
SYNPLEX
A task-parallel scheme for the revised simplex method

Julian Hall

School of Mathematics

University of Edinburgh

June 23rd 2005

SYNPLEX, a task-parallel scheme for the revised simplex method



Overview

• The (standard and revised) simplex method for linear programming



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method

• SYNPLEX



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method

• SYNPLEX

• Results and conclusions

SYNPLEX, a task-parallel scheme for the revised simplex method 1



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm

• At any vertex the variables may be partitioned into index sets

◦ B of m basic variables xB ≥ 0
◦ N of n−m nonbasic variables xN = 0



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm

• At any vertex the variables may be partitioned into index sets

◦ B of m basic variables xB ≥ 0
◦ N of n−m nonbasic variables xN = 0

• Components of c and columns of A are

◦ the basic costs cB and basis matrix B

◦ the non-basic costs cN and matrix N

SYNPLEX, a task-parallel scheme for the revised simplex method 2



Reduced LP problem

At any vertex the original problem is

minimize f = cT
NxN + cT

BxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0



Reduced LP problem

At any vertex the original problem is

minimize f = cT
NxN + cT

BxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0

Eliminate xB from the objective to give

minimize f = ĉT
NxN + f̂

subject to N̂ xN + I xB = b̂

xN ≥ 0 xB ≥ 0



Reduced LP problem

At any vertex the original problem is

minimize f = cT
NxN + cT

BxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0

Eliminate xB from the objective to give

minimize f = ĉT
NxN + f̂

subject to N̂ xN + I xB = b̂

xN ≥ 0 xB ≥ 0

where b̂ = B−1b, N̂ = B−1N , f̂ = cT
Bb̂ and ĉN is the vector of reduced costs

ĉ
T
N = c

T
N − c

T
BN̂

SYNPLEX, a task-parallel scheme for the revised simplex method 3



The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂



The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂

In each iteration:



The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂

In each iteration:

• Select the pivotal column q′ of a nonbasic variable q ∈ N to be increased from zero



The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂

In each iteration:

• Select the pivotal column q′ of a nonbasic variable q ∈ N to be increased from zero

• Find the pivotal row p of the first basic variable p′ ∈ B to be zeroed



The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂

In each iteration:

• Select the pivotal column q′ of a nonbasic variable q ∈ N to be increased from zero

• Find the pivotal row p of the first basic variable p′ ∈ B to be zeroed

• Exchange indices p′ and q between sets B and N
• Update tableau corresponding to this basis change

SYNPLEX, a task-parallel scheme for the revised simplex method 4



The standard simplex method (cont.)

Advantages:

• Easy to understand

• Simple to implement



The standard simplex method (cont.)

Advantages:

• Easy to understand

• Simple to implement

Disadvantages:

