
Ordering Algorithms forIrreducible Sparse Linear SystemsbyR. Fletcher* and J.A.J.Hall**AbstractOrdering algorithms aim to pre-order a matrix in order to achieve a favourablestructure for factorization. Two prototype structures are described which are commonlyaimed at by current algorithms. A di�erent structure based on a lower Hessenberg formis introduced. We show that the common structures may be obtained from the Hessenbergform in a simple way. A fundamental and very simple algorithm is presented for de-riving the lower Hessenberg form. This algorithm is inherently a part of other commonalgorithms, but is usually obscured by other detailed heuristics. Some of these heuristicsare seen to correspond to di�erent tie-break rules in the fundamental algorithm. Wedescribe a particularly simple tie-break rule used in SPK1 [11], which is e�ective andnot at all well known.Ordering algorithms need to be modi�ed to enable pivoting for numerical stabilityto be carried out. We describe how the idea of threshold pivoting can be used in thecontext of these algorithms. Most ordering algorithms in common use employ somesort of look-ahead to promote a favourable structure. It is argued that look-ahead isgenerally ine�ective in practice, and that numerical evidence supports the use of verysimple strategies.A new ordering algorithm is presented which aims to obtain a narrower bandwidthin the lower Hessenberg form. Some limited numerical experience is presented whichenables us to draw tentative conclusions about various ordering strategies, and how theycompare with those in common use.1. IntroductionMany techniques have been suggested for the solution of a large sparse nonsingularsystem of linear equations Ax = b, and related problems. The most e�ective methodin any particular case is very much dependent on context, and this paper relates toone particular approach which has been used in a number of applications. We start byassuming that A has been reduced to block lower triangular form. This can be achieved�rst by �nding a transversal using an algorithm such as that of Du� [3], followed by theuse of Tarjan's algorithm ([13],[5]), based on the use of a symmetric row and columnpermutation. Each diagonal block in the resulting matrix is then irreducible and it issu�cient to �nd LU factors of each block in order to solve Ax = b e�ciently (see forexample [6]). There is often considerable sparsity within the diagonal blocks, and it isworthwhile to continue to use sparse matrix techniques to obtain a favourable structure* Dept. of Mathematics and Computer Science, Univ. of Dundee** Dept. of Mathematics, Univ. of Edinburgh1



in these LU factors. It is the problem of ordering and factorizing matrices such as thesediagonal blocks that we address in this paper. Subsequently therefore, A refers to anirreducible nonsingular matrix that cannot be further simpli�ed by Tarjan's algorithm.A popular way to calculate LU factors of A is to use the Markowitz pivot strategy([10],[6]). This chooses a pivot which minimizes (ri � 1)(cj � 1) subject to a thresholdpivot tolerance, where ri and cj are the row and column counts in the reduced matrixin Gaussian elimination. It has been observed that this method is e�ective for keeping�ll-in low in the LU factors. However the need to make provision for �ll-in, and to haverow and column counts for the reduced matrix at every stage, means that a complexdata structure must be adopted during the factorization, and this can increase the runtime.There is therefore some interest in alternatives to the Markowitz approach, and acommon theme in a number of algorithms is to pre-order the matrixA in order to achievea favourable structure for factorization. Such methods are the subject of this paper.In Section 2 we describe two prototype structures which are commonly aimed at bycurrent algorithms. We also argue the merits of introducing a di�erent structure basedon a lower Hessenberg form. We show that the common structures may be obtainedfrom the Hessenberg form in a simple way. A fundamental and very simple algorithm ispresented for deriving the lower Hessenberg form. This algorithm is inherently a partof most other algorithms, but is usually obscured by other detailed heuristics, and wefeel that it is valuable to make its framework clear. Some of these heuristics are seen tocorrespond to di�erent tie-break rules in the fundamental algorithm. Other heuristicsdetermine which of the common structures is obtained. We describe a particularlysimple tie-break rule, used in SPK1 [11], which is e�ective and not at all well known.Most ordering algorithms in common use employ some sort of look-ahead to pro-mote a favourable structure. Two di�erent possibilities are described in Section 3. Weargue that look-ahead is generally ine�ective in practice, and that numerical evidencesupports the use of very simple strategies.Ordering algorithms need to be modi�ed to enable pivoting for numerical stabilityto be carried out. We show how the idea of threshold pivoting can be used in the contextof these algorithms. There are two main aspects of interest, one relating to the use of abordered block lower triangular form, and the other to sparse Gaussian elimination ona lower triangular form with a number of columns projecting above the diagonal. Bothof these situations are discussed in Section 4.In Section 5 we present a new ordering algorithm aimed at obtaining a narrowerbandwidth in the lower Hessenberg form. This has some intrinsic interest, although ournumerical experience is not very encouraging. However the development does indicatethat there are many potential strategies for ordering algorithms which have not yetbeen researched, and points to how little is known about the important features ofsuch algorithms. Some limited numerical experience is presented in Section 6 whichenables us to draw tentative conclusions about various ordering strategies, and howthey compare with those in common use.2. Ordering AlgorithmsThe basic ideas of ordering algorithms are introduced by Hellerman and Rarick [9],2



