SYNPLEX
A task-parallel scheme for the revised simplex method

Julian Hall
School of Mathematics

University of Edinburgh

June 23rd 2005

SYNPLEX, a task-parallel scheme for the revised simplex method

Overview

e The (standard and revised) simplex method for linear programming

Overview

e The (standard and revised) simplex method for linear programming

e Approaches to parallelising the simplex method

Overview

e The (standard and revised) simplex method for linear programming

e Approaches to parallelising the simplex method
e SYNPLEX

Overview

The (standard and revised) simplex method for linear programming
Approaches to parallelising the simplex method
SYNPLEX

Results and conclusions

SYNPLEX, a task-parallel scheme for the revised simplex method

Solving LP problems

minimize f=c=z
subject to Ax = b
x>0

where x e IR" and b e IR™

Solving LP problems

minimize f=clx
subject to Ax = b
x>0

where x e IR" and b e IR™

e At any vertex the variables may be partitioned into index sets

o B of m basic variables &g > 0
o N of n — m nonbasic variables &y = 0

Solving LP problems

minimize f=clx
subject to Ax = b
x>0

where x e IR" and b e IR™

e At any vertex the variables may be partitioned into index sets
o B of m basic variables xg > 0
o N of n — m nonbasic variables &y = 0

e Components of ¢ and columns of A are

o the basic costs ¢ and basis matrix B
o the non-basic costs ¢ and matrix NV

SYNPLEX, a task-parallel scheme for the revised simplex method

Reduced LP problem

At any vertex the original problem is

minimize f = c%wN + cng
subject to Nxy + Baxg = b
xny >0 xp >0

Reduced LP problem

At any vertex the original problem is

minimize f = c%wN + cng
subject to Nxy + Baxp =

xny >0 xp >0

Eliminate &g from the objective to give

minimize f = éz]\}wN + f
subject to N:I:N + ITxp =

xy >0 xp >0

Reduced LP problem
At any vertex the original problem is

minimize f = c%wN + cga:B
subject to Nxy + Baxg = b
xny >0 xp >0

Eliminate &g from the objective to give
minimize f = &%wN + f
subject to N:nN + Ixp = b

ey >0 x>0

where b= B~ 'b, N = B™!N, f = cgl; and ¢y is the vector of reduced costs

~T T T X

SYNPLEX, a task-parallel scheme for the revised simplex method

The standard simplex method

N B RHS

N I b

A

0 én o’ —f

The standard simplex method

N B RHS
1
: N I b
m
0 én o’ —f

In each iteration:

The standard simplex method

N B RHS
1
: N I b
m
0 én 0T —f

In each iteration:

e Select the pivotal column ¢’ of a nonbasic variable ¢ € N to be increased from zero

The standard simplex method

N B RHS
1
: N I b
m
0 én 0T —f

In each iteration:

e Select the pivotal column ¢’ of a nonbasic variable ¢ € N to be increased from zero

e Find the pivotal row p of the first basic variable p’ € B to be zeroed

The standard simplex method

N B RHS
1

N I b
m
0 én i —f

In each iteration:

Select the pivotal column ¢’ of a nonbasic variable ¢ € N to be increased from zero
Find the pivotal row p of the first basic variable p’ € B to be zeroed
Exchange indices p’ and g between sets B and N/

Update tableau corresponding to this basis change

SYNPLEX, a task-parallel scheme for the revised simplex method

The standard simplex method (cont.)

Advantages:

e Easy to understand

e Simple to implement

The standard simplex method (cont.)