• Expensive: the matrix N̂ ‘usually’ treated as full

◦ Storage requirement: O(mn) memory locations

◦ Computation requirement: O(mn) floating point operations per iteration

• Numerically unstable

SYNPLEX, a task-parallel scheme for the revised simplex method 5



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq

BTRAN: Form πT = eT
p B−1



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq

BTRAN: Form πT = eT
p B−1

PRICE: Form the pivotal row âT
p = πTN



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq

BTRAN: Form πT = eT
p B−1

PRICE: Form the pivotal row âT
p = πTN

Update reduced costs ĉT
N := ĉT

N − ĉqâ
T
p



Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq

BTRAN: Form πT = eT
p B−1

PRICE: Form the pivotal row âT
p = πTN

Update reduced costs ĉT
N := ĉT

N − ĉqâ
T
p

If (growth in factors) then
INVERT: Form a representation of B−1

else
UPDATE: Update the representation of B−1 corresponding to the basis change

end if

SYNPLEX, a task-parallel scheme for the revised simplex method 6



Factored representation of B−1

• Each iteration, aq replaces column p of B



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1

• When using the product form update B−1 = E−1
U B−1

0



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1

• When using the product form update B−1 = E−1
U B−1

0

◦ B−1
0 is represented by the INVERT etas

◦ E−1
U is represented by the UPDATE etas



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1

• When using the product form update B−1 = E−1
U B−1

0

◦ B−1
0 is represented by the INVERT etas

◦ E−1
U is represented by the UPDATE etas

◦ FTRAN (âq = B−1aq) is performed as

ãq = B
−1
0 aq and âq = E

−1
U ãq



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1

• When using the product form update B−1 = E−1
U B−1

0

◦ B−1
0 is represented by the INVERT etas

◦ E−1
U is represented by the UPDATE etas

◦ FTRAN (âq = B−1aq) is performed as

ãq = B
−1
0 aq and âq = E

−1
U ãq

◦ BTRAN (πT = eT
p B−1) is performed as

π̃
T
= e

T
p E

−1
U and π

T
= π̃

T
B
−1
0

SYNPLEX, a task-parallel scheme for the revised simplex method 7



Revised simplex method with multiple pricing

CHUZC: Scan ĉN for a set Q of good candidates to enter the basis



Revised simplex method with multiple pricing

CHUZC: Scan ĉN for a set Q of good candidates to enter the basis

FTRAN: Form âj = B−1aj, ∀ j ∈ Q, where aj is column j of A



Revised simplex method with multiple pricing

CHUZC: Scan ĉN for a set Q of good candidates to enter the basis

FTRAN: Form âj = B−1aj, ∀ j ∈ Q, where aj is column j of A

Loop {minor iterations}
CHUZC_MI: Scan ĉQ for a good candidate q to enter the basis

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

UPDATE_MI: Update Q := Q\{q}; b̂ := b̂− αâq; âj and ĉj, ∀ j ∈ Q
End loop {minor iterations}



Revised simplex method with multiple pricing

CHUZC: Scan ĉN for a set Q of good candidates to enter the basis

FTRAN: Form âj = B−1aj, ∀ j ∈ Q, where aj is column j of A

Loop {minor iterations}
CHUZC_MI: Scan ĉQ for a good candidate q to enter the basis

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

UPDATE_MI: Update Q := Q\{q}; b̂ := b̂− αâq; âj and ĉj, ∀ j ∈ Q
End loop {minor iterations}
For {each basis change} do

BTRAN: Form πT = eT
p B−1

PRICE: Form pivotal row âT
p = πTN and update ĉN := ĉN − ĉqâ

T
p

If {growth in factors} then
INVERT: Form a new representation of B−1

else
UPDATE: Update the representation of B−1 corresponding to the basis change

end if
End do

SYNPLEX, a task-parallel scheme for the revised simplex method 8



Revised simplex method with multiple pricing

Disadvantages:

• Column selected in second and subsequent minor iteration is not the best

Number of iterations required to solve the LP may increase



Revised simplex method with multiple pricing

Disadvantages:

• Column selected in second and subsequent minor iteration is not the best

Number of iterations required to solve the LP may increase

• Some columns in Q may become unattractive during minor iterations

Work of some FTRANs may be wasted



Revised simplex method with multiple pricing

Disadvantages:

• Column selected in second and subsequent minor iteration is not the best

Number of iterations required to solve the LP may increase

• Some columns in Q may become unattractive during minor iterations

Work of some FTRANs may be wasted

Advantages:

• Offers scope for task parallelism

SYNPLEX, a task-parallel scheme for the revised simplex method 9



Parallelising the simplex method

Why?



Parallelising the simplex method

Why?

• Never been done



Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used



Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used

• Enables significantly larger problems to be solved



Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used

• Enables significantly larger problems to be solved

How?



Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used

• Enables significantly larger problems to be solved

How?

• Exploit data parallelism

Use several processors simultaneously to perform a single operation



Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used

• Enables significantly larger problems to be solved

How?

• Exploit data parallelism

Use several processors simultaneously to perform a single operation

• Exploit task parallelism

Perform more than one operation simultaneously using several processors

SYNPLEX, a task-parallel scheme for the revised simplex method 10



Parallelising simplex computational components

Component Properties Scope for data parallelism



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate

CHUZR Pass through a vector Immediate



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate

CHUZR Pass through a vector Immediate

BTRAN UPDATE etas: negligible computation

INVERT etas: (as FTRAN) Little



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate

CHUZR Pass through a vector Immediate

BTRAN UPDATE etas: negligible computation

INVERT etas: (as FTRAN) Little

PRICE Matrix vector product Immediate



Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate

CHUZR Pass through a vector Immediate

BTRAN UPDATE etas: negligible computation

INVERT etas: (as FTRAN) Little

PRICE Matrix vector product Immediate

INVERT Searches through B0 and (half-)FTRANs Little (traditionally)

SYNPLEX, a task-parallel scheme for the revised simplex method 11



Past approaches

Standard simplex method

• Good parallel efficiency achieved



Past approaches

Standard simplex method

• Good parallel efficiency achieved... many times!



Past approaches

Standard simplex method

• Good parallel efficiency achieved... many times!

• Totally uncompetitive with serial RSM without a prohibitively large number of processors



Past approaches

Standard simplex method

• Good parallel efficiency achieved... many times!

• Totally uncompetitive with serial RSM without a prohibitively large number of processors

Data parallel revised simplex method

• Only the immediate parallelism in PRICE has been exploited



Past approaches

Standard simplex method

• Good parallel efficiency achieved... many times!