who suggest two algorithms known as P3 and P4. P4 is a development of P3 whichallows for the prior reduction of A by Tarjan's algorithm, and we need only considerP4. A later paper by Erisman et al. [7] introduces a modi�cation to P4 and a furthermodi�cation known as P5. The aim of these algorithms is essentially to make both rowand column permutations of A so that the resulting matrix is close in some sense to alower or block lower triangular matrix.The characteristic structure produced by the P4 algorithm|as originally conceivedby Hellerman and Rarick|is that of a lower triangular matrix with a number of columnsprojecting above the diagonal. Such columns are termed spikes and we refer to thisstructure as being spiked lower triangular . The spike columns are accumulated as thealgorithm proceeds in a spike stack . During the algorithm, spikes are removed from thestack, to be included as columns in the reordered matrix. Upon termination of the P4algorithm this spike stack is empty. Figures 2.1(a) and 2.1(b) provide an illustration ofthis ordering on a matrix of dimension 44.The spiked lower triangular form is most useful when the number of spikes isrelatively small (assuming that an appropriate data structure is used). The simplestway to use the structure is to apply Gaussian elimination without pivoting, in whichcase it is readily observed that �ll-in only takes place within the spike columns. Itmay be however that a diagonal element of the ordered matrix is structurally zero (see[6]) in which case this process fails. It is also possible that near-zero diagonal pivotscan occur which give rise to numerical growth in the spikes, and hence to numericalinstability. Hence any practical implementation of this approach must allow for pivotalinterchanges, and we consider this aspect in more detail in Section 4.The P5 algorithm produces a related structure in which the reordered matrix is inbordered block lower triangular form, that isPAQ = � L BC D � (2:1)where L is a block lower triangular matrix whose diagonal blocks are square and fullydense, and P and Q are permutation matrices. The P5 algorithm attains this formby restricting the removal of columns from the spike stack, whilst also accumulatingcertain rows in a row stack. On termination of the algorithm, the spike stack is notempty and is equal in size to the row stack. The rows and columns that remain inthese stacks form the border of the resulting bordered block lower triangular matrix. Atypical pro�le resulting from this ordering is illustrated in Figure 2.1(c).The modi�cation to the P4 algorithm introduced by Erisman et al. [6] and im-plemented by Arioli, et al. [2] also obtains a bordered block triangular matrix. Thediagonal blocks are larger than those obtained by the P5 algorithm and are not fullydense, indeed they may require to be treated as sparse matrices. The compensation forthis considerable increase in complexity is a marginally smaller border.The form of (2.1) ensures that the diagonal blocks of L are structurally nonsingular,and so avoids the di�culties associated with structurally zero pivots referred to above.Unfortunately it is possible that numerically zero or near-zero pivots in L may occur,and this approach must be supplemented by a pivotal strategy. We return to this pointin Section 4. 3



