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Solving LP problems

minimize f=clx
subject to Ax = b
x>0

where x e IR" and b e IR™

e At any vertex the variables may be partitioned into index sets
o B of m basic variables xg > 0
o N of n — m nonbasic variables &y = 0

e Components of ¢ and columns of A are

o the basic costs ¢ and basis matrix B
o the non-basic costs ¢ and matrix NV

SYNPLEX, a task-parallel scheme for the revised simplex method
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Reduced LP problem
At any vertex the original problem is

minimize f = c%wN + cga:B
subject to Nxy + Baxg = b
xny >0 xp >0

Eliminate &g from the objective to give
minimize f = &%wN + f
subject to N:nN + Ixp = b

ey >0 x>0

where b= B~ 'b, N = B™!N, f = cgl; and ¢y is the vector of reduced costs

~T T T X
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The standard simplex method

N B RHS
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In each iteration:

Select the pivotal column ¢’ of a nonbasic variable ¢ € N to be increased from zero
Find the pivotal row p of the first basic variable p’ € B to be zeroed
Exchange indices p’ and g between sets B and N/

Update tableau corresponding to this basis change
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The standard simplex method (cont.)

Advantages:

e Easy to understand

e Simple to implement

Disadvantages:

e Expensive: the matrix N ‘usually’ treated as full
o Storage requirement: O(mmn) memory locations

o Computation requirement: O(mn) floating point operations per iteration
e Numerically unstable
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Revised simplex method

Given ¢y, b and a representation of B~ repeat
P p

CHUZC: Scan the reduced costs ¢, for a good candidate g to enter the basis
FTRAN: Form the pivotal column a, = B~ 'a,, where a, is column q of A
CHUZR: Scan the ratios Bi/diq for the row p of a good candidate to leave the basis
Let ov = b,/ dipg
Update b := b — aa,
BTRAN: Form 7' = e, B™'
PRICE: Form the pivotal row &g =l N
Update reduced costs &y := éx — éng
IT (growth in factors) then
INVERT: Form a representation of B~*
else
UPDATE: Update the representation of B! corresponding to the basis change
end i1f
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Factored representation of B!

e Each iteration, a, replaces column p of B

A

A T
B:=B+(a,—ay)e, = B = (I _ (& ep)ep) B!
Upq
e When using the product form update B~ = Elleo_l
o) BO_1 is represented by the INVERT etas
0 Eljl is represented by the UPDATE etas
o FTRAN (a, = B 'a,) is performed as

~

~1 A ~1~
a, = B, a;, and a; = E; a,

o BTRAN (w! = egB_l) is performed as

T T +—1 T ~T 5—1
T :epEU and 7 =T B0
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CHUZC: Scan ¢, for a set QO of good candidates to enter the basis
FTRAN: Form a; = B_laj, Vj € Q, where a; is column j of A
Loop {minor iterations}

End
For

End

SYNPLEX, a task-parallel scheme for the revised simplex method

CHUZC_MI:  Scan ¢, for a good candidate g to enter the basis

CHUZR: Scan the ratios IA)Z-/&Z-q for the row p of a good candidate to leave the basis
UPDATE_MI: Update Q := Q\{q}; b := b — aéa,; a;and &;, Vj € Q
loop {minor iterations}
{each basis change} do
BTRAN: Form 7w’ = e B~
PRICE: Form pivotal row &g — w7 N and update ¢y := ¢y — éq&g
IT {growth in factors} then
INVERT: Form a new representation of B~*
else
UPDATE: Update the representation of B~ corresponding to the basis change
end 1f

do
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Revised simplex method with multiple pricing

Disadvantages:

e Column selected in second and subsequent minor iteration is not the best
Number of iterations required to solve the LP may increase

e Some columns in © may become unattractive during minor iterations
Work of some FTRANs may be wasted

Advantages:

e Offers scope for task parallelism

SYNPLEX, a task-parallel scheme for the revised simplex method
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Parallelising the simplex method
Why?

e Never been done
e Simplex method (still) very widely used

e Enables significantly larger problems to be solved
How?

e Exploit data parallelism
Use several processors simultaneously to perform a single operation

e Exploit task parallelism
Perform more than one operation simultaneously using several processors

SYNPLEX, a task-parallel scheme for the revised simplex method
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Parallelising simplex computational components

