SYNPLEX

A task-parallel scheme for the revised simplex method

Julian Hall

School of Mathematics

University of Edinburgh

June 23rd 2005

SYNPLEX, a task-parallel scheme for the revised simplex method

• The (standard and revised) simplex method for linear programming

- The (standard and revised) simplex method for linear programming
- Approaches to parallelising the simplex method

- The (standard and revised) simplex method for linear programming
- Approaches to parallelising the simplex method
- SYNPLEX

- The (standard and revised) simplex method for linear programming
- Approaches to parallelising the simplex method
- SYNPLEX
- Results and conclusions

Solving LP problems

minimize	$f = oldsymbol{c}^T oldsymbol{x}$	
subject to	$A \boldsymbol{x} = \boldsymbol{b}$	
	$oldsymbol{x} \geq oldsymbol{0}$	
where	$\boldsymbol{x} \in I\!\!R^n$ and	d $\boldsymbol{b} \in I\!\!R^m$

Solving LP problems

- At any vertex the variables may be partitioned into index sets
 - \mathcal{B} of m basic variables $\boldsymbol{x}_B \geq \boldsymbol{0}$
 - \mathcal{N} of n-m nonbasic variables $\boldsymbol{x}_N = \boldsymbol{0}$

Solving LP problems

$$\begin{array}{ll} \text{minimize} & f = \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & A \boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \\ & \text{where} & \boldsymbol{x} \in I\!\!R^n \quad \text{and} \quad \boldsymbol{b} \in I\!\!R^m \end{array}$$

- At any vertex the variables may be partitioned into index sets
 - $\circ \ \mathcal{B}$ of m basic variables $oldsymbol{x}_B \geq oldsymbol{0}$
 - \mathcal{N} of n-m nonbasic variables $\boldsymbol{x}_N = \boldsymbol{0}$
- Components of c and columns of A are
 - the basic costs c_B and basis matrix B
 - \circ the non-basic costs $oldsymbol{c}_N$ and matrix N

SYNPLEX, a task-parallel scheme for the revised simplex method

Reduced LP problem

At any vertex the original problem is

Reduced LP problem

At any vertex the original problem is

Eliminate \boldsymbol{x}_B from the objective to give

$$egin{array}{rll} ext{minimize} & f &=& \hat{m{c}}_N^T m{x}_N &+& \hat{f} \ ext{subject to} & & & & \hat{N} \,m{x}_N \,+& I \,m{x}_B \,=& m{b} \ m{x}_N \geq m{0} & m{x}_B \geq m{0} \end{array}$$

Reduced LP problem

At any vertex the original problem is

Eliminate \boldsymbol{x}_B from the objective to give

where $\hat{b} = B^{-1}b$, $\hat{N} = B^{-1}N$, $\hat{f} = c_B^T \hat{b}$ and \hat{c}_N is the vector of reduced costs

$$\hat{oldsymbol{c}}_N^T = oldsymbol{c}_N^T - oldsymbol{c}_B^T \hat{N}$$

SYNPLEX, a task-parallel scheme for the revised simplex method

	\mathcal{N}	${\cal B}$	RHS
1			
:	\hat{N}	Ι	b
m			
0	$\hat{oldsymbol{c}}_N^T$	0^{T}	$-\hat{f}$

	\mathcal{N}	${\cal B}$	RHS
1			
:	\hat{N}	Ι	$\hat{m{b}}$
m			
0	$\hat{oldsymbol{c}}_N^T$	0^{T}	$-\hat{f}$

In each iteration:

	\mathcal{N}	${\cal B}$	RHS
1			
:	\hat{N}	Ι	$\hat{\boldsymbol{b}}$
m			
0	$\hat{oldsymbol{c}}_N^T$	0^{T}	$-\hat{f}$

In each iteration:

• Select the **pivotal column** q' of a nonbasic variable $q \in \mathcal{N}$ to be increased from zero

	\mathcal{N}	${\mathcal B}$	RHS
1			
:	\hat{N}	Ι	$\hat{m{b}}$
$\mid m$			
0	$\hat{oldsymbol{c}}_N^T$	0^{T}	$-\hat{f}$

In each iteration:

