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Linear programming (LP)

minimize ¢’ x

subjectto Ax=b x>0

Background

o Fundamental model in optimal NN
P . ,“MT"‘
decision-making N o

@ Solution techniques

o Simplex method (1947) N
o Interior point methods (1984) AN \ﬁgim
@ Large problems have RN~
=
o 10%-1078 variables \ Nl
o 103-107® constraints A

@ Matrix A is (usually) sparse
STAIR: 356 rows, 467 columns and 3856 nonzeros
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Solving LP problems

minimize fp =c¢'x maximize fp = bTy

subjectto Ax=b x>0 (P) subjectto ATy+s=c s>0 (D)

Optimality conditions

@ For a partition BU N of the variable set with nonsingular basis matrix B in

BT Sg Cs
Bxg + Nxy = b for (P) and rly+ = for (D)
N Sy Cn
W|th Xy = 0 and Sg = 0
o Primal basic variables x, given by b= B~'b
e Dual non-basic variables s, given by E,Z,— =cl —¢/B7IN
@ Partition is optimal if there is
e Primal feasibility b >0
e Dual feasibility ¢y > 0
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Simplex algorithm: Each iteration

N RHS

Dual algorithm: Assume ¢y > 0 Seek b >0

Scan E,-, i € B, for a good candidate p to leave B CHUZR
Scan ¢j/ap;, j € N, for a good candidate g to leave N/ CHUZC

Update: Exchange p and g between B and N/

Update b := b — 0,3, 0p = bp/3pg UPDATE-PRIMAL
Update € :=¢€, — 043, 04 =Cyq/3pq UPDATE-DUAL
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Revised simplex method (RSM): Computation

Major computational components

nl=elB~! BTRAN a,=m]N PRICE
a, =B la, FTRAN Invert B INVERT

Hyper-sparsity

@ Vectors e, and a, are always sparse

@ B may be highly reducible; B! may be sparse

~T =
e Vectors 7, @, and ag may be sparse

o Efficient implementations must exploit these features
H and McKinnon (1998-2005), Bixby (1999)
Clp, Koberstein and Suhl (2005-2008)
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Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

minimize ¢/xo + €/x1 + €lxo + ... + ¢fxn
subject to Axg = by
Tixo + Wix, = b
T2X0 + W2X2 = b2
TNXO + WNXN = bN

x0 >0 x1 >0 x>0 xy >0

@ Variables xg € R™ are first stage decisions

@ Variables x; € R" for i =1,..., N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

@ The objective is the expected cost of the decisions

@ In stochastic MIP problems, some/all decisions are discrete
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Stochastic MIP problems: For Argonne

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity comes from availability of
wind-generated electricity

Initial experiments carried out using model problem

@ Number of scenarios increases with refinement of
probability distribution sampling

@ Solution via branch-and-bound
e Solve root node using parallel IPM solver PIPS | N :
Lubin, Petra et al. (2011) S T R TS
e Solve subsequent nodes using parallel dual simplex lllinois power network (2010)
solver PIPS-S Lubin, H et al. (2013)
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http://link.springer.com/article/10.1007/s10589-013-9542-y
http://www.mcs.anl.gov/~vzavala/argonne_ed.pdf

Stochastic MIP problems: General

Convenient to permute the LP thus:

minimize ¢{x1 + €Jx2 + ... + cixn + €Ixo
subject to  Wix; + Tixg = by
W2X2 + T2X0 = b2
Wnxy + Tnxo = by
AXO = bo

x1 >0 x>0 xy >0 x0 >0
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Exploiting problem structure: Basis matrix inversion

Inversion of the basis matrix B is key to revised simplex efficiency
For column-linked BALP problems

Wy 7

B B
Wy Ty
AB
e WP are columns corresponding to n? basic variables in scenario i
B
T
: I d. B b . f- d P
° . | are columns corresponding to ng basic first stage decisions
Tn
AB
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Exploiting problem structure: Basis matrix inversion

@ Inversion of the basis matrix B is key to revised simplex efficiency
@ For column-linked BALP problems

B B
B= :
We TE wg iy
AB
wg | T
AB

@ B is nonsingular so
o WP are “tall": full column rank
o [WF TF] are “wide”: full row rank
o Afis “wide": full row rank

@ Scope for parallel inversion is immediate and well known
Duff and Scott (2004)
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Exploiting problem structure: Basis matrix inversion

e Eliminate sub-diagonal entries in each W# (independently)

wg | 1

A

@ Apply elimination operations to each T/ (independently)

@ Accumulate non-pivoted rows from the W? with A® and
complete elimination

Julian Hall Parallel simplex for large-scale stochastic LP problems 12/23



Exploiting problem structure: Basis matrix inversion

@ After Gaussian elimination, have invertible representation of

S G
Sv | Cn
Ry ... Ry ‘ %4 R ‘ 4
@ Specifically
o LiUj = S; of dimension n?
o G=L7'C
° /t?\,- = /'-\’,'U,-_1

o LU factors of the Schur complement M = V — RS~1C of dimension n§
@ Scope for parallelism since each GE applied to [W,-B | T,-B] is independent
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Exploiting problem structure: Solving Bx = b