Advantages:

e Easy to understand

e Simple to implement

Disadvantages:

e Expensive: the matrix N ‘usually’ treated as full
o Storage requirement: O(mmn) memory locations

o Computation requirement: O(mn) floating point operations per iteration
e Numerically unstable

SYNPLEX, a task-parallel scheme for the revised simplex method

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios b;/a;, for the row p of a good candidate to leave the basis

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let ov = b,/ dipg
Update b := b — aa,

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let ov = b,/ dipg
Update b := b — aa,
BTRAN: Form 7' = e, B™'

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC:
FTRAN:
CHUZR:

BTRAN:
PRICE:

Scan the reduced costs ¢, for a good candidate g to enter the basis

Form the pivotal column @, = B~ 'a,, where a, is column ¢ of A

Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let o = by /g

Update b := b — aa,

Form ww! = egB_1

Form the pivotal row &g =l N

Revised simplex method

Given ¢y, b and a representation of B!, repeat

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let ov = b,/ dipg
Update b := b — aa,
BTRAN: Form 7' = e, B™'

PRICE: Form the pivotal row &g =l N

~T AT ~ AT
Update reduced costs ¢y := ¢y — ¢4a,

Revised simplex method

Given ¢y, b and a representation of B~ repeat
P p

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let ov = b,/ dipg
Update b := b — aa,
BTRAN: Form 7' = e, B™'
PRICE: Form the pivotal row &g =l N
Update reduced costs &y := éx — éng
IT (growth in factors) then
INVERT: Form a representation of B~*
else
UPDATE: Update the representation of B! corresponding to the basis change
end i1f

SYNPLEX, a task-parallel scheme for the revised simplex method

Factored representation of B!

e Each iteration, a, replaces column p of B

Factored representation of B!

e Each iteration, a, replaces column p of B

B := B+ (a, — ap)eg

Factored representation of B!

e Each iteration, a, replaces column p of B

A

A pq

~ T
a, — €,)e
B:=B+(a,—ay)e, = B = (I—(1~ €r) p) B!

Factored representation of B!

e Each iteration, a, replaces column p of B

A

A pq

A T
a, — €,)e
B:=B+(a,—ay)e, = B = (I—(1~ €r) p) B!

e When using the product form update B~ * = E(;lBO_l

Factored representation of B!

e Each iteration, a, replaces column p of B

A

- T
a, — e,)e
B:=B+ (a,—ay)e, = B ':= jo G g
Upq
e When using the product form update B~ = E(leo_l
o) BO_1 is represented by the INVERT etas
0 Eljl is represented by the UPDATE etas

Factored representation of B!

e Each iteration, a, replaces column p of B

A

A T
B:=B+(a,—ay)e, = B = (I _ (4 ep)ep) B!
Upq
e When using the product form update B~ = E(leo_l
o) BO_1 is represented by the INVERT etas
0 Eljl is represented by the UPDATE etas
o FTRAN (a, = B 'a,) is performed as

~ —1 ~ —1 ~
a, = B, a;, and a; = E; a,

Factored representation of B!

e Each iteration, a, replaces column p of B

A

A T
B:=B+(a,—ay)e, = B = (I _ (& ep)ep) B!
Upq
e When using the product form update B~ = Elleo_l
o) BO_1 is represented by the INVERT etas
0 Eljl is represented by the UPDATE etas
o FTRAN (a, = B 'a,) is performed as

~

~1 A ~1~
a, = B, a;, and a; = E; a,

o BTRAN (w! = egB_l) is performed as

T T +—1 T ~T 5—1
T :epEU and 7 =T B0

SYNPLEX, a task-parallel scheme for the revised simplex method

Revised simplex method with multiple pricing

CHUZC: Scan ¢, for a set QO of good candidates to enter the basis

Revised simplex method with multiple pricing

CHUZC: Scan ¢, for a set QO of good candidates to enter the basis
FTRAN: Form a; = B 'a;, Vj € Q, where a; is column j of A

Revised simplex method with multiple pricing

CHUZC: Scan ¢, for a set QO of good candidates to enter the basis
FTRAN: Form a; = B_laj, Vj € Q, where a; is column j of A
Loop {minor iterations}

CHUZC_MI: Scan ¢, for a good candidate g to enter the basis
CHUZR: Scan the ratios IA)Z-/&Z-q for the row p of a good candidate to leave the basis

UPDATE_MI: Update Q := Q\{q}; b := b — aéa,; a;and &;, Vj € Q
End loop {minor iterations}