- Select the **pivotal column** q' of a nonbasic variable $q \in \mathcal{N}$ to be increased from zero
- Find the **pivotal row** p of the first basic variable $p' \in \mathcal{B}$ to be zeroed

	\mathcal{N}	${\cal B}$	RHS
1			
:	\hat{N}	Ι	$\hat{\boldsymbol{b}}$
m			
0	$\hat{oldsymbol{c}}_N^T$	0^{T}	$-\hat{f}$

In each iteration:

- Select the **pivotal column** q' of a nonbasic variable $q \in \mathcal{N}$ to be increased from zero
- Find the **pivotal row** p of the first basic variable $p' \in \mathcal{B}$ to be zeroed
- Exchange indices p' and q between sets ${\mathcal B}$ and ${\mathcal N}$
- Update tableau corresponding to this basis change

The standard simplex method (cont.)

Advantages:

- Easy to understand
- Simple to implement

The standard simplex method (cont.)

Advantages:

- Easy to understand
- Simple to implement

Disadvantages:

- Expensive: the matrix \hat{N} 'usually' treated as full
 - Storage requirement: O(mn) memory locations
 - Computation requirement: O(mn) floating point operations per iteration
- Numerically unstable

Given $\hat{\boldsymbol{c}}_N$, $\hat{\boldsymbol{b}}$ and a representation of B^{-1} , repeat

CHUZC: Scan the reduced costs $\hat{\boldsymbol{c}}_N$ for a good candidate q to enter the basis

Given $\hat{\boldsymbol{c}}_N$, $\hat{\boldsymbol{b}}$ and a representation of B^{-1} , repeat

CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A

- CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis

- CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis Let $\alpha = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{b} := \hat{b} - \alpha \hat{a}_q$

- CHUZC: Scan the reduced costs $\hat{\boldsymbol{c}}_N$ for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis Let $\alpha = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{b} := \hat{b} - \alpha \hat{a}_q$ BTRAN: Form $\pi^T = e_p^T B^{-1}$

- CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis Let $\alpha = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{b} := \hat{b} - \alpha \hat{a}_q$
- BTRAN: Form $\boldsymbol{\pi}^T = \boldsymbol{e}_p^T B^{-1}$
- PRICE: Form the pivotal row $\hat{a}_p^T = \pi^T N$

Given $\hat{\boldsymbol{c}}_N$, $\hat{\boldsymbol{b}}$ and a representation of B^{-1} , repeat

- CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis Let $\alpha = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{b} := \hat{b} - \alpha \hat{a}_q$
- BTRAN: Form $\boldsymbol{\pi}^T = \boldsymbol{e}_p^T B^{-1}$

PRICE: Form the pivotal row $\hat{\boldsymbol{a}}_p^T = \boldsymbol{\pi}^T N$ Update reduced costs $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T - \hat{c}_q \hat{\boldsymbol{a}}_p^T$

Given $\hat{\boldsymbol{c}}_N$, $\hat{\boldsymbol{b}}$ and a representation of B^{-1} , repeat

- CHUZC: Scan the reduced costs \hat{c}_N for a good candidate q to enter the basis
- FTRAN: Form the pivotal column $\hat{a}_q = B^{-1} a_q$, where a_q is column q of A
- CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis Let $\alpha = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{b} := \hat{b} - \alpha \hat{a}_q$
- BTRAN: Form $\boldsymbol{\pi}^T = \boldsymbol{e}_n^T B^{-1}$

PRICE: Form the pivotal row
$$\hat{a}_p^T = \pi^T N$$

Update reduced costs $\hat{c}_N^T := \hat{c}_N^T - \hat{c}_q \hat{a}_p^T$

If (growth in factors) then

INVERT: Form a representation of B^{-1}

el se

UPDATE: Update the representation of B^{-1} corresponding to the basis change end if

• Each iteration, \boldsymbol{a}_q replaces column p of B

• Each iteration, $oldsymbol{a}_q$ replaces column p of B

 $B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p) \boldsymbol{e}_p^T$

• Each iteration, \boldsymbol{a}_q replaces column p of B

$$B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p)\boldsymbol{e}_p^T \quad \Rightarrow \quad B^{-1} := \left(I - \frac{(\hat{\boldsymbol{a}}_q - \boldsymbol{e}_p)\boldsymbol{e}_p^T}{\hat{a}_{pq}}\right) B^{-1}$$