(a) Unordered matrix (b) Spiked lower triangular
(c) Bordered block lower triangular (d) Lower HessenbergFigure 2.1 Alternative forms for ordered matricesThe structure of (2.1) is utilised by taking advantage of the ease of solving systemsinvolving L. To do this only the diagonal blocks of L need be factorized. In practice itis usually observed that these blocks are trivial (1�1 and occasionally 2�2). Blocks ofhigher order occur rarely and the 4� 4 block in Figure 2.1(c) is remarkable. Althoughthis matrix is small, the residual e�ect of block structure in a large sparse problem couldresult in similar behaviour. This implicit factorization of L is used to form the Schurcomplement S = D � CL�1B (2:2)Next LU factors of the matrix S (with pivoting) are calculated using dense code sinceS is typically very dense, if not full. Systems involving A can then be solved by a4



combination of solves with L and S. It can be advantageous to store the matrix L�1B(or CL�1), so that a solve with A may be carried out by using only one additionalsolve with L. This approach is most e�cient when the border (and hence the Schurcomplement) is small.The P4 and P5 algorithms are examples of one-pass ordering algorithms in thata row or column is assigned to a new position exactly once. If the twin processes ofidentifying and assigning rows and columns within the one pass are viewed as separateprocesses, each within a single pass of an equivalent two-pass process, then considerableinsight into the operation of these and other algorithms is obtained.There is also another characteristic form associated with these algorithms whichwe refer to as the lower Hessenberg form. If the spike columns are included with theother columns of A so that the height of the columns is non-increasing then a lowerHessenberg matrix is obtained. This matrix has the particular property that it is blocklower triangular, but with fully dense rectangular blocks on the diagonal, rather thansquare blocks. Since the matrix is irreducible the pro�le always lies above the diagonal.This structure is illustrated in Figure 2.1(d).We give here a fundamental and very simple algorithm for determining a lowerHessenberg form of this nature. The algorithm progressively removes rows and columnsfrom A: the matrix that remains when some rows and columns have been removed istermed the active submatrix. A count is kept of the numbers of nonzero elements in therows and columns of the active submatrix. Initially A is the active submatrix and thealgorithm can be simply expressed as follows.repeat1) �nd a row in the active submatrix with minimum row count2) remove all columns which intersect this row3) update row counts in the active submatrix4) remove all rows with zero row countuntil all rows and columns are removed. (2:3)In this algorithm columns are removed by permuting them to the left of the active sub-matrix, and rows by permuting them to the top of the active submatrix. At each stagethe block that is common to the rows and columns being removed forms a rectangulardiagonal block of the lower Hessenberg matrix. The selection of a minimum-row-countrow in 1), and the removal of zero-row-count rows in 4), ensures that the rectangu-lar diagonal blocks are fully dense. A typical intermediate stage of algorithm (2.3) isillustrated in Figure 2.2.Various algorithms exist which are essentially based on this common framework,and they di�er in how they break ties in step 1). We discuss aspects of this in therest of this section. However it is worth pointing out that the row that is selected instep 1) uniquely determines the rectangular block that is obtained. Hence any tie-breakrule essentially selects between the di�erent candidate blocks that can be formed fromminimum-row-count rows. It follows for example that if there is only one candidateblock, then there is no need for a tie-break, even though the minimum-row-count rowis not uniquely de�ned.The P5 algorithm and both interpretations of the P4 algorithm are based on thesame rather complicated way of breaking ties and hence correspond to the same lower5



� � ��� � �� �� � ��� � ��� � �� �� �� ��� � � �� �� ActiveSub-matrixFigure 2.2 Intermediate stage for Algorithm (2.3)Hessenberg matrix. We refer to this ordering as the HR ordering since it is characteristicof the Hellerman-Rarick family of ordering algorithms. We give more details of thismeans of breaking ties in Section 3. However there is a di�erent and much more simpletie break rule which is to select a row which maximizes the number of nonzero entriesin the columns being removed in step 2). This needs the column counts for the activesubmatrix, which are the same as the column counts in the original matrix A. It ispossible that ties may still remain when this rule is used, in which case they can beresolved in an arbitrary way.We originally believed this tie break rule to be new, but found that it was implic-itly contained within the SPK1 ordering algorithm of Stadtherr and Wood [11], whichobtains a spiked lower triangular matrix. Because of this we refer to the the ordering asthe SW ordering when it is used to determine a lower Hessenberg matrix. The SPK1algorithm seems not to be well known, except possibly amongst the chemical engineer-ing fraternity, and we are grateful to Prof. A. W. Westerberg for bringing the papers toour attention. The main advantage of the SPK1 algorithm is that it is much cheaper tocalculate the ordering than with the P4 and P5 methods. It is of some interest to knowhow the resulting orderings compare, and in particular whether the number of spikes,or the dimension of the border, is greater or less. Practical experience, both here andin [12], indicates that although there are speci�c examples that favour either approach,there is no uniform bias in any one direction. As a consequence the SPK1 algorithm isto be preferred because it is simple to code, and cheap to calculate.In describing algorithms in terms of the lower Hessenberg form, we are implicitlysuggesting a two-pass approach in which such a lower Hessenberg matrix is obtainedduring the �rst pass. In the second pass the rows and columns are assigned to �nalpositions prior to factorization, which may involve changing to a di�erent form, and willinclude considerations of pivoting. However in practice it may be possible to implementthe whole process in a single pass.To obtain a spiked lower triangular matrix from the Hessenberg form is particularlysimple, requiring only a column permutation, and is described in the following rule,initialized by k = 0. 6



