# A parallel revised simplex solver for large scale block angular LP problems

Julian Hall and Edmund Smith

School of Mathematics

University of Edinburgh

29th July 2010



#### **Overview**

- Block angular LP (BALP) problems
  - Structure
  - o Origin
- Revised simplex method for BALP problems
  - Basis matrix and its inversion
  - Solution of linear systems
- Parallel revised simplex schemes for BALP
  - Structural data parallelism
  - Algorithmic task parallelism
- Conclusions





# Block angular LP (BALP) problems

$$\begin{array}{lll} \text{minimize} & f = \boldsymbol{c}^{T}\boldsymbol{x} \\ \text{subject to} & A\boldsymbol{x} = \boldsymbol{b} \quad \boldsymbol{x} \geq \boldsymbol{0} \end{array} \qquad \qquad A = \begin{bmatrix} A_{00} & A_{01} & A_{02} & \dots & A_{0r} \\ & A_{11} & & & \\ & & A_{22} & & \\ & & & \ddots & \\ & & & & A_{rr} \end{bmatrix}$$

- Structure
  - The linking rows are  $\begin{bmatrix} A_0 & A_{01} & A_{02} & \dots & A_{0r} \end{bmatrix}$
  - The master columns are  $\begin{bmatrix} A_0 \\ 0 \end{bmatrix}$
  - The diagonal blocks are  $A_{11}, \ldots, A_{rr}$
- Origin
  - Occur naturally in (eg) decentralised planning and multicommodity flow
  - BALP structure can be identified in general sparse LPs









Source: Patient Distribution System, Carolan et al. (1990)







Source: Industrial, H (1997)





# **BALP** form of general LP problems

A general LP problem may be partitioned into BALP form

Ferris and Horn (1998)

- Apply a graph partitioning algorithm to the matrix A
- Rows and columns are removed until remaining partitions are disjoint
- Order A according to partition with removed rows and columns in a border

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} & \dots & A_{0r} \\ A_{10} & A_{11} & & & \\ A_{20} & & A_{22} & & \\ \vdots & & & \ddots & \\ A_{r0} & & & & A_{rr} \end{bmatrix}$$

• Remove linking columns by splitting





# Example

• Matrix... with bipartite graph





(1)

1

• Partitioned graph... yields BALP form









#### **Revised simplex method**

minimize  $f = c^T x$ subject to Ax = b  $x \ge 0$ 

- Major computational components of the revised simplex method (RSM) are
  - $\circ$  Invert B
  - Solve  $B\boldsymbol{x} = \boldsymbol{r}$
  - Solve  $B^T y = d$
  - Form  $\boldsymbol{z} = N^T \boldsymbol{y}$

where [B:N] is a partition of A

• Data parallel RSM for general LP problems

(eg) Forrest and Tomlin (1990), Shu (1995), Wunderling (1996), H and McKinnon (1996, 1998), Bixby and Martin (2000), H (2010)

- Inversion and solving the systems are "hard" to parallelise
- Forming  $\boldsymbol{z} = N^T \boldsymbol{y}$  is "easy" to parallelise
- Other computational components scan vectors and are "easy" to parallelise





#### **Revised simplex method for BALP problems**

• Matrices B and N in the revised simplex method inherit structure of A

$$B = \begin{bmatrix} B_{00} & B_{01} & \dots & B_{0r} \\ B_{11} & & & \\ & \ddots & & \\ & & & B_{rr} \end{bmatrix} \qquad N = \begin{bmatrix} N_{00} & N_{01} & \dots & N_{0r} \\ & N_{11} & & & \\ & & \ddots & & \\ & & & N_{rr} \end{bmatrix}$$

• Operations with *B* and *N* must exploit its structure (eg) Lasdon (1970)





## RSM for BALP problems: inverting B

$$B = \begin{bmatrix} B_{00} & B_{01} & \dots & B_{0r} \\ & B_{11} & & & \\ & & \ddots & & \\ & & & & B_{rr} \end{bmatrix}$$

• Matrices  $B_{ii}$ ,  $i = 1, \ldots, r$  are rectangular

• Partition of  $B_{ii}$  as  $\begin{bmatrix} R_i & T_i \end{bmatrix}$  with  $T_i$  nonsingular is guaranteed

