
SYNPLEX
A task-parallel scheme for the revised simplex method

Julian Hall

School of Mathematics

University of Edinburgh

June 23rd 2005

SYNPLEX, a task-parallel scheme for the revised simplex method



Overview

• The (standard and revised) simplex method for linear programming



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method

• SYNPLEX



Overview

• The (standard and revised) simplex method for linear programming

• Approaches to parallelising the simplex method

• SYNPLEX

• Results and conclusions

SYNPLEX, a task-parallel scheme for the revised simplex method 1



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm

• At any vertex the variables may be partitioned into index sets

◦ B of m basic variables xB ≥ 0
◦ N of n−m nonbasic variables xN = 0



Solving LP problems

minimize f = cTx

subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm

• At any vertex the variables may be partitioned into index sets

◦ B of m basic variables xB ≥ 0
◦ N of n−m nonbasic variables xN = 0

• Components of c and columns of A are

◦ the basic costs cB and basis matrix B

◦ the non-basic costs cN and matrix N
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Reduced LP problem

At any vertex the original problem is

minimize f = cT
NxN + cT

BxB

subject to N xN + B xB = b

xN ≥ 0 xB ≥ 0

Eliminate xB from the objective to give

minimize f = ĉT
NxN + f̂

subject to N̂ xN + I xB = b̂

xN ≥ 0 xB ≥ 0

where b̂ = B−1b, N̂ = B−1N , f̂ = cT
Bb̂ and ĉN is the vector of reduced costs

ĉ
T
N = c

T
N − c

T
BN̂
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The standard simplex method

N B RHS

1
... N̂ I b̂

m

0 ĉT
N 0T −f̂

In each iteration:

• Select the pivotal column q′ of a nonbasic variable q ∈ N to be increased from zero

• Find the pivotal row p of the first basic variable p′ ∈ B to be zeroed

• Exchange indices p′ and q between sets B and N
• Update tableau corresponding to this basis change
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The standard simplex method (cont.)

Advantages:

• Easy to understand

• Simple to implement

Disadvantages:

• Expensive: the matrix N̂ ‘usually’ treated as full

◦ Storage requirement: O(mn) memory locations

◦ Computation requirement: O(mn) floating point operations per iteration

• Numerically unstable
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CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis
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Revised simplex method

Given ĉN , b̂ and a representation of B−1, repeat

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

Let α = b̂p/âpq

Update b̂ := b̂− αâq

BTRAN: Form πT = eT
p B−1

PRICE: Form the pivotal row âT
p = πTN

Update reduced costs ĉT
N := ĉT

N − ĉqâ
T
p

If (growth in factors) then
INVERT: Form a representation of B−1

else
UPDATE: Update the representation of B−1 corresponding to the basis change

end if
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−1
U ãq



Factored representation of B−1

• Each iteration, aq replaces column p of B

B := B + (aq − ap)e
T
p ⇒ B

−1
:=

(
I −

(âq − ep)e
T
p

âpq

)
B
−1

• When using the product form update B−1 = E−1
U B−1

0

◦ B−1
0 is represented by the INVERT etas

◦ E−1
U is represented by the UPDATE etas

◦ FTRAN (âq = B−1aq) is performed as

ãq = B
−1
0 aq and âq = E

−1
U ãq

◦ BTRAN (πT = eT
p B−1) is performed as

π̃
T
= e

T
p E

−1
U and π

T
= π̃

T
B
−1
0
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End loop {minor iterations}
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CHUZC: Scan ĉN for a set Q of good candidates to enter the basis

FTRAN: Form âj = B−1aj, ∀ j ∈ Q, where aj is column j of A

Loop {minor iterations}
CHUZC_MI: Scan ĉQ for a good candidate q to enter the basis

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis

UPDATE_MI: Update Q := Q\{q}; b̂ := b̂− αâq; âj and ĉj, ∀ j ∈ Q
End loop {minor iterations}
For {each basis change} do

BTRAN: Form πT = eT
p B−1

PRICE: Form pivotal row âT
p = πTN and update ĉN := ĉN − ĉqâ

T
p

If {growth in factors} then
INVERT: Form a new representation of B−1

else
UPDATE: Update the representation of B−1 corresponding to the basis change

end if
End do
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Revised simplex method with multiple pricing

Disadvantages:

• Column selected in second and subsequent minor iteration is not the best

Number of iterations required to solve the LP may increase

• Some columns in Q may become unattractive during minor iterations

Work of some FTRANs may be wasted

Advantages:

• Offers scope for task parallelism
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Parallelising the simplex method

Why?

• Never been done

• Simplex method (still) very widely used

• Enables significantly larger problems to be solved

How?

• Exploit data parallelism

Use several processors simultaneously to perform a single operation

• Exploit task parallelism

Perform more than one operation simultaneously using several processors
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Parallelising simplex computational components

Component Properties Scope for data parallelism

CHUZC Pass through a vector Immediate

FTRAN INVERT etas are short: some may be applied

independently

Little

UPDATE etas are long(er): may be applied as

a matrix vector product

Immediate

UPDATE MI Dense Gauss-Jordan elimination Immediate

CHUZR Pass through a vector Immediate

BTRAN UPDATE etas: negligible computation

INVERT etas: (as FTRAN) Little

PRICE Matrix vector product Immediate

INVERT Searches through B0 and (half-)FTRANs Little (traditionally)
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Past approaches

Standard simplex method

• Good parallel efficiency achieved... many times!

• Totally uncompetitive with serial RSM without a prohibitively large number of processors

Data parallel revised simplex method

• Only the immediate parallelism in PRICE has been exploited

• Significant speed-up only obtained when n � m so PRICE dominates

For such problems an efficient serial solver uses partial pricing so PRICE no longer dominates
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Data/task parallel revised simplex method
(with multiple pricing)

Wunderling (1996)

• Parallel (except for INVERT) for only two processors

• Good results only for problems when n � m

ASYNPLEX: Hall and McKinnon (1995)

• Fully task parallel (inefficient) variant of the revised simplex method

• Speed-up (on Cray T3D) of up to 5 on modest Netlib problems

PARSMI: Hall and McKinnon (1996)

• Fully task parallel revised simplex method with multiple pricing

• Speed-up (on Cray T3D) of between 1.7 and 1.9 on modest Netlib problems
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(Some) ASYNPLEX and PARSMI limitations

• Asynchronous—so very hard to implement

• Numerically unstable—due to overlapping INVERT with basis changes

• Reduced costs always out-of-date—more iterations and wasted FTRANs

• Significant communication overhead
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• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence

• Target platform: shared memory Sun Fire E15k (OpenMP)
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Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors for data parallel

◦ PRICE

◦ CHUZC
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Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems

• Each solution used for data parallel operations over all processors
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Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented

◦ Insert “padding” between column partitions: not yet implemented
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Results

1 Processor Speed-up

Model Rows Columns CPU (s) 4 processors 8 processors

cre-a 3517 4067 5.76 1.16 1.83

25fv47 822 1571 8.78 1.54 1.99

greenbea 2393 5405 29.22 - 2.30

ken-11 14695 21349 41.26 1.40 2.52

stocfor3 16676 15695 98.44 1.50 2.76

pds-06 9882 28655 138.84 1.58 3.05
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Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -

Inv-BTRAN 2.11 -

PRICE 2.94 2.04
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Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -

Inv-BTRAN 1.79 -

PRICE 1.69 3.55
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