Revised simplex method with multiple pricing

CHUZC: Scan ¢, for a set QO of good candidates to enter the basis
FTRAN: Form a; = B_laj, Vj € Q, where a; is column j of A
Loop {minor iterations}

End
For

End

SYNPLEX, a task-parallel scheme for the revised simplex method

CHUZC_MI: Scan ¢, for a good candidate g to enter the basis

CHUZR: Scan the ratios IA)Z-/&Z-q for the row p of a good candidate to leave the basis
UPDATE_MI: Update Q := Q\{q}; b := b — aéa,; a;and &;, Vj € Q
loop {minor iterations}
{each basis change} do
BTRAN: Form 7w’ = e B~
PRICE: Form pivotal row &g — w7 N and update ¢y := ¢y — éq&g
IT {growth in factors} then
INVERT: Form a new representation of B~*
else
UPDATE: Update the representation of B~ corresponding to the basis change
end 1f

do

Revised simplex method with multiple pricing

Disadvantages:

e Column selected in second and subsequent minor iteration is not the best
Number of iterations required to solve the LP may increase

Revised simplex method with multiple pricing

Disadvantages:

e Column selected in second and subsequent minor iteration is not the best
Number of iterations required to solve the LP may increase

e Some columns in © may become unattractive during minor iterations
Work of some FTRANs may be wasted

Revised simplex method with multiple pricing

Disadvantages:

e Column selected in second and subsequent minor iteration is not the best
Number of iterations required to solve the LP may increase

e Some columns in © may become unattractive during minor iterations
Work of some FTRANs may be wasted

Advantages:

e Offers scope for task parallelism

SYNPLEX, a task-parallel scheme for the revised simplex method

Parallelising the simplex method

Why?

Parallelising the simplex method
Why?

e Never been done

Parallelising the simplex method
Why?

e Never been done

e Simplex method (still) very widely used

Parallelising the simplex method
Why?
e Never been done

e Simplex method (still) very widely used

e Enables significantly larger problems to be solved

Parallelising the simplex method
Why?

e Never been done
e Simplex method (still) very widely used

e Enables significantly larger problems to be solved

How?

Parallelising the simplex method
Why?

e Never been done
e Simplex method (still) very widely used

e Enables significantly larger problems to be solved
How?

e Exploit data parallelism
Use several processors simultaneously to perform a single operation

Parallelising the simplex method
Why?

e Never been done
e Simplex method (still) very widely used

e Enables significantly larger problems to be solved
How?

e Exploit data parallelism
Use several processors simultaneously to perform a single operation

e Exploit task parallelism
Perform more than one operation simultaneously using several processors

SYNPLEX, a task-parallel scheme for the revised simplex method

Parallelising simplex computational components

Component Properties Scope for data parallelism

Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little

independently

UPDATE etas are long(er): may be applied as Immediate
a matrix vector product

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little

independently

UPDATE etas are long(er): may be applied as Immediate
a matrix vector product
UPDATE_MI Dense Gauss-Jordan elimination Immediate

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little

independently

UPDATE etas are long(er): may be applied as Immediate
a matrix vector product
UPDATE_MI Dense Gauss-Jordan elimination Immediate
CHUZR Pass through a vector Immediate

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little

independently

UPDATE etas are long(er): may be applied as Immediate
a matrix vector product

UPDATE_MI Dense Gauss-Jordan elimination Immediate
CHUZR Pass through a vector Immediate
BTRAN UPDATE etas: negligible computation

INVERT etas: (as FTRAN) Little

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little
independently
UPDATE etas are long(er): may be applied as Immediate
a matrix vector product
UPDATE_MI Dense Gauss-Jordan elimination Immediate
CHUZR Pass through a vector Immediate
BTRAN UPDATE etas: negligible computation
INVERT etas: (as FTRAN) Little
PRICE Matrix vector product Immediate

Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little
independently
UPDATE etas are long(er): may be applied as Immediate
a matrix vector product
UPDATE_MI Dense Gauss-Jordan elimination Immediate
CHUZR Pass through a vector Immediate
BTRAN UPDATE etas: negligible computation
INVERT etas: (as FTRAN) Little
PRICE Matrix vector product Immediate
INVERT Searches through By and (half-)FTRANs Little (traditionally)

SYNPLEX, a task-parallel scheme for the revised simplex method

Past approaches

Standard simplex method

e Good parallel efficiency achieved

Past approaches

Standard simplex method

e Good parallel efficiency achieved... many times!

