Ordering Algorithms for
Irreducible Sparse Linear Systems

by
R. Fletcher* and J.A.J . Hall**

Abstract

Ordering algorithms aim to pre-order a matriz in order to achieve a favourable
structure for factorization. Two prototype structures are described which are commonly
atmed at by current algorithms. A different structure based on a lower Hessenberg form
15 wntroduced. We show that the common structures may be obtained from the Hessenberg
form in a simple way. A fundamental and very simple algorithm is presented for de-
riving the lower Hessenberg form. This algorithm is inherently a part of other common
algorithms, but is usually obscured by other detailed heuristics. Some of these heuristics
are seen to correspond to different tie-break rules in the fundamental algorithm. We
describe a particularly simple tie-break rule used in SPK1 [11], which is effective and
not at all well known.

Ordering algorithms need to be modified to enable pwoting for numerical stability
to be carried out. We describe how the idea of threshold pivoting can be used in the
context of these algorithms. Most ordering algorithms in common use employ some
sort of look-ahead to promote a favourable structure. It is argued that look-ahead is
generally ineffective in practice, and that numerical evidence supports the use of very
simple strategies.

A new ordering algorithm is presented which atms to obtain a narrower bandwidth
wn the lower Hessenberg form. Some limited numerical experience is presented which
enables us to draw tentative conclusions about various ordering strategies, and how they
compare with those in common use.

1. Introduction

Many techniques have been suggested for the solution of a large sparse nonsingular
system of linear equations Az = b, and related problems. The most effective method
in any particular case is very much dependent on context, and this paper relates to
one particular approach which has been used in a number of applications. We start by
assuming that A has been reduced to block lower triangular form. This can be achieved
first by finding a transversal using an algorithm such as that of Duff [3], followed by the
use of Tarjan’s algorithm ([13],[5]), based on the use of a symmetric row and column
permutation. Each diagonal block in the resulting matrix is then irreducible and it is
sufficient to find LU factors of each block in order to solve Az = b efficiently (see for
example [6]). There is often considerable sparsity within the diagonal blocks, and it is
worthwhile to continue to use sparse matrix techniques to obtain a favourable structure

* Dept. of Mathematics and Computer Science, Univ. of Dundee
** Dept. of Mathematics, Univ. of Edinburgh

1

in these LU factors. It is the problem of ordering and factorizing matrices such as these
diagonal blocks that we address in this paper. Subsequently therefore, A refers to an
irreducible nonsingular matrix that cannot be further simplified by Tarjan’s algorithm.

A popular way to calculate LU factors of A is to use the Markowitz pivot strategy
([101,[6]). This chooses a pivot which minimizes (r; — 1)(¢; — 1) subject to a threshold
pivot tolerance, where r; and ¢; are the row and column counts in the reduced matrix
in Gaussian elimination. It has been observed that this method is effective for keeping
fill-in low in the LU factors. However the need to make provision for fill-in, and to have
row and column counts for the reduced matrix at every stage, means that a complex
data structure must be adopted during the factorization, and this can increase the run
time.

There is therefore some interest in alternatives to the Markowitz approach, and a
common theme in a number of algorithms is to pre-order the matrix A in order to achieve
a favourable structure for factorization. Such methods are the subject of this paper.
In Section 2 we describe two prototype structures which are commonly aimed at by
current algorithms. We also argue the merits of introducing a different structure based
on a lower Hessenberg form. We show that the common structures may be obtained
from the Hessenberg form in a simple way. A fundamental and very simple algorithm is
presented for deriving the lower Hessenberg form. This algorithm is inherently a part
of most other algorithms, but i1s usually obscured by other detailed heuristics, and we
feel that it is valuable to make its framework clear. Some of these heuristics are seen to
correspond to different tie-break rules in the fundamental algorithm. Other heuristics
determine which of the common structures is obtained. We describe a particularly
simple tie-break rule, used in SPK1 [11], which is effective and not at all well known.

Most ordering algorithms in common use employ some sort of look-ahead to pro-
mote a favourable structure. Two different possibilities are described in Section 3. We
argue that look-ahead is generally ineffective in practice, and that numerical evidence
supports the use of very simple strategies.

Ordering algorithms need to be modified to enable pivoting for numerical stability
to be carried out. We show how the idea of threshold pivoting can be used in the context
of these algorithms. There are two main aspects of interest, one relating to the use of a
bordered block lower triangular form, and the other to sparse Gaussian elimination on
a lower triangular form with a number of columns projecting above the diagonal. Both
of these situations are discussed in Section 4.