repeatlet the current rectangular diagonal block contain m rows and n columnsif m � n thenassign m columns of the block to locations k + 1; : : : ; k +m and putthe remaining n �m columns onto the spike stackelse assign the n columns of the block and the m � n columns from thetop of the spike stack to locations k + 1; : : : ; k +mendifset k = k +muntil all columns have been assigned.This process is used by both the P4 and SPK1 algorithms, which transfer the �rstm columns of a block to the spike stack when m � n. A bordered block triangularmatrix may similarly be obtained from the lower Hessenberg form in the following way.repeatlet the current rectangular diagonal block contain m rows and n columnsif m � n thenassign the m rows and m of the columns of the block to row/columnlocations k+1; : : : ; k+m and put the remaining n�m columns ontothe spike stackelse assign n of the rows and the n columns of the block to row/columnlocations k+1; : : : ; k+m and put the remainingm�n rows onto therow stackendifk = k +muntil all rows and columns have been assigned or placed on a stackform the border from the row stack and spike stack.The P5 ordering may be obtained from the HR ordering in this way, again bytransferring the �rst m columns of a block to the spike stack when m � n.3. Look-AheadSome ordering algorithms include a feature that ties in step 1) of algorithm (2.3)are broken by looking ahead in an attempt to maximize the number of rows that areremoved at the next iteration of algorithm (2.3). This would have the e�ect of keepingthe pro�le of the lower Hessenberg form as close to the diagonal as possible. Thisusually increases the ordering time signi�cantly, but it is hoped that this is balanced byobtaining a superior ordering.The P4 and P5 algorithms both use the same look-ahead feature, which is thefollowing. When a tie occurs in step 1) a set of candidate columns (those which intersectthe tied rows) is determined. The column in this set which intersects the maximum7



number of tied rows is removed and placed on the stack, and the row counts of theactive submatrix are updated. This is done with the aim of reducing the row-count ofas many of the tied rows as possible. In most cases ties amongst columns of maximalintersection are broken by selecting the column of maximum column count. The aboveprocess is repeated until the count of the (subset of the original) tied rows is one. At thispoint ties amongst columns of maximal intersection are broken by selecting the columnwhich reduces the row-count of as many rows of next largest row-count as possible (sincethese rows will be the tied rows in the next iteration). Clearly at least one of the originaltied rows will have had its row count reduced to zero and so can be identi�ed as the rowselected in step 1). This algorithm is therefore a realization of algorithm (2.3) in whichthe removal of columns and updating of the row counts in steps 2) and 3) is performednaturally as a result of the tie-breaking process in step 1).Another look-ahead algorithm is given by Statdherr and Wood [11] which they referto as SPK2. When a tie occurs in step 1) of (2.3), the �rst option is to consider, foreach tied block. the number of minimum-row-count rows that would arise at the nextiteration of (2.3). The tie is then broken in such a way as to maximize this number.Any further ties which remain are then broken in the same way as for SPK1.Unfortunately, practical experience in Section 6 and in [12] gives no indication thatthe use of look-ahead in P4 or SPK2 gives a superior structure to that obtained bySPK1. Numerical evidence is very problem-dependent, but there is no uniform trendwhich favours any particular algorithm. In view of this we are led to favour an algorithmsuch as SPK1 which avoids the expense of the look-ahead calculation.4. PivotingUnfortunately the ordering algorithms discussed in the previous section cannot beused without some modi�cation because of considerations of numerical stability. Variouspapers (for example [1],[2],[4],[12]) have addressed this problem, and it is undeniable thatadequately stable factors are only attained at the expense of a loss of simplicity in thealgorithm and possibly the data structure. This discussion here is carried out �rst ofall in the context of the bordered form (2.1), although similar considerations relate tothe spiked lower triangular matrix form.The most obvious di�culty with (2.1) is that one of the diagonal blocks of L couldbe singular (for example the block might be of the form [42 21]), even though A itself isnonsingular. Then the Schur complement S in (2.2) would not exist and the algorithmwould break down. Equally serious is the possibility that a diagonal block in L is nearlysingular, thus causing signi�cant growth in S, and hence signi�cant round-o� errors.However it is possible to modify any algorithm represented by (2.3) to alleviate thesedi�culties to a large extent. These modi�cations can be incorporated into the logic of(2.3) so that only one pass through the matrix is required to determine L.The modi�ed algorithm has the following features.(a) Each rectangular block in the lower Hessenberg matrix is factorized using anyconvenient pivot strategy (for example, even complete pivoting can be used asthe blocks are usually small.) 8