• Yields structure

| $S_0$ | $S_1$ |     | $S_r$ | $C_1$ |     | $C_r$ |
|-------|-------|-----|-------|-------|-----|-------|
|       | $R_1$ |     |       | $T_1$ |     |       |
|       |       | 194 |       |       | 194 |       |
|       |       |     | $R_r$ |       |     | $T_r$ |

• More simply, write

$$B = \begin{bmatrix} S & C \\ R & T \end{bmatrix}$$





## RSM for BALP problems: inverting B

- For  $B = \begin{bmatrix} S & C \\ R & T \end{bmatrix}$ 
  - S is (hopefully!) small and square
  - $\circ$  C is unstructured and rectangular
  - $\circ$  *R* is block-rectangular
  - $\circ$  T is block-diagonal
- Consider decomposition

$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} = \begin{bmatrix} I & C \\ & T \end{bmatrix} \begin{bmatrix} W \\ \hat{R} & I \end{bmatrix}$$

- $\hat{R} = T^{-1}R$  has the same structure as R
- $W = S CT^{-1}R = S C\hat{R}$  is the **Schur complement** of T
- To solve systems involving *B* requires operations with
  - $\circ$  matrices C and  $\hat{R}$
  - $\circ$  invertible representations of T and W





#### RSM for BALP problems: solving Bx = r

• To solve 
$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_0 \\ \boldsymbol{x}_\bullet \end{bmatrix} = \begin{bmatrix} \boldsymbol{r}_0 \\ \boldsymbol{r}_\bullet \end{bmatrix}$$
  
Solve  $T\boldsymbol{z} = \boldsymbol{r}_\bullet$   
Form  $\boldsymbol{w} = \boldsymbol{r}_0 - C\boldsymbol{z}$   
Solve  $W\boldsymbol{x}_0 = \boldsymbol{w}$   
Form  $\boldsymbol{x}_\bullet = \boldsymbol{z} - \hat{R}\boldsymbol{x}_0$ 

• In detail, partitioning  $r_{\bullet}$  and  $x_{\bullet}$  according to blocks,

Solve  $T_i \boldsymbol{z}_i = \boldsymbol{r}_i$   $i = 1, \dots, r$ Form  $\boldsymbol{w} = \boldsymbol{r}_0 - \sum_{i=1}^r C_i \boldsymbol{z}_i$ Solve  $W \boldsymbol{x}_0 = \boldsymbol{w}$ Form  $\boldsymbol{x}_i = \boldsymbol{z}_i - \hat{R}_i \boldsymbol{x}_0$   $i = 1, \dots, r$ 





#### RSM for BALP problems: exploiting RHS of Bx = r

When  $B\boldsymbol{x} = \boldsymbol{r}$  is solved to form a column of the tableau,  $\boldsymbol{r}$  is a column of A

• Let 
$$r$$
 be column  $q$  in block  $i$ , then  $r = \begin{bmatrix} [A_{0i}]_q \\ 0 \\ [A_{ii}]_q \\ 0 \end{bmatrix}$ 

• Exploiting this structure,  $B\boldsymbol{x} = \boldsymbol{r}$  is solved as

| Solve | $T_i oldsymbol{z}_i$ | = | $oldsymbol{r}_i$                            |                |
|-------|----------------------|---|---------------------------------------------|----------------|
| Form  | $oldsymbol{w}$       | = | $oldsymbol{r}_0 - C_i oldsymbol{z}_i$       |                |
| Solve | $Woldsymbol{x}_0$    | = | w                                           |                |
| Form  | $oldsymbol{x}_i$     | = | $oldsymbol{z}_i - \hat{R}_i oldsymbol{x}_0$ | $i=1,\ldots,r$ |

- Insufficient scope for data parallelism
- Hyper-sparsity exploited structurally





#### RSM for BALP problems: solving $B^T y = d$

• To solve 
$$\begin{bmatrix} S^T & R^T \\ C^T & T^T \end{bmatrix} \begin{bmatrix} \boldsymbol{y}_0 \\ \boldsymbol{y}_\bullet \end{bmatrix} = \begin{bmatrix} \boldsymbol{d}_0 \\ \boldsymbol{d}_\bullet \end{bmatrix}$$
  