In Section b we present a new ordering algorithm aimed at obtaining a narrower
bandwidth in the lower Hessenberg form. This has some intrinsic interest, although our
numerical experience is not very encouraging. However the development does indicate
that there are many potential strategies for ordering algorithms which have not yet
been researched, and points to how little is known about the important features of
such algorithms. Some limited numerical experience is presented in Section 6 which
enables us to draw tentative conclusions about various ordering strategies, and how
they compare with those in common use.

2. Ordering Algorithms

The basic ideas of ordering algorithms are introduced by Hellerman and Rarick [9],

2

who suggest two algorithms known as P? and P*. P* is a development of P? which
allows for the prior reduction of A by Tarjan’s algorithm, and we need only consider
P%. A later paper by Erisman et al. [7] introduces a modification to P* and a further
modification known as P®. The aim of these algorithms is essentially to make both row
and column permutations of A so that the resulting matrix is close in some sense to a
lower or block lower triangular matrix.

The characteristic structure produced by the P* algorithm—as originally conceived
by Hellerman and Rarick—is that of a lower triangular matrix with a number of columns
projecting above the diagonal. Such columns are termed spikes and we refer to this
structure as being spiked lower triangular. The spike columns are accumulated as the
algorithm proceeds in a spike stack. During the algorithm, spikes are removed from the
stack, to be included as columns in the reordered matrix. Upon termination of the P*
algorithm this spike stack is empty. Figures 2.1(a) and 2.1(b) provide an illustration of
this ordering on a matrix of dimension 44.

The spiked lower triangular form is most useful when the number of spikes is
relatively small (assuming that an appropriate data structure is used). The simplest
way to use the structure is to apply Gaussian elimination without pivoting, in which
case 1t is readily observed that fill-in only takes place within the spike columns. It
may be however that a diagonal element of the ordered matrix is structurally zero (see
[6]) in which case this process fails. Tt is also possible that near-zero diagonal pivots
can occur which give rise to numerical growth in the spikes, and hence to numerical
instability. Hence any practical implementation of this approach must allow for pivotal
interchanges, and we consider this aspect in more detail in Section 4.

The P® algorithm produces a related structure in which the reordered matrix is in
bordered block lower triangular form, that is

L B] @2.1)

PAQ = [c D
where L is a block lower triangular matrix whose diagonal blocks are square and fully
dense, and P and () are permutation matrices. The P® algorithm attains this form
by restricting the removal of columns from the spike stack, whilst also accumulating
certain rows in a row stack. On termination of the algorithm, the spike stack is not
empty and 1s equal in size to the row stack. The rows and columns that remain in
these stacks form the border of the resulting bordered block lower triangular matrix. A
typical profile resulting from this ordering is illustrated in Figure 2.1(c).

The modification to the P* algorithm introduced by Erisman et al. [6] and im-
plemented by Arioli, et al. [2] also obtains a bordered block triangular matrix. The
diagonal blocks are larger than those obtained by the P® algorithm and are not fully
dense, indeed they may require to be treated as sparse matrices. The compensation for
this considerable increase in complexity is a marginally smaller border.

The form of (2.1) ensures that the diagonal blocks of L are structurally nonsingular,
and so avoids the difficulties associated with structurally zero pivots referred to above.
Unfortunately it is possible that numerically zero or near-zero pivots in L may occur,
and this approach must be supplemented by a pivotal strategy. We return to this point
in Section 4.

(a) Unordered matriz (b) Spiked lower triangular

(¢) Bordered block lower triangular (d) Lower Hessenberyg

Figure 2.1 Alternative forms for ordered matrices

The structure of (2.1) is utilised by taking advantage of the ease of solving systems
involving L. To do this only the diagonal blocks of L need be factorized. In practice it
is usually observed that these blocks are trivial (1 x 1 and occasionally 2 x 2). Blocks of
higher order occur rarely and the 4 x 4 block in Figure 2.1(c) is remarkable. Although
this matrix is small, the residual effect of block structure in a large sparse problem could
result in similar behaviour. This implicit factorization of L 1s used to form the Schur
complement

S=D-CL™'B (2.2)

Next LU factors of the matrix S (with pivoting) are calculated using dense code since
S 1s typically very dense, if not full. Systems involving A can then be solved by a

4

combination of solves with I, and S. It can be advantageous to store the matrix L=!B
(or CL71), so that a solve with A may be carried out by using only one additional
solve with L. This approach is most efficient when the border (and hence the Schur
complement) is small.

The P* and P® algorithms are examples of one-pass ordering algorithms in that
a row or column is assigned to a new position exactly once. If the twin processes of
identifying and assigning rows and columns within the one pass are viewed as separate
processes; each within a single pass of an equivalent two-pass process, then considerable
insight into the operation of these and other algorithms is obtained.

