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The content of this note is based on [Tao10] and [Tao03].

1 Restriction and extension

Our setting is a smooth compact hypersurface S in Rd (e.g. the unit sphere S2 in
R3 ), with surface measure dσ .

Given f ∈ L1(Rd) , we have the Fourier transform

f̂ (x) =
∫

Rd
e−2πix.ξ f (x) dx

which by Riemann-Lebesgue is a bounded, continuous function vanishing at infin-
ity. Thus if we restrict f̂ to S , we get a meaningful function which has finite Lq

norm for every q .

However, starting with f ∈ L2(Rd) , we get f̂ ∈ L2(Rd) by Plancherel. There is no
meaningful way to restrict an arbitrary L2 function to a set of measure zero such as
the hypersurface S .

The question arises: what happens for 1 < p < 2?

QUESTION 1 RESTRICTION PROBLEM RS(p → q)

For which p and q do we have
∥∥∥ f̂

∥∥∥
Lq(S,dσ)

. ‖ f ‖Lp(Rd) (1)

for all f (∈ S , say).
If p and q are a pair for which (1) holds, we say RS(p → q) is true.

The earlier remarks show that RS(1 → q) is true for all 1 ≤ q ≤ ∞ while RS(2 → q)
is false for all 1 ≤ q ≤ ∞ .

PROPOSITION 2

If RS(p → q) is true then RS( p̃ → q̃) is true for all p̃ ≤ p and q̃ ≤ q .

PROOF

Hölder and Sobolev inequalities. ¥

Now if (1) holds for a certain p and q , we have

sup
‖ f ‖p=1

∥∥∥ f̂
∥∥∥

Lq(S,dσ)
. 1
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which by duality means

sup
‖ f ‖p=1

sup
‖g‖

Lq′ (S,dσ)
=1

∣∣∣∣
∫

f̂ (ξ)g(ξ) dσ(ξ)
∣∣∣∣ . 1.

Swapping the sup’s and applying Parseval, followed by undoing the duality, we
have

sup
‖g‖

Lq′ ((S,dσ)
=1

sup
‖ f ‖p=1

∣∣∣∣
∫

f (ξ)ĝdσ(ξ) dx
∣∣∣∣ . 1

sup
‖g‖

Lq′ ((S,dσ)
=1

∥∥∥ĝdσ
∥∥∥

p′
. 1

∥∥∥ĝdσ
∥∥∥

p′
. ‖g‖q′ . (2)

In fact, these steps are reversible so (2) is equivalent to (1). This gives us an alterna-
tive question.

QUESTION 3 EXTENSION PROBLEM R∗S(q′ → p′)

For which p′ and q′ do we have
∥∥∥F̂dσ

∥∥∥
Lp′ (Rd)

. ‖F‖Lq′ (S,dσ) (3)

for all F (∈ S , say).
If p′ and q′ are a pair for which (3) holds, we say R∗S(q′ → p′) is true.

Necessary conditions

Taking F ≡ 1 in (3) shows that we need d̂σ ∈ Lp′ . For the sphere, it is well-known
that

d̂σ(x) = O
(
(1 + |x|)−(n−1)/2

)

so we must have p′ > 2n
n−1 (i.e. p < 2n

n+1 ).

There is another choice of F , known as the Knapp example, which is essentially the
characterisitic function of a small “cap” on the sphere. Plugging this in to (3) shows
that we must also have

q ≤ n− 1
n + 1

p′.

2 The restriction conjecture

CONJECTURE 4 RESTRICTION CONJECTURE

These necessary conditions are sufficient, i.e. if

p <
2n

n + 1
and q ≤ n− 1

n + 1
p′

then RS(p → q) is true.

The following is a classic partial result in this direction.
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THEOREM 5 TOMAS-STEIN (1975)

RS(p → q) is true for all 1 ≤ p ≤ 2n+2
n+3 , with q =

(
n−1
n+1

)
p′ .

Note that Proposition 2 means that we can replace q = · · · with q ≤
(

n−1
n+1

)
p′ .

PROOF

See [Ste93, p386] for the full proof. The following is a sketch proof of the “restricted”
result (i.e. with f = χE for some set E ) in the endpoint case p = 2n+2

n+3 , where q = 2.

We want to show
(∫

Sn−1
| f̂ (ξ)|2 dσ(ξ)

)1/2
. ‖ f ‖

L
2n+2
n+3 (Rn)

We write the L2 norm as∫
f̂ f̂ dσ =

∫
f (σˇ∗ f ) =

∫
f (σ1̌ ∗ f ) +

∫
f (σ2̌ ∗ f )

where we have split σ (̌ξ) = σ (̌ξ)φ( ξ
λ ) + σ (̌ξ)(1− φ( ξ

λ )) with φ a standard bump.
Thus σ1̌ is supported on |ξ| . λ and σ2̌ on |ξ| & λ . The appropriate choice of λ
will be made later.