• Each iteration, ${oldsymbol a}_q$ replaces column p of B

$$B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p)\boldsymbol{e}_p^T \quad \Rightarrow \quad B^{-1} := \left(I - \frac{(\hat{\boldsymbol{a}}_q - \boldsymbol{e}_p)\boldsymbol{e}_p^T}{\hat{a}_{pq}}\right) B^{-1}$$

• When using the product form update $B^{-1} = E_U^{-1}B_0^{-1}$

• Each iteration, \boldsymbol{a}_q replaces column p of B

$$B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p) \boldsymbol{e}_p^T \quad \Rightarrow \quad B^{-1} := \left(I - rac{(\hat{\boldsymbol{a}}_q - \boldsymbol{e}_p) \boldsymbol{e}_p^T}{\hat{a}_{pq}}
ight) B^{-1}$$

- When using the product form update $B^{-1} = E_U^{-1} B_0^{-1}$
 - B_0^{-1} is represented by the INVERT etas
 - E_U^{-1} is represented by the UPDATE etas

• Each iteration, $oldsymbol{a}_q$ replaces column p of B

$$B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p) \boldsymbol{e}_p^T \quad \Rightarrow \quad B^{-1} := \left(I - rac{(\hat{\boldsymbol{a}}_q - \boldsymbol{e}_p) \boldsymbol{e}_p^T}{\hat{a}_{pq}}
ight) B^{-1}$$

- When using the product form update $B^{-1} = E_U^{-1}B_0^{-1}$
 - B_0^{-1} is represented by the INVERT etas
 - E_U^{-1} is represented by the UPDATE etas
 - FTRAN ($\hat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q$) is performed as

$$ilde{oldsymbol{a}}_q = B_0^{-1} oldsymbol{a}_q \quad ext{and} \quad \hat{oldsymbol{a}}_q = E_U^{-1} ilde{oldsymbol{a}}_q$$

• Each iteration, a_q replaces column p of B

$$B := B + (\boldsymbol{a}_q - \boldsymbol{a}_p)\boldsymbol{e}_p^T \quad \Rightarrow \quad B^{-1} := \left(I - \frac{(\hat{\boldsymbol{a}}_q - \boldsymbol{e}_p)\boldsymbol{e}_p^T}{\hat{a}_{pq}}\right)B^{-1}$$

- When using the product form update B⁻¹ = E⁻¹_UB⁻¹₀
 B⁻¹₀ is represented by the INVERT etas
 - E_U^{-1} is represented by the UPDATE etas
 - FTRAN ($\hat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q$) is performed as

$$ilde{oldsymbol{a}}_q = B_0^{-1} oldsymbol{a}_q \quad ext{and} \quad \hat{oldsymbol{a}}_q = E_U^{-1} ilde{oldsymbol{a}}_q$$

• BTRAN $(\boldsymbol{\pi}^T = \boldsymbol{e}_p^T B^{-1})$ is performed as

$$ilde{oldsymbol{\pi}}^T = oldsymbol{e}_p^T E_U^{-1} \quad ext{and} \quad oldsymbol{\pi}^T = ilde{oldsymbol{\pi}}^T B_0^{-1}$$

SYNPLEX, a task-parallel scheme for the revised simplex method

Revised simplex method with multiple pricing

CHUZC: Scan $\hat{\boldsymbol{c}}_N$ for a set $\boldsymbol{\mathcal{Q}}$ of good candidates to enter the basis

Revised simplex method with multiple pricing

CHUZC: Scan $\hat{\boldsymbol{c}}_N$ for a set \mathcal{Q} of good candidates to enter the basis FTRAN: Form $\hat{\boldsymbol{a}}_j = B^{-1} \boldsymbol{a}_j$, $\forall j \in \mathcal{Q}$, where \boldsymbol{a}_j is column j of A