(b) Any rows and columns not chosen as pivot rows or columns are moved intothe border.(c) If a near-zero pivot is detected, the corresponding row and column is movedinto the border.Implementation of item (c) requires a test for a near-zero pivot: most suitablewould be to detect the possibility of serious growth in the matrix S.The most unfavourable situation for such an algorithm would be typi�ed by amatrix such as A = 26666666410 11 10 11 10 11 10 11 10 11 10 11 10377777775 : (4:1)The lower Hessenberg form obtained from this matrix is A itself, and elements in rect-angular blocks are indicated in bold. Assuming that the unit elements are not regardedas being near-zero for the purposes of (c), the bordered block triangular form that isobtained is PAQ = 26666666410 11 1 1010 1 11 10 11 10 11 101 10 1 377777775 : (4:2)The Schur complement for an n�n matrix of this form exhibits exponential growth andis � 10n�2. However, whilst this is likely to be catastrophic in practice, it is typical ofwhat can occur with any method based on threshold pivoting, with a maximum growthfactor of � 10 per step. For example the matrixA = 26666664 1 1�10 1 ��10 1 ��10 1 �. . . . . . ...� �10 � 37777775 (4:3)is similarly unfavourable for the Markowitz method with threshold row pivoting. It maytherefore be that researchers are prepared to accept these situations, much as they usu-ally accept the possibility of exponential growth associated with Gaussian eliminationwith row pivoting.An alternative approach to factorizing the preordered matrix in a stable way is sim-ply to carry out Gaussian elimination with full column pivoting on the lower Hessenberg9



form. That is to say, pivots may be chosen from anywhere in the lower Hessenberg pro-�le, rather than being restricted to the blocks of L. The simplest possibility is to usea dense data structure within the lower Hessenberg pro�le. This requires between 12n2and n2 storage, and the 
op count is O(bn2) where b is the upper bandwidth. This ap-proach is particularly attractive if vectorized code can be used. The column operationsusing long vectors will speed up well on a vector machine (until the active submatrix ofthe elimination becomes small).Another approach which takes more account of sparsity is to store columns of A insparse format, allowing for �ll-in, and to carry out Gaussian elimination on the spikedlower triangular form, with full threshold column pivoting. Two possible strategiessuggest themselves. One chooses the pivot closest to the diagonal and so aims to preservethe a priori ordering as much as possible. An elimination scheme based on this criterionis referred to as LU1SOL in [12]. The second strategy is to choose the pivot to minimizethe number of entries in the pivot column. This is essentially the approach used by Du�and Reid [4] and we refer to it as MINCOL. This strategy has the same motivation asMarkowitz, but here the row minimization is pre-determined by the ordering method.Practical experience (Section 6) indicates that the �ll-in is worse than that obtained byMarkowitz, but this is balanced by the more simple data structure. It is desirable toswitch to dense code when the density of the reduced matrix is su�ciently high, andthis has to be taken into account when comparing �ll-in. This discussion also suggeststhat the SPK1 ordering might not be best for these purposes since the tie break rule isto maximize the number of elements in the columns being removed, which is not in theMarkowitz style. Rather it might be preferable to break ties by minimizing the numberof elements that are removed. This would lead to more nonzeros in the active submatrixand hence the likelihood of a wider band in the bottom corner of the lower Hessenbergform. This might not be so important however, particularly if the algorithm has theability to switch to dense code at this stage. We investigate this possibility in Section6, with interesting results.5. A Two-Sided OrderingThe simple form of algorithm (2.3) leads us to suggest another ordering algorithm inwhich either a minimum-row-count row or a minimum-column-count column is removedfrom the active submatrix at each iteration. The aim of this modi�cation would beto produce a lower Hessenberg form having a smaller bandwidth. The algorithm isinitialized as for (2.3) and proceeds as follows.repeat1) �nd either a minimum-row-count row or a minimum-column-countcolumn, whichever has fewer entries2) if a row is chosen, proceed as in algorithm (2.3)3) if a column is chosen then3a) remove all rows which intersect this column3b) update column counts3c) remove all columns with zero column countuntil all rows and columns are removed. (5:1)10