There is also another characteristic form associated with these algorithms which
we refer to as the lower Hessenberg form. If the spike columns are included with the
other columns of A so that the height of the columns is non-increasing then a lower
Hessenberg matrix is obtained. This matrix has the particular property that it is block
lower triangular, but with fully dense rectangular blocks on the diagonal, rather than
square blocks. Since the matrix is irreducible the profile always lies above the diagonal.
This structure is illustrated in Figure 2.1(d).

We give here a fundamental and very simple algorithm for determining a lower
Hessenberg form of this nature. The algorithm progressively removes rows and columns
from A: the matrix that remains when some rows and columns have been removed is
termed the active submatriz. A count is kept of the numbers of nonzero elements in the
rows and columns of the active submatrix. Initially A is the active submatrix and the
algorithm can be simply expressed as follows.

repeat
find a row in the active submatrix with minimum row count
remove all columns which intersect this row
update row counts in the active submatrix
remove all rows with zero row count

1
2
; (2.3)

NI AN

4

until all rows and columns are removed.

In this algorithm columns are removed by permuting them to the left of the active sub-
matrix, and rows by permuting them to the top of the active submatrix. At each stage
the block that is common to the rows and columns being removed forms a rectangular
diagonal block of the lower Hessenberg matrix. The selection of a minimum-row-count
row in 1), and the removal of zero-row-count rows in 4), ensures that the rectangu-
lar diagonal blocks are fully dense. A typical intermediate stage of algorithm (2.3) is
illustrated in Figure 2.2.

Various algorithms exist which are essentially based on this common framework,
and they differ in how they break ties in step 1). We discuss aspects of this in the
rest of this section. However it is worth pointing out that the row that is selected in
step 1) uniquely determines the rectangular block that is obtained. Hence any tie-break
rule essentially selects between the different candidate blocks that can be formed from
minimum-row-count rows. It follows for example that if there is only one candidate
block, then there is no need for a tie-break, even though the minimum-row-count row
1s not uniquely defined.

The P® algorithm and both interpretations of the P* algorithm are based on the
same rather complicated way of breaking ties and hence correspond to the same lower

5

* ok k
* * *
* * *
* % *
* * * *
* * * %
* * * *
* % .
* Active
*
" " Sub-
* * matrix
* %

Figure 2.2 Intermediate stage for Algorithm (2.3)

Hessenberg matrix. We refer to this ordering as the HR ordering since it is characteristic
of the Hellerman-Rarick family of ordering algorithms. We give more details of this
means of breaking ties in Section 3. However there is a different and much more simple
tie break rule which 1s to select a row which mazimizes the number of nonzero entries
in the columns being removed in step 2). This needs the column counts for the active
submatrix, which are the same as the column counts in the original matrix A. It is
possible that ties may still remain when this rule is used, in which case they can be
resolved in an arbitrary way.

We originally believed this tie break rule to be new, but found that it was implic-
itly contained within the SPK1 ordering algorithm of Stadtherr and Wood [11], which
obtains a spiked lower triangular matrix. Because of this we refer to the the ordering as
the SW ordering when it is used to determine a lower Hessenberg matrix. The SPK1
algorithm seems not to be well known, except possibly amongst the chemical engineer-
ing fraternity, and we are grateful to Prof. A. W. Westerberg for bringing the papers to
our attention. The main advantage of the SPK1 algorithm is that it is much cheaper to
calculate the ordering than with the P* and P® methods. It is of some interest to know
how the resulting orderings compare, and in particular whether the number of spikes,
or the dimension of the border, is greater or less. Practical experience, both here and
in [12], indicates that although there are specific examples that favour either approach,
there 1s no uniform bias in any one direction. As a consequence the SPK1 algorithm is
to be preferred because it is simple to code, and cheap to calculate.

In describing algorithms in terms of the lower Hessenberg form, we are implicitly
suggesting a two-pass approach in which such a lower Hessenberg matrix is obtained
during the first pass. In the second pass the rows and columns are assigned to final
positions prior to factorization, which may involve changing to a different form, and will
include considerations of pivoting. However in practice it may be possible to implement
the whole process in a single pass.

To obtain a spiked lower triangular matrix from the Hessenberg form is particularly
simple, requiring only a column permutation, and is described in the following rule,
initialized by £ = 0.

repeat
let the current rectangular diagonal block contain m rows and n columns

if m < n then
assign m columns of the block to locations k +1,..., k 4+ m and put
the remaining n — m columns onto the spike stack

else

assign the n columns of the block and the m — n columns from the
top of the spike stack to locations k + 1,...,k+m
endif
set k=k+4+m
until all columns have been assigned.