Revised simplex method with multiple pricing

CHUZC: Scan \hat{c}_N for a set \mathcal{Q} of good candidates to enter the basis FTRAN: Form $\hat{a}_j = B^{-1}a_j$, $\forall j \in \mathcal{Q}$, where a_j is column j of ALoop {minor iterations} CHUZC_MI: Scan \hat{c}_Q for a good candidate q to enter the basis CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis UPDATE_MI: Update $\mathcal{Q} := \mathcal{Q} \setminus \{q\}; \hat{b} := \hat{b} - \alpha \hat{a}_q; \hat{a}_j$ and $\hat{c}_j, \forall j \in \mathcal{Q}$ End I oop {minor iterations}
CHUZC: Scan $\hat{\mathbf{c}}_N$ for a set \mathcal{Q} of good candidates to enter the basis FTRAN: Form $\hat{a}_{j} = B^{-1}a_{j}$, $\forall j \in Q$, where a_{j} is column j of A Loop {minor iterations} CHUZC_MI: Scan \hat{c}_{Q} for a good candidate q to enter the basis CHUZR: Scan the ratios \hat{b}_i/\hat{a}_{iq} for the row p of a good candidate to leave the basis UPDATE_MI: Update $Q := Q \setminus \{q\}; \hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha \hat{\boldsymbol{a}}_q; \hat{\boldsymbol{a}}_j \text{ and } \hat{\boldsymbol{c}}_j, \forall j \in Q$ End loop {minor iterations} For {each basis change} do BTRAN: Form $\boldsymbol{\pi}^T = \boldsymbol{e}_p^T B^{-1}$ PRICE: Form pivotal row $\hat{\boldsymbol{a}}_p^T = \boldsymbol{\pi}^T N$ and update $\hat{\boldsymbol{c}}_N := \hat{\boldsymbol{c}}_N - \hat{c}_q \hat{\boldsymbol{a}}_p^T$ If {growth in factors} then INVERT: Form a new representation of B^{-1} el se UPDATE: Update the representation of B^{-1} corresponding to the basis change end if End do

Disadvantages:

• Column selected in second and subsequent minor iteration is not the best Number of iterations required to solve the LP may increase

Disadvantages:

- Column selected in second and subsequent minor iteration is not the best Number of iterations required to solve the LP may increase
- Some columns in *Q* may become unattractive during minor iterations
 Work of some FTRANs may be wasted

Disadvantages:

- Column selected in second and subsequent minor iteration is not the best Number of iterations required to solve the LP may increase
- Some columns in *Q* may become unattractive during minor iterations
 Work of some FTRANs may be wasted

Advantages:

• Offers scope for task parallelism

Why?

Why?

• Never been done

Why?

- Never been done
- Simplex method (still) very widely used

Why?

- Never been done
- Simplex method (still) very widely used
- Enables significantly larger problems to be solved

Why?

- Never been done
- Simplex method (still) very widely used
- Enables significantly larger problems to be solved

How?

Why?

- Never been done
- Simplex method (still) very widely used
- Enables significantly larger problems to be solved

How?

• Exploit data parallelism

Use several processors simultaneously to perform a single operation

Why?

- Never been done
- Simplex method (still) very widely used
- Enables significantly larger problems to be solved

How?

- Exploit data parallelism
 Use several processors simultaneously to perform a single operation
- Exploit task parallelism

Perform more than one operation simultaneously using several processors

Component Properties

Scope for data parallelism

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied independently	Little
	UPDATE etas are long(er): may be applied as a matrix vector product	Immediate

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied independently	Little
	UPDATE etas are long(er): may be applied as a matrix vector product	Immediate
UPDATE_MI	Dense Gauss-Jordan elimination	Immediate

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied independently	Little
	UPDATE etas are long(er): may be applied as a matrix vector product	Immediate
UPDATE_MI CHUZR	Dense Gauss-Jordan elimination Pass through a vector	Immediate Immediate

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied	Little
	independently	
	UPDATE etas are long(er): may be applied as	Immediate
	a matrix vector product	
UPDATE_MI	Dense Gauss-Jordan elimination	Immediate
CHUZR	Pass through a vector	Immediate
BTRAN	UPDATE etas: negligible computation	
	INVERT etas: (as FTRAN)	Little