It is suggested that ties in step 1) are broken in a similar way to SPK1, that is bymaximizing the number of nonzero entries that are removed from the active submatrix.After a column is chosen in step 3), columns are removed to the right of the activesubmatrix and rows are removed to below the active submatrix. Thus the overall e�ectof the algorithm is to generate the lower Hessenberg pro�le by working from both ends,as indicated in Figure 5.1. It is observed that algorithm (2.3) often gives rise to a largebandwidth near the bottom right hand corner of the ordered matrix. This algorithmwould be expected to give the largest bandwidth near the centre of the matrix, at thepoint at which the active submatrix becomes empty. It had been hoped that the overallbandwidth would also be smaller, although practical experience does not support this.We refer to this ordering as the Two-sided ordering and the corresponding orderinginto spiked lower triangular form as the TSS ordering. An alternative strategy in step1) of (5.1) is to choose either a minimum-row-count row or a minimum-column-countcolumn, according to whichever gives the minimum bandwidth in the current pro�le,but we have not explored this.� � � & remove�� � �� � min-row-count rows� � �� �� �� ActiveSub-matrix� �remove - � �� �min-column-count columns ��Figure 5.1 Intermediate stage for the Two-sided Algorithm6. Practical Experience and ConclusionsIn this section we report some limited experience on some problems that occurredin practice, and draw some tentative conclusions. The numerical experience arises inapplications of a linear programming method to the SOL test problem set (see [8]).There are six matrices that we consider, derived from running our LP code on thetest problems. The actual SOL test problems from which the matrices are derived arerespectively etamacro, bandm, stair(two matrices) and pilot(two matrices). The �rsttwo columns in each table of results give the dimension n of each matrix and the numberof nonzeros in the original matrix.Tables 6.1 and 6.2 give a comparison of various di�erent tie-break rules for step 1) ofalgorithm (2.3), together with results for the Two-sided ordering described in Section 5.These tables provide purely structural measures for the di�erent forms that can be11



derived from the lower Hessenberg form, as described in Section 2. The column headedSpikes gives the total number of spikes in the corresponding spiked lower triangularform. The column headed Border gives the width of the border, and hence the dimensionof the Schur complement, in the corresponding bordered block lower triangular form.The column headed B-width gives the bandwidth of the lower Hessenberg form, thatis the number of diagonal bands immediately above the main diagonal which containnonzero elements (a tridiagonal matrix would have a unit bandwidth). This measure isequivalent to the quantity Local introduced in [11].These results give some insight into various issues raised in previous sections. Firstwe consider whether there is any indication that the extra calculation involved in look-ahead gives rise to a superior ordering in any sense. We see that the Hellerman-Raricktie-break used by both P4 and P5 gives better results for all these measures on the 335problem, but otherwise is not superior. It is interesting that the Stadtherr-Wood tie-break used by the SPK1 algorithm does best on the larger problems, and particularlyso on the 1111 problem. There is not much to choose between any of the algorithmson the smaller problems. Thus we tentatively conclude that there is not much to begained by look-ahead, and that the SPK1 algorithm is to be preferred on account ofits simplicity. This conclusion is backed up by the results in [12] which follow a similarpattern. However it is interesting to see that an arbitrary resolution of ties, by takingthe �rst eligible candidate, also does well, and is of course even more simple and e�cientto operate. This suggests for example that other criteria might be successfully used tobreak ties, for example by selecting the block on the grounds of numerical stability.
Problem HR tie-break SW tie-breakn Nonzeros Spikes Border B-width Spikes Border B-width113 309 5 4 4 5 5 4116 592 32 20 12 28 19 12225 2034 71 63 38 73 61 31335 3419 81 74 33 98 89 44366 1781 130 80 48 123 75 48473 2368 158 100 54 149 93 54723 8027 148 107 72 122 104 571111 16090 207 180 107 161 149 62Table 6.1 Comparison of tie-break rules12