Past approaches

Standard simplex method

e Good parallel efficiency achieved... many times!

e Totally uncompetitive with serial RSM without a prohibitively large number of processors

Past approaches

Standard simplex method

e Good parallel efficiency achieved... many times!

e Totally uncompetitive with serial RSM without a prohibitively large number of processors
Data parallel revised simplex method

e Only the immediate parallelism in PRICE has been exploited

Past approaches

Standard simplex method

e Good parallel efficiency achieved... many times!

e Totally uncompetitive with serial RSM without a prohibitively large number of processors
Data parallel revised simplex method

e Only the immediate parallelism in PRICE has been exploited

e Significant speed-up only obtained when n > m so PRICE dominates
For such problems an efficient serial solver uses partial pricing so PRICE no longer dominates

SYNPLEX, a task-parallel scheme for the revised simplex method

Data/task parallel revised simplex method
(with multiple pricing)

Wounderling (1996)

e Parallel (except for INVERT) for only two processors

e Good results only for problems when n > m

Data/task parallel revised simplex method
(with multiple pricing)

Wounderling (1996)

e Parallel (except for INVERT) for only two processors

e Good results only for problems when n > m

ASYNPLEX: Hall and McKinnon (1995)

e Fully task parallel (inefficient) variant of the revised simplex method

e Speed-up (on Cray T3D) of up to 5 on modest Netlib problems

Data/task parallel revised simplex method
(with multiple pricing)

Wounderling (1996)

e Parallel (except for INVERT) for only two processors

e Good results only for problems when n > m

ASYNPLEX: Hall and McKinnon (1995)

e Fully task parallel (inefficient) variant of the revised simplex method

e Speed-up (on Cray T3D) of up to 5 on modest Netlib problems
PARSMI: Hall and McKinnon (1996)

e Fully task parallel revised simplex method with multiple pricing

e Speed-up (on Cray T3D) of between 1.7 and 1.9 on modest Netlib problems

SYNPLEX, a task-parallel scheme for the revised simplex method

(Some) ASYNPLEX and PARSMI limitations

e Asynchronous—so very hard to implement

(Some) ASYNPLEX and PARSMI limitations

e Asynchronous—so very hard to implement

e Numerically unstable—due to overlapping INVERT with basis changes

(Some) ASYNPLEX and PARSMI limitations

e Asynchronous—so very hard to implement
e Numerically unstable—due to overlapping INVERT with basis changes

e Reduced costs always out-of-date—more iterations and wasted FTRANs

(Some) ASYNPLEX and PARSMI limitations

e Asynchronous—so very hard to implement
e Numerically unstable—due to overlapping INVERT with basis changes

e Reduced costs always out-of-date—more iterations and wasted FTRANs

e Significant communication overhead

SYNPLEX, a task-parallel scheme for the revised simplex method

SYNPLEX

e Synchronous variant of PARSMI

SYNPLEX

e Synchronous variant of PARSMI
e INVERT not overlapped with basis changes = numerical stability

SYNPLEX

e Synchronous variant of PARSMI
e INVERT not overlapped with basis changes = numerical stability
e CHUZC uses up-to-date reduced costs = better candidate persistence

SYNPLEX

Synchronous variant of PARSMI

INVERT not overlapped with basis changes = numerical stability
CHUZC uses up-to-date reduced costs = better candidate persistence
Target platform: shared memory Sun Fire E15k (OpenMP)

SYNPLEX

Synchronous variant of PARSMI

INVERT not overlapped with basis changes = numerical stability
CHUZC uses up-to-date reduced costs = better candidate persistence
Target platform: shared memory Sun Fire E15k (OpenMP)