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied independently	Little
	UPDATE etas are long(er): may be applied as a matrix vector product	Immediate
UPDATE_MI	Dense Gauss-Jordan elimination	Immediate
CHUZR	Pass through a vector	Immediate
BTRAN	UPDATE etas: negligible computation	
	INVERT etas: (as FTRAN)	Little
PRICE	Matrix vector product	Immediate

Component	Properties	Scope for data parallelism
CHUZC	Pass through a vector	Immediate
FTRAN	INVERT etas are short: some may be applied	Little
	independently	
	UPDATE etas are long(er): may be applied as	Immediate
	a matrix vector product	
UPDATE_MI	Dense Gauss-Jordan elimination	Immediate
CHUZR	Pass through a vector	Immediate
BTRAN	UPDATE etas: negligible computation	
	INVERT etas: (as FTRAN)	Little
PRICE	Matrix vector product	Immediate
INVERT	Searches through B_0 and (half-)FTRANs	Little (traditionally)

SYNPLEX, a task-parallel scheme for the revised simplex method

Standard simplex method

• Good parallel efficiency achieved

Standard simplex method

• Good parallel efficiency achieved... many times!

Standard simplex method

- Good parallel efficiency achieved... many times!
- Totally uncompetitive with serial RSM without a prohibitively large number of processors

Standard simplex method

- Good parallel efficiency achieved... many times!
- Totally uncompetitive with serial RSM without a prohibitively large number of processors

Data parallel revised simplex method

• Only the immediate parallelism in PRICE has been exploited

Standard simplex method

- Good parallel efficiency achieved... many times!
- Totally uncompetitive with serial RSM without a prohibitively large number of processors

Data parallel revised simplex method

- Only the immediate parallelism in PRICE has been exploited
- Significant speed-up only obtained when $n \gg m$ so PRICE dominates For such problems an efficient serial solver uses partial pricing so PRICE no longer dominates

Data/task parallel revised simplex method (with multiple pricing)

Wunderling (1996)

- Parallel (except for INVERT) for only two processors
- Good results only for problems when $n \gg m$

Data/task parallel revised simplex method (with multiple pricing)

Wunderling (1996)

- Parallel (except for INVERT) for only two processors
- Good results only for problems when $n \gg m$

ASYNPLEX: Hall and McKinnon (1995)

- Fully task parallel (inefficient) variant of the revised simplex method
- Speed-up (on Cray T3D) of up to 5 on modest Netlib problems

Data/task parallel revised simplex method (with multiple pricing)

Wunderling (1996)

- Parallel (except for INVERT) for only two processors
- Good results only for problems when $n \gg m$

ASYNPLEX: Hall and McKinnon (1995)

- Fully task parallel (inefficient) variant of the revised simplex method
- Speed-up (on Cray T3D) of up to 5 on modest Netlib problems

PARSMI: Hall and McKinnon (1996)

- Fully task parallel revised simplex method with multiple pricing
- Speed-up (on Cray T3D) of between 1.7 and 1.9 on modest Netlib problems

• Asynchronous—so very hard to implement

- Asynchronous—so *very* hard to implement
- Numerically unstable—due to overlapping INVERT with basis changes

- Asynchronous—so *very* hard to implement
- Numerically unstable—due to overlapping INVERT with basis changes
- Reduced costs always out-of-date—more iterations and wasted FTRANs

- Asynchronous—so *very* hard to implement
- Numerically unstable—due to overlapping INVERT with basis changes
- Reduced costs always out-of-date—more iterations and wasted FTRANs
- Significant communication overhead

• Synchronous variant of PARSMI

- Synchronous variant of PARSMI
- INVERT not overlapped with basis changes ⇒ numerical stability

- Synchronous variant of PARSMI
- INVERT not overlapped with basis changes ⇒ numerical stability
- CHUZC uses up-to-date reduced costs \Rightarrow better candidate persistence

- Synchronous variant of PARSMI
- INVERT not overlapped with basis changes ⇒ numerical stability
- CHUZC uses up-to-date reduced costs \Rightarrow better candidate persistence
- Target platform: shared memory Sun Fire E15k (OpenMP)