Problem First candidate tie-break Two-sided orderingn Nonzeros Spikes Border B-width Spikes Border B-width113 309 5 5 4 5 5 3116 592 22 14 7 25 12 10225 2034 61 54 32 58 54 54335 3419 94 87 44 90 83 74366 1781 127 81 48 100 59 31473 2368 149 93 54 113 73 31723 8027 136 115 55 134 112 521111 16090 183 167 46 203 179 114Table 6.2 Comparison of tie-break rulesNext we consider the evidence relating to the Two-sided algorithm described inSection 5. It had been hoped that this algorithm would produce orderings in which thebandwidth and the border would be smaller, particularly on larger problems. Unfortu-nately the evidence here does not support such a conclusion. We shall also see in Tables6.3, 6.4 and 6.5 that the �ll-in due to the TSS ordering is disappointingly high, whichreinforces these conclusions based on the structural information. Unless these resultsare atypical, we see no merit in pursuing this idea any further.Next we consider how much �ll-in is generated when these algorithms are used,and our remarks are relevant mainly to the spiked lower triangular form. An idealsituation for this structure would be to use Gaussian elimination without interchanges,because this would be expected to give relatively little �ll-in. However, as observedabove, the elimination algorithm might break down due to the occurrence of a zeropivot. Thus in the �rst instance we give numerical results that are obtained usingthe following minimal column pivoting strategy, that is when a zero pivot occurs, usethe nonzero entry closest to the diagonal as the pivot. Table 6.3 gives the number ofinterchanges performed to avoid a zero pivot, and the amount of �ll-in that occurred.The arithmetic was performed in single precision on a SUN 4 workstation. In the twocases indicated the elimination broke down due to no nonzero pivot being available withthe above strategy. This was due to catastrophic growth which occurred in most of thefactorizations. Indeed, for the matrix of order 1111 over
ow occurred in the calculationof some entries. 13



Problem Interchanges Fill-inn Nonzeros HR SW TSS HR SW TSS113 309 1 1 1 176 174 179116 592 7 5 5 517 459 373225 2034 6 24 13 2929 2002 5836335 3419 5 �32 21 3891 3731 8574366 1781 46 47 31 2659 3419 3080473 2368 64 57 33 3993 3656 4164723 8027 71 47 66 15046 14955 181461111 16090 114 59 ��97 30165 20805 62319� Breakdown in stage 335 of the elimination�� Breakdown in stage 1022 of the eliminationTable 6.3 Fill-in with minimal pivotingThese results give some indication of the least �ll-in that can be expected by usingthese ordering algorithms. When compared with the results for the Markowitz strategy(see the column headed MA28 in Table 6.5) it is seen that Markowitz already givesless �ll-in on almost all the problems. Thus we cannot expect ordering algorithms tobe competitive as regards this measure. Of course it is clear that the minimal pivotingstrategy is entirely unsatisfactory as regards numerical stability. Therefore, as indicatedin Section 4, we have to consider alternative pivot strategies which provide increasedstability at the cost of additional �ll-in.An issue raised in Section 2 is the extent to which �ll-in is a�ected by the methodof breaking ties in algorithms (2.3) and (5.1). We consider two alternatives to breakingties by removing the maximumnumber of entries (as in the SPK1 algorithm). The �rstof these is the arbitrary tie-break rule in which the �rst available candidate is chosen andin the second the minimum number of entries is removed (in the spirit of Markowitz).For these criteria the �ll-in in the factorization using the minimal pivoting strategy isgiven in the columns headed First and Min respectively in Table 6.4. This is done forboth the SW and TSS orderings and may be compared with the results in Table 6.3 forthe maximum-removal criterion.The results show that neither of the `extreme' tie-break rules is preferable to theessentially arbitrary tie-break rule. The vastly improved results with the arbitrary tie-break rule for the two-sided algorithm in Table 6.4 can be explained as follows. Inthe case when the counts of the minimum-row-count row and minimum-column-countcolumn in step 1) of (5.1) are equal the �rst of the tied rows was selected. Thus few,if any, columns were selected so the resulting lower Hessenberg form was similar, if notidentical, to that obtained using the SPK1 arbitrary tie-break rule. The TSS orderingis seen to be wholly inferior to the SW ordering and is not pursued further.Since it is not clear whether the SW ordering is better using the maximum-removalor arbitrary tie-break rules, both are used for the experiments below with the orderingcorresponding to the latter identi�ed as SW0.14



