5	
S	5	16	Higher	Choice of 5
	6	17	Advanced Higher	About 3

English Equivalents

Scotland	≈ England
Standard Grade, Intermediate 1 & 2, National 4 & 5	GCSE
Higher	AS Level
Advanced Higher	A Level

Maths Syllabi

Standard Grade

- Pythagoras
- Trigonometry
- Rearranging equations

Advanced Higher

• Lots more calculus

University

- Matrices, vectors
- Proofs

Higher

- Lines, quadratics, polynomials, circles
- Intro to calculus
- Logs, exponentials
- Properties of graphs

Standard Grade

- Number and money
- Relationships
- Measure and shape
- Statistics

SG: Number & Money

- Basic operations
- Fractions
- Square roots
- Indices & surds
- Percentages, e.g.
 - Interest
 - VAT

Evaluate

 $(846 \div 30) - 1.09.$

This year, Ben paid £260 for his car insurance. This is an increase of 30% on last year's payment. How much did Ben pay last year?

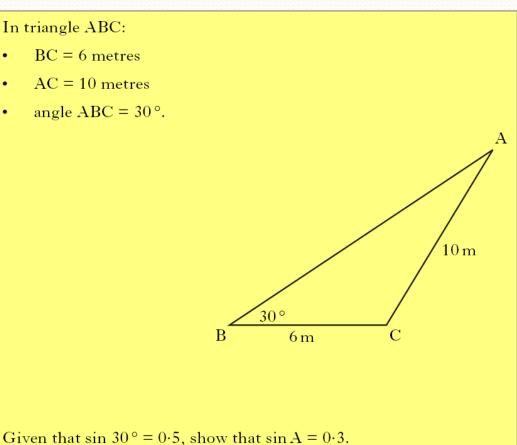
SG: Relationships

- Using formulae
- Solving equations
- Basic algebra
 - Factorising
 - Expanding brackets
 - Rearranging
- Graphs & tables
 - pictograms, bar charts, line graphs, pie charts and scattergraphs

Given that

$$f(x) = x^2 + 3,$$

- (a) evaluate f(-4)
- (b) find t when f(t) = 52.


A formula used to calculate the flow of water in a pipe is

$$f = \frac{kd^2}{20}.$$

Change the subject of the formula to d.

SG: Measure and shape

- Scale drawings
- Similarity
- Find area & volume
- Angles
- Pythagoras
- Trigonometry
 - SOHCAHTOA (!)
 - Sine/cosine rule
 - Solve simple equations

SG: Statistics

- Calculate:
 - Mean
 - Mode
 - Median
 - Quartiles
 - Standard deviation
- Basic probability

Tom looked at the cost of 10 different flights to New York. He calculated that the mean cost was $\pounds 360$ and the standard deviation was $\pounds 74$.

A tax of \pounds 12 is then added to each flight

Write down the new mean and standard deviation.

There are 4 girls and 14 boys in a class. A child is chosen at random and is asked to roll a die, numbered 1 to 6.

Which of these is more likely?

A: the child is female.

OR

B: the child rolls a 5.

Justify your answer.

Higher

• Geometry

• Trigonometry

• Algebra

Calculus

H: Geometry

- Straight lines
 - Gradient (from points/eqn/angle)
 - Find equation of line
 - Median, altitude, perpendicular bisector
- Circles
 - Equation to centre and radius (and vice versa)
 - Find intersections of line and circle
 - Find tangent / determine if a given line is tangent
- Vectors (2d and 3d)
 - Add, subtract, multiply by scalar
 - Dividing lines in a ratio / collinearity
 - Compute and work with scalar product (e.g. find angle)

H: Geometry (Examples)

Find the equation of the line which passes through the point (-1, 3) and is perpendicular to the line with equation 4x + y - 1 = 0.

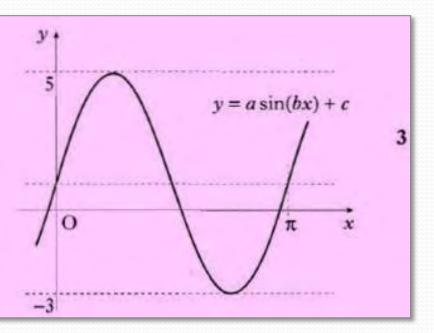
3

5

- (a) Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 3x + 2$ at the point where x = 1.
- (b) Show that this line is also a tangent to the circle with equation $x^2 + y^2 12x 10y + 44 = 0$ and state the coordinates of the point of contact.