FTRAN for Bx — b @ Appears to be dominated by parallelizable

e Solves L; iy = b; and Uix; = y; — Cixo
S C| |xe b,
Solve = as o Products R;y; and Cixo
R V X0 bo .
i @ Curse of exploiting hyper-sparsity
Q Ly, = bi,i=1,....N o In simplex, b, is from constraint column

Qz,-:R,-y,-,izl,...,N tig 0
N Either | : |or, more likely, |wiq
Q z= b() — Z Zj th 0
= o In latter case, the y; inherit structure
Q MXO =Z o Only one Liy;, = wig
Q@ Uxj=y;—Cxo,i=1,....,N © Only one Riy,

@ Less scope for parallelism than anticipated
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Exploiting problem structure: Solving B"x = b

BTRAN for BT x — @ Appears to be dominated by paraIIellzaAbIe

o Solves Uy; = b; and LT x; = y; — R x¢

ST T 4 ~
Solve |7+ RT o Products C/'y; and R xq
C % iy .
@ Curse of exploiting hyper-sparsity
o UT_Y, = b:, =1,. o In simplex, b=e,
Q z — CTy =1,...,N o At most one solve Uy; = b;
/ o At most one C/ly;
Q@ z=by— Z z; @ Less scope for parallelism than anticipated
O MTxy==z
o L,'Txi =Yi—- R,'TXO.
i=1,...,N
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Exploiting problem structure: Forming 71';

@ PRICE forms

A B
A Ty
(wl 7] .. owf ] ] - ;
Wy Th
AN
N
= | 7fwWy wIWy . mWh mlAY+> AT

i=1

o Dominated by parallelizable products w7 W/ and 7| T/
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Results: Stochastic LP test problems

Test 1st Stage  2nd-Stage Scenario Nonzero Elements

Problem ng mg n; m; A W; T;
Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89

UC12 3,132 0 56,532 59,436 0 163,839 3,132
uc24 6,264 0 113,064 118,872 0 327,939 6,264

@ Storm and SSN are publicly available
@ UC12 and UC24 are stochastic unit commitment problems developed at Argonne

e Aim to choose optimal on/off schedules for generators on the power grid of the state
of lllinois over a 12-hour and 24-hour horizon

e In practice each scenario corresponds to a weather simulation
Model problem generates scenarios by normal perturbations

Zavala (2011)
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Results: Baseline serial performance for large instances

Serial performance of PIPS-S and clp

Problem Dimensions  Solver Iterations Time (s) lter/sec
Storm n =10,313,849 PIPS-S 6,353,593 385,825 16.5
8,192 scen. m = 4,325,561 clp 6,706,401 133,047 50.4
SSN n=>5,783,651 PIPS-S 1,025,279 58,425 17.5
8,192 scen. m =1,433,601 clp 1,175,282 12,619 93.1
Uc12 n=1,812,156 PIPS-S 1,968,400 236,219 8.3
32 scen.  m=1,901,952 clp 2474175 39,722 623
uc24 n=1,815,288 PIPS-S 2,142,962 543,272 3.9
16 scen.  m = 1,901,952 clp 2441374 41,708 58.5
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Results: On Fusion cluster

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN TUC12 TUC24

1 1.0 1.0 1.0 1.0

4 36 35 2.7 3.0

8 73 75 6.1 53
16 13.6 15.1 8.5 8.9
32 246 303 145

clp 85 6.5 2.4 0.7
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Results: On Fusion cluster - larger instances

Storm SSN UC12 UcC24

Scenarios 32,768 32,768 512 256
Variables 41,255,033 23,134,297 28,947,516 28,950,648
Constraints 17,301,689 5,734,401 30,431,232 30,431,232

Julian Hall Parallel simplex for large-scale stochastic LP problems 20/23



Results: On Fusion cluster - larger instances, from an advanced basis

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24
1 1 1 1 1

8 15 19 7 6

16 52 45 14 12

32 117 103 26 22
64 152 181 44 41
128 202 289 60 64
256 285 383 70 80
clp 209 45 67 68
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Results: On Blue Gene supercomputer - very large instance

@ Instance of UC12

e 8,192 scenarios
e 463,113,276 variables
e 486,899,712 constraints

@ Requires 1 TB of RAM (> 1024 Blue Gene cores)

@ Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit

2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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Conclusions

@ Developed a distributed dual revised simplex solver for column linked BALP
@ Demonstrated scalable parallel performance

e For highly specialised problems

e On highly specialised machines

@ Solved problems which would be intractable using commercial serial solvers
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