This process is used by both the P* and SPK1 algorithms, which transfer the first
m columns of a block to the spike stack when m < n. A bordered block triangular
matrix may similarly be obtained from the lower Hessenberg form in the following way.

repeat

let the current rectangular diagonal block contain m rows and n columns

if m < n then
assign the m rows and m of the columns of the block to row/column
locations k41, ..., k4+m and put the remaining n — m columns onto
the spike stack

else
assign n of the rows and the n columns of the block to row/column
locations £+ 1, ...,k +m and put the remaining m — n rows onto the
row stack

endif

k=k+m

until all rows and columns have been assigned or placed on a stack
form the border from the row stack and spike stack.

The P® ordering may be obtained from the HR ordering in this way, again by
transferring the first m columns of a block to the spike stack when m < n.

3. Look-Ahead

Some ordering algorithms include a feature that ties in step 1) of algorithm (2.3)
are broken by looking ahead in an attempt to maximize the number of rows that are
removed at the next iteration of algorithm (2.3). This would have the effect of keeping
the profile of the lower Hessenberg form as close to the diagonal as possible. This
usually increases the ordering time significantly, but it is hoped that this is balanced by
obtaining a superior ordering.

The P* and P® algorithms both use the same look-ahead feature, which is the
following. When a tie occurs in step 1) a set of candidate columns (those which intersect
the tied rows) is determined. The column in this set which intersects the maximum

7

number of tied rows is removed and placed on the stack, and the row counts of the
active submatrix are updated. This is done with the aim of reducing the row-count of
as many of the tied rows as possible. In most cases ties amongst columns of maximal
intersection are broken by selecting the column of maximum column count. The above
process is repeated until the count of the (subset of the original) tied rows is one. At this
point ties amongst columns of maximal intersection are broken by selecting the column
which reduces the row-count of as many rows of next largest row-count as possible (since
these rows will be the tied rows in the next iteration). Clearly at least one of the original
tied rows will have had its row count reduced to zero and so can be identified as the row
selected in step 1). This algorithm is therefore a realization of algorithm (2.3) in which
the removal of columns and updating of the row counts in steps 2) and 3) is performed
naturally as a result of the tie-breaking process in step 1).

Another look-ahead algorithm is given by Statdherr and Wood [11] which they refer
to as SPK2. When a tie occurs in step 1) of (2.3), the first option is to consider, for
each tied block. the number of minimum-row-count rows that would arise at the next
iteration of (2.3). The tie is then broken in such a way as to maximize this number.
Any further ties which remain are then broken in the same way as for SPK1.

Unfortunately, practical experience in Section 6 and in [12] gives no indication that
the use of look-ahead in P* or SPK2 gives a superior structure to that obtained by
SPK1. Numerical evidence is very problem-dependent, but there is no uniform trend
which favours any particular algorithm. In view of this we are led to favour an algorithm
such as SPK1 which avoids the expense of the look-ahead calculation.

4. Pivoting

Unfortunately the ordering algorithms discussed in the previous section cannot be
used without some modification because of considerations of numerical stability. Various
papers (for example [1],[2],[4],[12]) have addressed this problem, and it is undeniable that
adequately stable factors are only attained at the expense of a loss of simplicity in the
algorithm and possibly the data structure. This discussion here is carried out first of
all in the context of the bordered form (2.1), although similar considerations relate to
the spiked lower triangular matrix form.

The most obvious difficulty with (2.1) is that one of the diagonal blocks of L could
be singular (for example the block might be of the form [13]), even though A itself is
nonsingular. Then the Schur complement S in (2.2) would not exist and the algorithm
would break down. Equally serious is the possibility that a diagonal block in L is nearly
singular, thus causing significant growth in S, and hence significant round-off errors.
However it is possible to modify any algorithm represented by (2.3) to alleviate these
difficulties to a large extent. These modifications can be incorporated into the logic of
(2.3) so that only one pass through the matrix is required to determine L.

The modified algorithm has the following features.

(a) Each rectangular block in the lower Hessenberg matrix is factorized using any
convenient pivot strategy (for example, even complete pivoting can be used as
the blocks are usually small.)

(b) Any rows and columns not chosen as pivot rows or columns are moved into

the border.

(¢c) If a near-zero pivot is detected, the corresponding row and column is moved
into the border.

Implementation of item (c¢) requires a test for a near-zero pivot: most suitable
would be to detect the possibility of serious growth in the matrix 5.