Flnv Flny e REREREEN rvy o frv]
T T
T T

Flnv Flnv enlERRRRERREn rve o frv]

S e LML [
T T

SYNPLEX, a task-parallel scheme for the revised simplex method

Y

Data parallelism

When using 1 + p processors

e Rows distributed over p processors

Data parallelism

When using 1 + p processors

e Rows distributed over p processors for data parallel
o FTRAN for UPDATE etas
o CHUZR
o UPDATE tableau in minor iterations
o UPDATE RHS

Data parallelism

When using 1 + p processors

e Rows distributed over p processors for data parallel

o FTRAN for UPDATE etas
o CHUZR

o UPDATE tableau in minor iterations
o UPDATE RHS

e Columns distributed over p processors

Data parallelism

When using 1 + p processors

e Rows distributed over p processors for data parallel
o FTRAN for UPDATE etas
o CHUZR
o UPDATE tableau in minor iterations
o UPDATE RHS

e Columns distributed over p processors for data parallel
o PRICE
o CHUZC

SYNPLEX, a task-parallel scheme for the revised simplex method

Data location challenge

e B factored serially on one processor

Data location challenge

e B factored serially on one processor

e Factors used serially on all processors to solve linear systems

Data location challenge

e B factored serially on one processor
e Factors used serially on all processors to solve linear systems

e Each solution used for data parallel operations over all processors

SYNPLEX, a task-parallel scheme for the revised simplex method

Practical implementation

e Use a task manager processor

Practical implementation

e Use a task manager processor

o Task parallel operations allocated according to processor activity
o Enables different computational components to overlap

Practical implementation

Use a task manager processor

o Task parallel operations allocated according to processor activity
o Enables different computational components to overlap

Prevent different processors from writing to consecutive components

Practical implementation

Use a task manager processor

o Task parallel operations allocated according to processor activity
o Enables different computational components to overlap

Prevent different processors from writing to consecutive components
o Insert “padding” between row partitions: implemented

Practical implementation

e Use a task manager processor

o Task parallel operations allocated according to processor activity
o Enables different computational components to overlap

e Prevent different processors from writing to consecutive components
o Insert “padding” between row partitions: implemented
o Insert “padding” between column partitions: not yet implemented

SYNPLEX, a task-parallel scheme for the revised simplex method

Results

1 Processor Speed-up
Model Rows Columns CPU (s) | 4 processors 8 processors
cre-a 3517 4067 5.76 1.16 1.83
25fv47 822 1571 8.78 1.54 1.99
greenbea 2393 5405 29.22 - 2.30
ken-11 14695 21349 41.26 1.40 2.52
stocfor3 16676 15695 08.44 1.50 2.76
pds-06 9882 28655 138.84 1.58 3.05

SYNPLEX, a task-parallel scheme for the revised simplex method

Poor performance: cre-a

Least speed-up (1.83) on 8 processors

7l imi |1 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo.] . R e [T T
v [N ST T (] [R T T T ¢

0 1] | |

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

—
-

Poor performance: cre-a

Least speed-up (1.83) on 8 processors
7 Ml i | 11 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo.] . R e [T T
v [N ST T (] [R T T T ¢
0 1] | |

—
-

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation | Slow-down in total time Overall speed-up
Inv-FTRAN | 3.29 -

Poor performance: cre-a

Least speed-up (1.83) on 8 processors
7 Ml i | 11 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo.] . R e [T T
v [N ST T (] [R T T T ¢
0 1] | |

—
-

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation | Slow-down in total time Overall speed-up
Inv-FTRAN 3.29 -
Inv-BTRAN 2.11 -

Poor performance: cre-a

Least speed-up (1.83) on 8 processors

7

6

5

SYNPLEX, a task-parallel scheme for the revised simplex method

I[N CTCTIm e i O ..
CETT AT (1 -
[0 BT DN (] —
[l i]
[BT T (N] -
0 BT TT T (T 7 T

|1 [T

AT Y [T T ¢
[N S [T [
0O [T T T [
LT e I
R e [T T
R T T T ¢

[T] | |
3.841800 3.8;000 3.8;200 3.8;400 3.8;600 3.8;800 ~
Operation Slow-down in total time Overall speed-up
Inv-FTRAN 3.29 -
Inv-BTRAN 2.11 -
PRICE 2.94 2.04