Component Properties Scope for data parallelism
CHUZC Pass through a vector Immediate
FTRAN INVERT etas are short: some may be applied Little
independently
UPDATE etas are long(er): may be applied as  Immediate
a matrix vector product
UPDATE_MI  Dense Gauss-Jordan elimination Immediate
CHUZR Pass through a vector Immediate
BTRAN UPDATE etas: negligible computation
INVERT etas: (as FTRAN) Little
PRICE Matrix vector product Immediate
INVERT Searches through By and (half-)FTRANs Little (traditionally)

SYNPLEX, a task-parallel scheme for the revised simplex method
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Past approaches

Standard simplex method

e Good parallel efficiency achieved... many times!

e Totally uncompetitive with serial RSM without a prohibitively large number of processors
Data parallel revised simplex method

e Only the immediate parallelism in PRICE has been exploited

e Significant speed-up only obtained when n > m so PRICE dominates
For such problems an efficient serial solver uses partial pricing so PRICE no longer dominates

SYNPLEX, a task-parallel scheme for the revised simplex method
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Data/task parallel revised simplex method
(with multiple pricing)

Wounderling (1996)

e Parallel (except for INVERT) for only two processors

e Good results only for problems when n > m

ASYNPLEX: Hall and McKinnon (1995)

e Fully task parallel (inefficient) variant of the revised simplex method

e Speed-up (on Cray T3D) of up to 5 on modest Netlib problems
PARSMI: Hall and McKinnon (1996)

e Fully task parallel revised simplex method with multiple pricing

e Speed-up (on Cray T3D) of between 1.7 and 1.9 on modest Netlib problems

SYNPLEX, a task-parallel scheme for the revised simplex method
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(Some) ASYNPLEX and PARSMI limitations

e Asynchronous—so very hard to implement
e Numerically unstable—due to overlapping INVERT with basis changes

e Reduced costs always out-of-date—more iterations and wasted FTRANs

e Significant communication overhead

SYNPLEX, a task-parallel scheme for the revised simplex method
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Synchronous variant of PARSMI

INVERT not overlapped with basis changes = numerical stability
CHUZC uses up-to-date reduced costs = better candidate persistence
Target platform: shared memory Sun Fire E15k (OpenMP)
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Data parallelism

When using 1 + p processors

e Rows distributed over p processors for data parallel
o FTRAN for UPDATE etas
o CHUZR
o UPDATE tableau in minor iterations
o UPDATE RHS

e Columns distributed over p processors for data parallel
o PRICE
o CHUZC
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Data location challenge

e B factored serially on one processor
e Factors used serially on all processors to solve linear systems

e Each solution used for data parallel operations over all processors
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Practical implementation

e Use a task manager processor

o Task parallel operations allocated according to processor activity
o Enables different computational components to overlap

e Prevent different processors from writing to consecutive components
o Insert “padding” between row partitions: implemented
o Insert “padding” between column partitions: not yet implemented

SYNPLEX, a task-parallel scheme for the revised simplex method




Results

1 Processor Speed-up
Model Rows  Columns CPU (s) | 4 processors 8 processors
cre-a 3517 4067 5.76 1.16 1.83
25fv47 822 1571 8.78 1.54 1.99
greenbea 2393 5405 29.22 - 2.30
ken-11 14695 21349 41.26 1.40 2.52
stocfor3 16676 15695 08.44 1.50 2.76
pds-06 9882 28655 138.84 1.58 3.05

SYNPLEX, a task-parallel scheme for the revised simplex method




Poor performance: cre-a

Least speed-up (1.83) on 8 processors

7l imi |1 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo. ] . R e [ T T
v [N ST T (] [ R T T T ¢

0 1] | |

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

—
-




Poor performance: cre-a

Least speed-up (1.83) on 8 processors
7 Ml i | 11 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo. ] . R e [ T T
v [N ST T (] [ R T T T ¢
0 1] | |

—
-

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation | Slow-down in total time  Overall speed-up
Inv-FTRAN | 3.29 -




Poor performance: cre-a

Least speed-up (1.83) on 8 processors
7 Ml i | 11 [T

o |IN CTTTIm Ml /e O . AT Y [T T ¢
s (I CTTTIETm (N (71 . [N S [T [
« [N EEECTTN0 DR (1] . 0O [T T T [
s (I ST Tl U 1 LT e I
>[I T CTo. ] . R e [ T T
v [N ST T (] [ R T T T ¢
0 1] | |

—
-

T T T T T T
3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation | Slow-down in total time  Overall speed-up
Inv-FTRAN 3.29 -
Inv-BTRAN 2.11 -




Poor performance: cre-a

Least speed-up (1.83) on 8 processors
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Best speed-up (3.05) on 8 processors
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