The most unfavourable situation for such an algorithm would be typified by a
matrix such as

r10 1 .
1 10 1
1 10 1
A= 1 10 1 (4.1)
1 10 1
1 10 1
I 1 10

The lower Hessenberg form obtained from this matrix is A itself, and elements in rect-
angular blocks are indicated in bold. Assuming that the unit elements are not regarded
as being near-zero for the purposes of (c), the bordered block triangular form that is
obtained is

r10 17
11 10
10 1 1
PAQ = 1 10 1 . (4.2)
1 10 1
1 10
I 1 10 1

The Schur complement for an n x n matrix of this form exhibits exponential growth and
is ~ 10"~2. However, whilst this is likely to be catastrophic in practice, it is typical of
what can occur with any method based on threshold pivoting, with a maximum growth
factor of ~ 10 per step. For example the matrix

1 1
—10 1 ¢

—10 1 ¢

A= ~10 1 ¢

e —10 €
1s similarly unfavourable for the Markowitz method with threshold row pivoting. It may
therefore be that researchers are prepared to accept these situations, much as they usu-
ally accept the possibility of exponential growth associated with Gaussian elimination
with row pivoting.

An alternative approach to factorizing the preordered matrix in a stable way is sim-
ply to carry out Gaussian elimination with full column pivoting on the lower Hessenberg

9

form. That 1s to say, pivots may be chosen from anywhere in the lower Hessenberg pro-
file, rather than being restricted to the blocks of L. The simplest possibility is to use
a dense data structure within the lower Hessenberg profile. This requires between %nz
and n? storage, and the flop count is O(bn?) where b is the upper bandwidth. This ap-
proach is particularly attractive if vectorized code can be used. The column operations
using long vectors will speed up well on a vector machine (until the active submatrix of
the elimination becomes small).

Another approach which takes more account of sparsity is to store columns of A in
sparse format, allowing for fill-in, and to carry out Gaussian elimination on the spiked
lower triangular form, with full threshold column pivoting. Two possible strategies
suggest themselves. One chooses the pivot closest to the diagonal and so aims to preserve
the a prior: ordering as much as possible. An elimination scheme based on this criterion
is referred to as LULSOL in [12]. The second strategy is to choose the pivot to minimize
the number of entries in the pivot column. This is essentially the approach used by Duff
and Reid [4] and we refer to it as MINCOL. This strategy has the same motivation as
Markowitz, but here the row minimization is pre-determined by the ordering method.
Practical experience (Section 6) indicates that the fill-in is worse than that obtained by
Markowitz, but this 1s balanced by the more simple data structure. It is desirable to
switch to dense code when the density of the reduced matrix is sufficiently high, and
this has to be taken into account when comparing fill-in. This discussion also suggests
that the SPK1 ordering might not be best for these purposes since the tie break rule is
to mazimize the number of elements in the columns being removed, which is not in the
Markowitz style. Rather it might be preferable to break ties by minimizing the number
of elements that are removed. This would lead to more nonzeros in the active submatrix
and hence the likelithood of a wider band in the bottom corner of the lower Hessenberg
form. This might not be so important however, particularly if the algorithm has the
ability to switch to dense code at this stage. We investigate this possibility in Section
6, with interesting results.

5. A Two-Sided Ordering

The simple form of algorithm (2.3) leads us to suggest another ordering algorithm in
which either a minimum-row-count row or a minimum-column-count column is removed
from the active submatrix at each iteration. The aim of this modification would be
to produce a lower Hessenberg form having a smaller bandwidth. The algorithm is
initialized as for (2.3) and proceeds as follows.

repeat
1) find either a minimum-row-count row or a minimum-column-count

column, whichever has fewer entries
2) if a row is chosen, proceed as in algorithm (2.3)
3) if a column is chosen then (5.1)
3a) remove all rows which intersect this column
3b) update column counts
3¢) remove all columns with zero column count
until all rows and columns are removed.

10

It is suggested that ties in step 1) are broken in a similar way to SPKI1, that is by
maximizing the number of nonzero entries that are removed from the active submatrix.

After a column is chosen in step 3), columns are removed to the right of the active
submatrix and rows are removed to below the active submatrix. Thus the overall effect
of the algorithm is to generate the lower Hessenberg profile by working from both ends,
as indicated in Figure 5.1. Tt is observed that algorithm (2.3) often gives rise to a large
bandwidth near the bottom right hand corner of the ordered matrix. This algorithm
would be expected to give the largest bandwidth near the centre of the matrix, at the
point at which the active submatrix becomes empty. It had been hoped that the overall
bandwidth would also be smaller, although practical experience does not support this.
We refer to this ordering as the Two-sided ordering and the corresponding ordering
into spiked lower triangular form as the TS5 ordering. An alternative strategy in step
1) of (5.1) is to choose either a minimum-row-count row or a minimum-column-count
column, according to whichever gives the minimum bandwidth in the current profile,
but we have not explored this.