The diagram shows vectors \boldsymbol{a} and \boldsymbol{b} . If $|\boldsymbol{a}| = 5$, $|\boldsymbol{b}| = 4$ and $\boldsymbol{a}.(\boldsymbol{a} + \boldsymbol{b}) = 36$, find the size of the acute angle θ between \boldsymbol{a} and \boldsymbol{b} . θ

H: Trigonometry


- Graphs
 - Recognise function from graph (and vice versa)
- Radians
 - Convert between degrees and radians
 - Mostly expected to work in radians
- Compound and double-angle formulae
 - Use to simplify equations
 - Use in geometrical situations
- Wave functions
 - Express $p\cos(x)+q\sin(x)$ in the form $k\cos(x-a)$ etc.

H: Trigonometry (Examples)

Solve the equation $3\cos(2x) + 10\cos(x) - 1 = 0$ for $0 \le x \le \pi$, correct to 2 decimal places.

The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y = a \sin(bx) + c$.

Determine the values of a, b and c.

5

H: Algebra

- Functions
 - Domain/range
 - Finding composite functions
 - Graph transformations
- Sequences
 - Linear recurrence relations
- Quadratics & polynomials
 - Quadratic inequalities
 - Factor & remainder theorems for polynomials
- Logs & exponentials
 - Definition; working with graphs
 - Solving equations using log laws

H: Algebra (Examples)

Functions $f(x) = \frac{1}{x-4}$ and g(x) = 2x + 3 are defined on suitable domains.

- (a) Find an expression for h(x) where h(x) = f(g(x)).
- (b) Write down any restriction on the domain of h.

A recurrence relation is defined by $u_{n+1} = pu_n + q$, where $-1 and <math>u_0 = 12$.

- (a) If $u_1 = 15$ and $u_2 = 16$, find the values of p and q.
- (b) Find the limit of this recurrence relation as $n \to \infty$.

$$f(x) = 6x^3 - 5x^2 - 17x + 6.$$

(a) Show that (x - 2) is a factor of f(x).

"Scottish division"

2

2

2

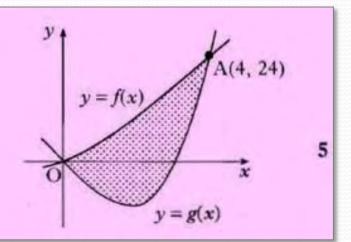
3

- (b) Express f(x) in its fully factorised form.
- (a) (i) Sketch the graph of $y = a^x + 1$, a > 2.

(ii) On the same diagram, sketch the graph of $y = a^{x+1}$, a > 2.

(b) Prove that the graphs intersect at a point where the x-coordinate is $\log_a\left(\frac{1}{a-1}\right)$.

H: Calculus


- Basic differentiation
 - Differentiating *ax^b* and sums/differences
 - Finding stationary points and their nature
 - Equations of tangents
- Basic integration
 - Indefinite integration (anti-diff)
 - Definite integrals; application to finding areas
 - Very basic DEs
- Further calculus
 - Diff/int with sine and cosine
 - Chain rule

H: Calculus (Examples)

Given that $f(x) = \sqrt{x} + \frac{2}{x^2}$, find f'(4).

The incomplete graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram. The graphs intersect at A(4, 24) and the origin.

Find the shaded area enclosed between the curves.

5

If
$$f(x) = \cos(2x) - 3\sin(4x)$$
, find the exact value of $f'\left(\frac{\pi}{6}\right)$.

Advanced Higher

- Algebra
- Geometry
- Differentiation
- Integration

AH: Algebra

- Binomial theorem
- Partial fractions
- Gaussian elimination
- Matrices: algebra, determinants, inverses, as plane transformations
- Arithmetic/geometric sequences/series
- Complex numbers: basic operations, polar form, deMoivre
- Proof induction, contradiction

AH: Geometry

- Vector product
- Equation of line:
 - Vector
 - Parametric
 - Symmetric
- Equation of plane:
 - Vector
 - Parametric
 - Cartesian
- Intersections of planes and lines

AH: Differentiation

- Curve sketching (e.g. rational functions, with asymptotes and critical points)
- Product/quotient/chain rule
- Derivatives of exp, log, arcsin, arccos, arctan
- Maclaurin series
- Implicit differentiation
- Parametric differentiation

AH: Integration

- Integrals corresponding to the known derivatives
- Substitution (generally given)
- Volumes of solids of revolution
- Integration by parts
- Separable DEs
- First & Second order linear DEs

Useful reference

www.hsn.uk.net

Full course notes for Higher Maths

Course summary for Advanced Higher