Form  $\boldsymbol{w} = \boldsymbol{d}_0 - \hat{R}^T \boldsymbol{d}_\bullet$   
Solve  $W^T \boldsymbol{y}_0 = \boldsymbol{w}$   
Form  $\boldsymbol{z} = \boldsymbol{d}_\bullet - C^T \boldsymbol{y}_0$   
Solve  $T^T \boldsymbol{y}_\bullet = \boldsymbol{z}$ 

• In detail, partitioning  $d_{ullet}$  and  $y_{ullet}$  according to blocks,

Form  $\boldsymbol{w} = \boldsymbol{d}_0 - \sum_{i=1}^r \hat{R}_i^T \boldsymbol{d}_i$ Solve  $W^T \boldsymbol{y}_0 = \boldsymbol{w}$ Form  $\boldsymbol{z}_i = \boldsymbol{d}_i - C_i^T \boldsymbol{y}_0$   $i = 1, \dots, r$ Solve  $T_i^T \boldsymbol{y}_i = \boldsymbol{z}_i$   $i = 1, \dots, r$ 





## RSM for BALP problems: exploiting RHS of $B^T y = d$

When  $B^T y = d$  is solved to form a row of  $B^{-1}$ , d is a column of I

- Let d correspond to row p in block i, then  $d = \begin{bmatrix} 0 \\ e_p \\ 0 \end{bmatrix}$
- Exploiting this structure,  $B^T y = d$  is solved as

Form  $\boldsymbol{w} = \boldsymbol{d}_0 - \hat{R}_i^T \boldsymbol{e}_p$ Solve  $W^T \boldsymbol{y}_0 = \boldsymbol{w}$ Form  $\boldsymbol{z}_i = \boldsymbol{d}_i - C_i^T \boldsymbol{y}_0 \quad i = 1, \dots, r$ Solve  $T_i^T \boldsymbol{y}_i = \boldsymbol{z}_i \quad i = 1, \dots, r$ 

• Still scope for data parallelism





# **RSM** for **BALP** problems: forming $z = N^T y$

$$N = \begin{bmatrix} N_{00} & N_{01} & \dots & N_{0r} \\ & N_{11} & & \\ & & \ddots & \\ & & & & N_{rr} \end{bmatrix}$$

• Form 
$$\boldsymbol{z} = N^T \boldsymbol{y}$$
 as  
Form  $\boldsymbol{z}_0 = N_{00}^T \boldsymbol{y}_0$   
Form  $\boldsymbol{z}_i = N_{0i}^T \boldsymbol{y}_0 + N_{ii}^T \boldsymbol{y}_i$   $i = 1, \dots, r$ 

• Scope for data parallelism





#### A parallel revised simplex scheme for BALP

- Scope for data parallelism when exploiting BALP structure
  - When inverting B: full
  - When solving  $B\boldsymbol{x} = \boldsymbol{r}$ : little
  - When solving  $B^T y = d$ : some
  - When forming  $\boldsymbol{z} = N^T \boldsymbol{y}$ : full
- Data parallelism is insufficient (Amdahl's law)
- Exploit task parallelism via tableau simplex method suboptimization





## Revised simplex method with suboptimization

- Primal simplex method: Orchard-Hays (1968)
  - Form a small subset of tableau **columns**
  - Perform minor iterations of standard primal simplex method
  - Update reduced costs and weights
- **Dual** simplex method: Rosander (1975)
  - Form a small subset of tableau rows
  - Perform minor iterations of standard dual simplex method
  - Update RHS and dual weights
- Parallel primal revised simplex method with suboptimization Wunderling (1996), H and McKinnon (1996, 1998)
- Forming tableau rows and columns and updating reduced costs/weights requires
  - Solution of linear systems with multiple RHS
  - Forming products between matrices and multiple vectors
- Updating tableau parallelises readily

(eg) Eckstein et al. (1995), Lentini et al. (1995)





#### Design of a parallel primal simplex solver with suboptimization

- Aiming at desktop parallelism
- Architecture dictates algorithm
  - Assume p CPU processors, each with c cores: perhaps p = 2 and c = 4

A parallel revised simplex solver for large scale block angular LP problems

- Assume GPU is available
- Distribution of problem
  - Natural BALP problems: one set of blocks per core
  - Partitioned problems: one block per core
- Distribution of computational components
  - Inversion and system solution on CPUs
  - Matrix-vector product and minor iterations on GPU?