* K | \\ remove
* * * . "
" % % min-row-count rows
* * | %
* Active
* Sub-
* matrix
* *
* *
* %
remove N\ * %
min-column-count columns *
*

Figure 5.1 Intermediate stage for the Two-sided Algorithm

6. Practical Experience and Conclusions

In this section we report some limited experience on some problems that occurred
in practice, and draw some tentative conclusions. The numerical experience arises in
applications of a linear programming method to the SOL test problem set (see [8]).
There are six matrices that we consider, derived from running our LP code on the
test problems. The actual SOL test problems from which the matrices are derived are
respectively etamacro, bandm, stair(two matrices) and pilot(two matrices). The first
two columns in each table of results give the dimension n of each matrix and the number
of nonzeros in the original matrix.

Tables 6.1 and 6.2 give a comparison of various different tie-break rules for step 1) of
algorithm (2.3), together with results for the Two-sided ordering described in Section 5.
These tables provide purely structural measures for the different forms that can be

11

derived from the lower Hessenberg form, as described in Section 2. The column headed
Spikes gives the total number of spikes in the corresponding spiked lower triangular
form. The column headed Border gives the width of the border, and hence the dimension
of the Schur complement, in the corresponding bordered block lower triangular form.
The column headed B-width gives the bandwidth of the lower Hessenberg form, that
is the number of diagonal bands immediately above the main diagonal which contain
nonzero elements (a tridiagonal matrix would have a unit bandwidth). This measure is
equivalent to the quantity Local introduced in [11].

These results give some insight into various issues raised in previous sections. First
we consider whether there 1s any indication that the extra calculation involved in look-
ahead gives rise to a superior ordering in any sense. We see that the Hellerman-Rarick
tie-break used by both P* and P® gives better results for all these measures on the 335
problem, but otherwise is not superior. It is interesting that the Stadtherr-Wood tie-
break used by the SPK1 algorithm does best on the larger problems, and particularly
so on the 1111 problem. There is not much to choose between any of the algorithms
on the smaller problems. Thus we tentatively conclude that there is not much to be
gained by look-ahead, and that the SPK1 algorithm is to be preferred on account of
its simplicity. This conclusion is backed up by the results in [12] which follow a similar
pattern. However it is interesting to see that an arbitrary resolution of ties, by taking
the first eligible candidate, also does well, and is of course even more simple and efficient
to operate. This suggests for example that other criteria might be successfully used to
break ties, for example by selecting the block on the grounds of numerical stability.

Problem HR tie-break SW tie-break

n | Nonzeros | Spikes | Border | B-width | Spikes | Border | B-width
113 309 5 4 4 5 5 4
116 592 32 20 12 28 19 12
225 2034 71 63 38 73 61 31
335 3419 81 74 33 98 89 44
366 1781 130 80 48 123 75 48
473 2368 158 100 54 149 93 54
723 8027 148 107 72 122 104 57
1111 16090 207 180 107 161 149 62

Table 6.1 Comparison of tie-break rules

12

Problem First candidate tie-break Two-sided ordering

n | Nonzeros | Spikes | Border | B-width | Spikes | Border | B-width
113 309 5 5 4 5 5 3
116 592 22 14 7 25 12 10
225 2034 61 54 32 58 54 54
335 3419 94 87 44 90 83 74
366 1781 127 81 48 100 59 31
473 2368 149 93 54 113 73 31
723 8027 136 115 55 134 112 52
1111 16090 183 167 46 203 179 114

Table 6.2 Comparison of tie-break rules

Next we consider the evidence relating to the Two-sided algorithm described in
Section 5. It had been hoped that this algorithm would produce orderings in which the
bandwidth and the border would be smaller, particularly on larger problems. Unfortu-
nately the evidence here does not support such a conclusion. We shall also see in Tables
6.3, 6.4 and 6.5 that the fill-in due to the TSS ordering is disappointingly high, which
reinforces these conclusions based on the structural information. Unless these results
are atypical, we see no merit in pursuing this idea any further.

Next we consider how much fill-in is generated when these algorithms are used,
and our remarks are relevant mainly to the spiked lower triangular form. An ideal
situation for this structure would be to use Gaussian elimination without interchanges,
because this would be expected to give relatively little fill-in. However, as observed
above, the elimination algorithm might break down due to the occurrence of a zero
pivot. Thus in the first instance we give numerical results that are obtained using
the following minimal column pivoting strategy, that is when a zero pivot occurs, use
the nonzero entry closest to the diagonal as the pivot. Table 6.3 gives the number of
interchanges performed to avoid a zero pivot, and the amount of fill-in that occurred.
The arithmetic was performed in single precision on a SUN 4 workstation. In the two
cases indicated the elimination broke down due to no nonzero pivot being available with
the above strategy. This was due to catastrophic growth which occurred in most of the
factorizations. Indeed, for the matrix of order 1111 overflow occurred in the calculation
of some entries.