- Synchronous variant of PARSMI
- INVERT not overlapped with basis changes ⇒ numerical stability
- CHUZC uses up-to-date reduced costs \Rightarrow better candidate persistence
- Target platform: shared memory Sun Fire E15k (OpenMP)

SYNPLEX, a task-parallel scheme for the revised simplex method
When using 1 + p processors

• Rows distributed over p processors

When using 1 + p processors

- Rows distributed over p processors for data parallel
 - FTRAN for UPDATE etas
 - CHUZR
 - UPDATE tableau in minor iterations
 - UPDATE RHS

When using 1 + p processors

- Rows distributed over p processors for data parallel
 - FTRAN for UPDATE etas
 - CHUZR
 - UPDATE tableau in minor iterations
 - UPDATE RHS
- Columns distributed over p processors

When using 1 + p processors

- Rows distributed over p processors for data parallel
 - FTRAN for UPDATE etas
 - CHUZR
 - UPDATE tableau in minor iterations
 - UPDATE RHS
- Columns distributed over p processors for data parallel
 - PRICE
 - CHUZC

Data location challenge

• B_0 factored serially on one processor

Data location challenge

- B_0 factored serially on one processor
- Factors used serially on all processors to solve linear systems

Data location challenge

- B_0 factored serially on one processor
- Factors used serially on all processors to solve linear systems
- Each solution used for data parallel operations over all processors

• Use a task manager processor

- Use a task manager processor
 - Task parallel operations allocated according to processor activity
 - Enables different computational components to overlap

- Use a task manager processor
 - Task parallel operations allocated according to processor activity
 - Enables different computational components to overlap
- Prevent different processors from writing to consecutive components

- Use a task manager processor
 - Task parallel operations allocated according to processor activity
 - Enables different computational components to overlap
- Prevent different processors from writing to consecutive components
 - Insert "padding" between row partitions: implemented

- Use a task manager processor
 - Task parallel operations allocated according to processor activity
 - Enables different computational components to overlap
- Prevent different processors from writing to consecutive components
 - Insert "padding" between row partitions: implemented
 - Insert "padding" between column partitions: not yet implemented

i courto					
			1 Processor	Speed-up	
Model	Rows	Columns	CPU (s)	4 processors	8 processors
cre-a	3517	4067	5.76	1.16	1.83
25fv47	822	1571	8.78	1.54	1.99
greenbea	2393	5405	29.22	-	2.30
ken-11	14695	21349	41.26	1.40	2.52
stocfor3	16676	15695	98.44	1.50	2.76
pds-06	9882	28655	138.84	1.58	3.05
			•		

Results

 $\ensuremath{\mathsf{SYNPLEX}}$, a task-parallel scheme for the revised simplex method

Operation	Slow-down in total time	Overall speed-up
Inv-FTRAN	3.29	-
Inv-BTRAN	2.11	-

SYNPLEX, a task-parallel scheme for the revised simplex method

20

Best speed-up (3.05) on 8 processors

SYNPLEX, a task-parallel scheme for the revised simplex method

21

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX limitations:

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX refinements:

- Parallel INVERT
 - Should allow larger problems to be solved than serial revised simplex solvers
 - Impressive results from parallel direct methods for linear systems give hope

SYNPLEX limitations:

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX refinements:

- Parallel INVERT
 - Should allow larger problems to be solved than serial revised simplex solvers
 - Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex *without* multiple pricing

Bibliography

Paper:http://www.maths.ed.ac.uk/hall/ParSimplexThis talk:http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method

23

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX limitations:

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX refinements:

- Parallel INVERT
 - Should allow larger problems to be solved than serial revised simplex solvers
 - Impressive results from parallel direct methods for linear systems give hope

SYNPLEX limitations:

- Algorithmic limitations of revised simplex with multiple pricing
 - Wasted FTRANs
 - Increased number of iterations
- Inevitable(?) data management limitations
 - Some operations are significantly slower in parallel than in serial
- Serial INVERT limits scalability

SYNPLEX refinements:

- Parallel INVERT
 - Should allow larger problems to be solved than serial revised simplex solvers
 - Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex *without* multiple pricing

Bibliography

Paper:http://www.maths.ed.ac.uk/hall/ParSimplexThis talk:http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method

25