#### Prototype parallel primal simplex scheme

- Choose a set of attactive columns  $q \in \mathcal{Q}$
- Solve  $B\hat{\boldsymbol{a}}_q = \boldsymbol{a}_q$ ,  $q \in \mathcal{Q}$
- Perform minor iterations to identify set  ${\mathcal P}$  of pivotal rows
- Solve  $B^T \boldsymbol{\pi}_p = \boldsymbol{e}_p$ ,  $p \in \mathcal{P}$
- Form  $\hat{oldsymbol{a}}_p^T = oldsymbol{\pi}_p^T N$ ,  $p \in \mathcal{P}$
- Update reduced costs and (Devex) weights
- Periodically reinvert *B*







#### Prototype parallel dual simplex scheme

- Choose a set of attactive rows  $p \in \mathcal{P}$
- Solve  $B^T \boldsymbol{\pi}_p = \boldsymbol{e}_p$ ,  $p \in \mathcal{P}$
- Form  $\hat{oldsymbol{a}}_p^T = oldsymbol{\pi}_p^T N$ ,  $p \in \mathcal{P}$
- Perform minor iterations to identify set  $\mathcal{Q}$  of pivotal columns
- Solve  $B\hat{oldsymbol{a}}_q = oldsymbol{a}_q$ ,  $q \in \mathcal{Q}$
- Update RHS and (steepest edge) weights
- Periodically reinvert *B*







# Conclusions

- Identified BALP structure as offering significant scope for parallel revised simplex
- Defined parallel primal and dual simplex schemes for BALP problems
- Implementation is "in progress"





#### References

- [1] R. E. Bixby and A. Martin. Parallelizing the dual simplex method. *INFORMS Journal on Computing*, 12:45–56, 2000.
- [2] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann. An empirical evaluation of the KORBX algorithms for military airlift applications. *Operations Research*, 38(2):240–248, 1990.
- [3] J. Eckstein, İ. İ. Boduroğlu, L. Polymenakos, and D. Goldfarb. Data-parallel implementations of dense simplex methods on the Connection Machine CM-2. ORSA Journal on Computing, 7(4):402–416, 1995.
- [4] M. C. Ferris and J. D. Horn. Partitioning mathematical programs for parallel solution. *Mathematical Programming*, 80:35–61, 1998.
- [5] J. J. H. Forrest and J. A. Tomlin. Vector processing in the simplex and interior methods for linear programming. *Annals of Operations Research*, 22:71–100, 1990.
- [6] J. A. J. Hall. Towards a practical parallelisation of the simplex method. *Computational Management Science*, 7(2):139–170, 2010.



A parallel revised simplex solver for large scale block angular LP problems



- [7] J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revised simplex algorithm incorporating minor iterations and Devex pricing. In J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, editors, *Applied Parallel Computing*, volume 1184 of *Lecture Notes in Computer Science*, pages 67–76. Springer, 1996.
- [8] J. A. J. Hall and K. I. M. McKinnon. ASYNPLEX, an asynchronous parallel revised simplex method algorithm. *Annals of Operations Research*, 81:27–49, 1998.
- [9] L. S. Lasdon. *Optimization theory for large systems*, chapter 6. Macmillan, 1970.
- [10] M. Lentini, A. Reinoza, A. Teruel, and A. Guillen. SIMPAR: a parallel sparse simplex. *Computational and Applied Mathematics*, 14(1):49–58, 1995.
- [11] W. Orchard-Hays. *Advanced Linear programming computing techniques*. McGraw-Hill, New York, 1968.
- [12] R. R. Rosander. Multiple pricing and suboptimization in dual linear programming algorithms. *Mathematical Programming Study*, 4:108–117, 1975.
- [13] W. Shu. Parallel implementation of a sparse simplex algorithm on MIMD distributed memory computers. *Journal of Parallel and Distributed Computing*, 31(1):25–40, November 1995.
- [14] R. Wunderling. Paralleler und objektorientierter simplex. Technical Report TR-96-09, Konrad-Zuse-Zentrum f
  ür Informationstechnik Berlin, 1996.