Fair performance: pds-06

Best speed-up (3.05) on 8 processors

7 [[N

6 [TR 0 T T T T T T T e [[T 1T]
5 [EEEmE [l ' SIS EEEEE - EEENIEE
4 [EEmEy [" EeNiEemeeen el 4l ' EENIEEE
3 | EEEEN §lil [ENEEEEEieEE oy | EEEEEN
: O T TH I 00T) ™ [T T[T 1T
! O S T 10 1 T T T T T TN T T T T
0 | |

T T T T T T -
46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Fair performance: pds-06

Best speed-up (3.05) on 8 processors

7 [[N

6 [TR 0 T T T T T T T e [[T 1T]
5 [EEEmE [l ' SIS EEEEE - EEENIEE
4 [EEmEy [" EeNiEemeeen el 4l ' EENIEEE
3 | EEEEN §lil [ENEEEEEieEE oy | EEEEEN
: O T TH I 00T) ™ [T T[T 1T
! O S T 10 1 T T T T T TN T T T T
0 | |

T T T T T T -
46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation | Slow-down in total time Overall speed-up
Inv-FTRAN | 2.02 :

Fair performance: pds-06

Best speed-up (3.05) on 8 processors

7 [[N

6 [TR 0 T T T T T T T e [[T 1T]
5 [EEEmE [l ' SIS EEEEE - EEENIEE
4 [EEmEy [" EeNiEemeeen el 4l ' EENIEEE
3 | EEEEN §lil [ENEEEEEieEE oy | EEEEEN
: O T TH I 00T) ™ [T T[T 1T
! O S T 10 1 T T T T T TN T T T T
0 | |

T T T T T T -
46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation | Slow-down in total time Overall speed-up
Inv-FTRAN 2.02 -
Inv-BTRAN 1.79 -

Fair performance: pds-06

Best speed-up (3.05) on 8 processors

7

6

5

SYNPLEX, a task-parallel scheme for the revised simplex method

| [[N

[TR 0 T T T T T T T e [[T 1T]
[EEEmE [l ' SIS EEEEE - EEENIEE
[EEmEy [" EeNiEemeeen el 4l ' EENIEEE
| EEEEN §lil [ENEEEEEieEE oy | EEEEEN
[HiEEnl i mEEEEEEEmE s Ul HiEEEEE
O S T 10 1 T T T T T TN T T T T

] | |
46.621000 46.621-800 46.6%600 46.6%400 46.6;200 46.6;3000=
Operation Slow-down in total time Overall speed-up
Inv-FTRAN 2.02 -
Inv-BTRAN 1.79 -
PRICE 1.69 3.55

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

SYNPLEX refinements:

e Parallel INVERT

o Should allow larger problems to be solved than serial revised simplex solvers
o Impressive results from parallel direct methods for linear systems give hope

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

SYNPLEX refinements:

e Parallel INVERT

o Should allow larger problems to be solved than serial revised simplex solvers
o Impressive results from parallel direct methods for linear systems give hope

Future prospects:

e Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method

Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall1/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

SYNPLEX refinements:

e Parallel INVERT

o Should allow larger problems to be solved than serial revised simplex solvers
o Impressive results from parallel direct methods for linear systems give hope

Conclusions

SYNPLEX limitations:

e Algorithmic limitations of revised simplex with multiple pricing
o Wasted FTRANSs
o Increased number of iterations

e Inevitable(?) data management limitations
o Some operations are significantly slower in parallel than in serial
e Serial INVERT limits scalability

SYNPLEX refinements:

e Parallel INVERT

o Should allow larger problems to be solved than serial revised simplex solvers
o Impressive results from parallel direct methods for linear systems give hope

Future prospects:

e Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method

Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall1/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method