Using the fact that |σ (̌ξ)| . |ξ|−(n−1)/2 , we have

|σ2̌(ξ)| . λ−
n−1

2 .

On the other hand, σ1 = σ ∗ φ̂1/λ , so σ1 is σ spread out on scale 1
λ maintaining

mass 1. So ‖σ1‖∞ ∼ λ .

So applying Hölder and Plancherel to the first term, and Hölder and Young on the
second, we get

∫
| f̂ |2 dσ =

∫
f (σ1̌ ∗ f ) +

∫
f (σ2̌ ∗ f )

≤ ‖ f ‖2 ‖σ1‖∞ ‖ f ‖2 + ‖ f ‖1 ‖σ2̌‖∞ ‖ f ‖1

≤ C ‖ f ‖2
2 λ + ‖ f ‖2

1 λ−
n−1

2 .

Taking f = χE we have
∫
| f̂ |2 dσ . |E|λ + |E|2λ−

n−1
2

and choosing λ so that both terms are the same (i.e. taking λ = |E|2/(n+1) ) we get
∫
| f̂ |2 dσ . |E| n+3

n+1 = ‖ f ‖2
2(n+1)

n+3

i.e. that the restriction estimate holds from p = 2(n+1)
n+3 to L2(Sn−1) . ¥

The most recent results on this problem have used “bilinear” or “multilinear” tech-
niques, which we will now look at.

3 Bilinear estimates

Note that when p′ is an even integer,
∥∥∥F̂dσ

∥∥∥
p′

in the extension problem (3) can be

expanded out using Plancherel; for instance
∥∥∥F̂dσ

∥∥∥
4

=
∥∥∥F̂dσF̂dσ

∥∥∥
1/2

2
= ‖Fdσ ∗ Fdσ‖1/2

2 .
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This means R∗S(q′ → 4) is equivalent to

‖Fdσ ∗ Fdσ‖2 . ‖F‖2
Lq′ (S,dσ)

which involves no Fourier transforms, so could be proven by more direct methods.

The idea can be partially extended to p′ which are not even integers, since the squar-
ing step can still be carried out on R∗S(q′ → p′) to give

∥∥∥F̂dσ ∗ F̂dσ
∥∥∥

p′/2
. ‖F‖2

Lq′ (S,dσ) .

This leads us to consider more general estimates of the form
∥∥∥F̂1dσ1 ∗ F̂2dσ2

∥∥∥
p′/2

. ‖F1‖Lq′ (S1,dσ1)
‖F2‖Lq′ (S2,dσ2)

(4)

for arbitrary pairs of smooth compact hypersurfaces S1, S2 with respective surface
measures dσ1, dσ2 , and F1, F2 supported on S1, S2 .

DEFINITION

If (4) holds, we say R∗S1,S2
(q′ × q′ → p′/2) is true.

Such bilinear estimates are more general than the linear ones, but if we restrict to
S1 = S2 = S , we have equivalence:

PROPOSITION 6

R∗S,S(q′ × q′ → p′/2) ⇐⇒ R∗S(q′ → p′)

PROOF

This is because R∗S,S(q′ × q′ → p′/2) says

∥∥∥F̂1dσ ∗ F̂2dσ
∥∥∥

p′/2
. ‖F1‖Lq′ (S,dσ) ‖F2‖Lq′ (S,dσ)

for all F1, F2 supported on S , which by polarisation is equivalent to
∥∥∥F̂dσ ∗ F̂dσ

∥∥∥
p′/2

. ‖F‖2
Lq′ (S,dσ) ,

i.e. R∗S(q′ → p′) . ¥

Rather than putting S1 = S2 = S , we might instead put some conditions on S1, S2
and hope to prove bilinear estimates in that setting. We will see something along
those lines later.

Multilinear restriction

There is no reason to limit ourselves to squaring out the norm to get a bilinear esti-
mate; in d dimensions we can consider a d -linear estimate

∥∥∥∥∥
d

∏
j=1

F̂jdσj

∥∥∥∥∥
p′/d

.
d

∏
j=1

∥∥Fj
∥∥

Lq′ (Sj ,dσj)
.

For instance, in [BCT06] the following is obtained:
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THEOREM 7 NEAR-OPTIMAL MULTILINEAR RESTRICTION

For ε > 0, p′ ≥ 2d
d−1 , q ≤ p′ d−1

d ,
∥∥∥∥∥

d

∏
j=1

F̂jdσj

∥∥∥∥∥
Lp′/d(B(0,R)

. Rε
d

∏
j=1

∥∥Fj
∥∥

Lq′ (Sj,dσj)

assuming the Sj are smooth enough, and are transverse.

The assumption that the Sj are transverse (i.e. their normals are never coplanar) is
quite restrictive – in particular, we certainly can’t make them all S and use Proposi-
tion 6 to make progress on the restriction conjecture.

In [Tao10] Tao discusses a new result of Bourgain and Guth, which he says “interpo-
lates” between the Theorem of [BCT06] and a result of Córdoba to obtain progress
on the restriction conjecture.
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