• Totally uncompetitive with serial RSM without a prohibitively large number of processors

Data parallel revised simplex method

• Only the immediate parallelism in PRICE has been exploited

• Significant speed-up only obtained when n � m so PRICE dominates

For such problems an efficient serial solver uses partial pricing so PRICE no longer dominates

SYNPLEX, a task-parallel scheme for the revised simplex method 12



Data/task parallel revised simplex method
(with multiple pricing)

Wunderling (1996)

• Parallel (except for INVERT) for only two processors

• Good results only for problems when n � m



Data/task parallel revised simplex method
(with multiple pricing)

Wunderling (1996)

• Parallel (except for INVERT) for only two processors

• Good results only for problems when n � m

ASYNPLEX: Hall and McKinnon (1995)

• Fully task parallel (inefficient) variant of the revised simplex method

• Speed-up (on Cray T3D) of up to 5 on modest Netlib problems



Data/task parallel revised simplex method
(with multiple pricing)

Wunderling (1996)

• Parallel (except for INVERT) for only two processors

• Good results only for problems when n � m

ASYNPLEX: Hall and McKinnon (1995)

• Fully task parallel (inefficient) variant of the revised simplex method

• Speed-up (on Cray T3D) of up to 5 on modest Netlib problems

PARSMI: Hall and McKinnon (1996)

• Fully task parallel revised simplex method with multiple pricing

• Speed-up (on Cray T3D) of between 1.7 and 1.9 on modest Netlib problems

SYNPLEX, a task-parallel scheme for the revised simplex method 13



(Some) ASYNPLEX and PARSMI limitations

• Asynchronous—so very hard to implement



(Some) ASYNPLEX and PARSMI limitations

• Asynchronous—so very hard to implement

• Numerically unstable—due to overlapping INVERT with basis changes



(Some) ASYNPLEX and PARSMI limitations

• Asynchronous—so very hard to implement

• Numerically unstable—due to overlapping INVERT with basis changes

• Reduced costs always out-of-date—more iterations and wasted FTRANs



(Some) ASYNPLEX and PARSMI limitations

• Asynchronous—so very hard to implement

• Numerically unstable—due to overlapping INVERT with basis changes

• Reduced costs always out-of-date—more iterations and wasted FTRANs

• Significant communication overhead

SYNPLEX, a task-parallel scheme for the revised simplex method 14



SYNPLEX

• Synchronous variant of PARSMI



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence

• Target platform: shared memory Sun Fire E15k (OpenMP)



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence

• Target platform: shared memory Sun Fire E15k (OpenMP)

P P P P F InvP P P

F Inv

PB InvB InvF InvF Inv3

F Inv

F Inv F InvPPPPPPPPB InvB InvF InvF Inv4

F Inv

F Inv

PPPPPPPB InvB InvF InvF Inv1

INVERTF Inv0

P

PPPPPPPPB InvB InvF InvF Inv2

F InvF Inv

SYNPLEX, a task-parallel scheme for the revised simplex method 15



Data parallelism

When using 1 + p processors

• Rows distributed over p processors



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors for data parallel

◦ PRICE

◦ CHUZC

SYNPLEX, a task-parallel scheme for the revised simplex method 16



Data location challenge

• B0 factored serially on one processor



Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems



Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems

• Each solution used for data parallel operations over all processors

SYNPLEX, a task-parallel scheme for the revised simplex method 17



Practical implementation

• Use a task manager processor



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented

◦ Insert “padding” between column partitions: not yet implemented

SYNPLEX, a task-parallel scheme for the revised simplex method 18



Results

1 Processor Speed-up

Model Rows Columns CPU (s) 4 processors 8 processors

cre-a 3517 4067 5.76 1.16 1.83

25fv47 822 1571 8.78 1.54 1.99

greenbea 2393 5405 29.22 - 2.30

ken-11 14695 21349 41.26 1.40 2.52

stocfor3 16676 15695 98.44 1.50 2.76

pds-06 9882 28655 138.84 1.58 3.05

SYNPLEX, a task-parallel scheme for the revised simplex method 19



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -

Inv-BTRAN 2.11 -



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -

Inv-BTRAN 2.11 -

PRICE 2.94 2.04

SYNPLEX, a task-parallel scheme for the revised simplex method 20



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -

Inv-BTRAN 1.79 -



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -

Inv-BTRAN 1.79 -

PRICE 1.69 3.55

SYNPLEX, a task-parallel scheme for the revised simplex method 21



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method 22



Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method 23



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method 24



Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method 25