13

Problem Interchanges Fill-in

n Nonzeros HR SW TSS HR SW TSS
113 309 1 1 1 176 174 179
116 592 7 5 5 517 459 373
225 2034 6 24 13 2929 2002 5836
335 3419 5 *32 21 3891 3731 8574
366 1781 46 47 31 2659 3419 3080
473 2368 64 57 33 3993 3656 4164
723 8027 71 47 66 15046 14955 18146
1111 16090 114 59 97 30165 20805 62319

* Breakdown in stage 335 of the elimination
++ Breakdown in stage 1022 of the elimination

Table 6.3 Fill-in with minimal pivoting

These results give some indication of the least fill-in that can be expected by using
these ordering algorithms. When compared with the results for the Markowitz strategy
(see the column headed MA28 in Table 6.5) it is seen that Markowitz already gives
less fill-in on almost all the problems. Thus we cannot expect ordering algorithms to
be competitive as regards this measure. Of course it is clear that the minimal pivoting
strategy is entirely unsatisfactory as regards numerical stability. Therefore, as indicated
in Section 4, we have to consider alternative pivot strategies which provide increased
stability at the cost of additional fill-in.

An issue raised in Section 2 is the extent to which fill-in is affected by the method
of breaking ties in algorithms (2.3) and (5.1). We consider two alternatives to breaking
ties by removing the maximum number of entries (as in the SPK1 algorithm). The first
of these is the arbitrary tie-break rule in which the first available candidate is chosen and
in the second the minimum number of entries is removed (in the spirit of Markowitz).
For these criteria the fill-in in the factorization using the minimal pivoting strategy is
given in the columns headed First and Min respectively in Table 6.4. This is done for
both the SW and TSS orderings and may be compared with the results in Table 6.3 for
the maximum-removal criterion.

The results show that neither of the ‘extreme’ tie-break rules is preferable to the
essentially arbitrary tie-break rule. The vastly improved results with the arbitrary tie-
break rule for the two-sided algorithm in Table 6.4 can be explained as follows. In
the case when the counts of the minimum-row-count row and minimum-column-count
column in step 1) of (5.1) are equal the first of the tied rows was selected. Thus few,
if any, columns were selected so the resulting lower Hessenberg form was similar, if not
identical, to that obtained using the SPK1 arbitrary tie-break rule. The TSS ordering
is seen to be wholly inferior to the SW ordering and is not pursued further.

Since it is not clear whether the SW ordering is better using the maximum-removal
or arbitrary tie-break rules, both are used for the experiments below with the ordering
corresponding to the latter identified as SWO.

14

Problem SW TSS

n Entries First Min First Min
113 309 271 337 271 319
116 592 367 670 354 769
225 2034 2722 3038 2986 6038
335 3419 3212 5056 7803 14297
366 1781 3730 4401 3537 3817
473 2368 4151 5966 4143 7091
723 8027 14024 20247 14625 29247
1111 16090 23466 45955 24555 65029

Table 6.4 Alternative tie-break criteria

Since the numerical properties of the minimal pivoting strategy are unsatisfactory,
we used the LUISOL threshold pivoting strategy for the elimination in order to obtain
numerical stability whilst attempting to preserve the a priori ordering as much as pos-
sible. The results in Table 6.5 give a comparison of the fill-in caused when Gaussian
elimination with this pivoting strategy is applied to the spiked triangular form obtained

by the HR, SW and SWO ordering algorithms.

n Nonzeros HR SW SWO
113 309 198 196 262
116 592 869 750 440
225 2034 3270 2671 2838
335 3419 5028 5223 4393
366 1781 2993 4694 4467
473 2368 7878 5735 6342
723 8027 28941 25172 25550

1111 16090 57053 39100 48516

Table 6.5 Fill-in with LUISOL pivoting (v = 0.1)

There is a clear increase in fill-in when the figures in Table 6.5 are compared with
those in Tables 6.3 and 6.4 for the corresponding ordering with the minimal pivoting
strategy. This i1s the price which must be paid for numerical stability. No unacceptable
growth was detected on any of the test problems. Smaller values of u cause significant
increases in growth and our results support the usual choice of u = 0.1.

A possible explanation for this significant increase in fill-in might be that the large
number of column interchanges demanded by the LUISOL strategy destroys the spike
column assignment of the ordering algorithm. If the column ordering cannot be pre-
served then a local column pivoting strategy which aims to reduce fill-in is preferable.
To test this conjecture, the factorization of the matrices was repeated using the MIN-
COL strategy. The results are given in Table 6.6 which also shows the outcome of
the MINCOL elimination procedure being applied to the unordered matrix and to the
matrix with its rows ordered simply by increasing row count. The latter approach to

15

ordering and factorization is given by Duff and Reid [4]. The final column in the table
gives the fill-in caused when the Markowitz procedure MA28 (as used by the double
precision NAG routine FOIBRF) is applied to the matrix. In all cases the threshold
parameter u = 0.1 is used.

n | Nonzeros | None | ROW HR SW | SWO0 | MA28
113 309 249 181 182 186 244 139
116 592 598 567 700 602 403 248
225 2034 | 5761 2624 | 2877 | 2577 | 2404 1260
335 3419 | 10364 4222 | 4541 | 4223 | 3904 | 2181
366 1781 | 2472 2023 | 2401 | 3445 | 2737 1267
473 2368 | 4167 3168 | 4609 | 4959 | 4769 1726
723 8027 | 24005 | 26341 | 21700 | 20364 | 19260 | 10064

1111 16090 | 46668 | 100898 | 48379 | 32858 | 35835 | 21874

Table 6.6 Fill-in with MINCOL pivoting and Markowitz (v = 0.1)

By comparing the results for LUISOL and MINCOL in Tables 6.5 and 6.6, it is
clear that the MINCOL strategy reduces the fill-in for the three spiked lower triangular
forms. Unfortunately, with the exception of the 1111 matrix, this fill-in is little, if
at all, better than that incurred when the MINCOL strategy 1s applied to the matrix
ordered by increasing row count. The fill-in incurred when Markowitz pivoting is used is
significantly lower than that for the MINCOL strategy applied to any a priori ordering.

The evidence of Tables 6.5 and 6.6 supports the view that when a threshold pa-
rameter i1s used that is sufficiently large to give acceptable stability, the number of in-
terchanges is such that the column assignment of the ordering algorithms is somewhat
irrelevant. Hence they are effectively reduced to the status of row ordering algorithms.
A further conclusion from these results is that the row permutation determined by the
three tie-break rules may be no better than that determined simply by increasing row
count.

The conclusions which we offer are based on the results obtained from experiments
on a small number of test matrices in an area of numerical linear algebra which is
notoriously problem-dependent. Some would point to the density of the the larger
problems and say that a matrix with around 10 entries per column is at best ‘not
very sparse’. Certainly the size of the diagonal blocks and border in the P® bordered
block triangular form appears greater than that observed by Arioli and Duff in [1] so
perhaps our problems are not amenable to exploitation by more sophisticated ordering
algorithms. We plan to extend these results to a wider selection of test problems at a
future date.

7. References

[1] Arioli M., Duff I.S., Gould N.I.M. and Reid J.K. (1987). The practical use of the
Hellerman-Rarick P* algorithm and the P® algorithm of Erisman et al. A.E.R.E.
Harwell Report CSS 213.

16

[2] Arioli M. and Duff 1.S. (1988). Experiments in tearing large sparse systems.
A.E.R.E. Report CSS 217.

[3] Duff 1.S. (1978). On algorithms for obtaining a maximum transversal. A.E.R.E.
Report CSS 49.

[4] Duff 1.S. and Reid J.K. (1974). A comparison of sparsity orderings for obtaining
pivotal sequences in Gaussian elimination. J. Inst. Maths. Applics., 14, 281-291.

[5] Duff 1.S. and Reid J.K. (1978). Algorithm 529: Permutations to block triangular
form. A.C.M. Trans. Math. Software, 4, 189-192.

[6] Duff I.S., Erisman A.M. and Reid J.K. (1986) Direct Methods for Sparse Matrices.
Oxford Science Publications, Oxford.

[7] Erisman A.M., Grimes R.G., Lewis J.G. and Poole W.G. (1985). A structurally
stable modification of Hellerman-Rarick’s P* algorithm for reordering unsymmetric
sparse matrices. S.L.A.M. J. Numer. Anal., 22, 369-385.

[8] Fletcher R. and Hall J.A.J. (1990). Towards reliable linear programming, in Nu-
merical Analysis 1989, D.F.Griffiths and G.A.Watson (Eds.) Pitman Research
Notes in Mathematics 228, Longman, Harlow.

[9] Hellerman E. and Rarick D.C. (1972). The partitioned preassigned pivot proce-
dure (P*%), in Sparse Matrices and their Applications D.J.Rose and R.A.Willoughby
(Eds.) Plenum, New York.

[10] Markowitz H.M. (1957). The elimination form of the inverse and its application to
linear programming, Management Sci., 3, 255-269.

[11] Stadtherr M.A. and Wood S.E. (1984). Sparse matrix methods for equation based
chemical process flowsheeting - I Reordering phase, Computers and Chemical En-
gineering, 8, 9-18.

[12] Stadtherr M.A. and Wood S.E. (1984). Sparse matrix methods for equation based
chemical process flowsheeting - /T Numerical phase, Computers and Chemical En-
gineering, 8, 19-33.

[13] Tarjan R.E. (1972). Depth first search and linear graph algorithms, S.LA. M. J.
Comput., 1, 146-160.

17