Problem SW TSSn Entries First Min First Min113 309 271 337 271 319116 592 367 670 354 769225 2034 2722 3038 2986 6038335 3419 3212 5056 7803 14297366 1781 3730 4401 3537 3817473 2368 4151 5966 4143 7091723 8027 14024 20247 14625 292471111 16090 23466 45955 24555 65029Table 6.4 Alternative tie-break criteriaSince the numerical properties of the minimal pivoting strategy are unsatisfactory,we used the LU1SOL threshold pivoting strategy for the elimination in order to obtainnumerical stability whilst attempting to preserve the a priori ordering as much as pos-sible. The results in Table 6.5 give a comparison of the �ll-in caused when Gaussianelimination with this pivoting strategy is applied to the spiked triangular form obtainedby the HR, SW and SW0 ordering algorithms.n Nonzeros HR SW SW0113 309 198 196 262116 592 869 750 440225 2034 3270 2671 2838335 3419 5028 5223 4393366 1781 2993 4694 4467473 2368 7878 5735 6342723 8027 28941 25172 255501111 16090 57053 39100 48516Table 6.5 Fill-in with LU1SOL pivoting (u = 0:1)There is a clear increase in �ll-in when the �gures in Table 6.5 are compared withthose in Tables 6.3 and 6.4 for the corresponding ordering with the minimal pivotingstrategy. This is the price which must be paid for numerical stability. No unacceptablegrowth was detected on any of the test problems. Smaller values of u cause signi�cantincreases in growth and our results support the usual choice of u = 0:1.A possible explanation for this signi�cant increase in �ll-in might be that the largenumber of column interchanges demanded by the LU1SOL strategy destroys the spikecolumn assignment of the ordering algorithm. If the column ordering cannot be pre-served then a local column pivoting strategy which aims to reduce �ll-in is preferable.To test this conjecture, the factorization of the matrices was repeated using the MIN-COL strategy. The results are given in Table 6.6 which also shows the outcome ofthe MINCOL elimination procedure being applied to the unordered matrix and to thematrix with its rows ordered simply by increasing row count. The latter approach to15



ordering and factorization is given by Du� and Reid [4]. The �nal column in the tablegives the �ll-in caused when the Markowitz procedure MA28 (as used by the doubleprecision NAG routine F01BRF) is applied to the matrix. In all cases the thresholdparameter u = 0:1 is used.n Nonzeros None ROW HR SW SW0 MA28113 309 249 181 182 186 244 139116 592 598 567 700 602 403 248225 2034 5761 2624 2877 2577 2404 1260335 3419 10364 4222 4541 4223 3904 2181366 1781 2472 2023 2401 3445 2737 1267473 2368 4167 3168 4609 4959 4769 1726723 8027 24005 26341 21700 20364 19260 100641111 16090 46668 100898 48379 32858 35835 21874Table 6.6 Fill-in with MINCOL pivoting and Markowitz (u = 0:1)By comparing the results for LU1SOL and MINCOL in Tables 6.5 and 6.6, it isclear that the MINCOL strategy reduces the �ll-in for the three spiked lower triangularforms. Unfortunately, with the exception of the 1111 matrix, this �ll-in is little, ifat all, better than that incurred when the MINCOL strategy is applied to the matrixordered by increasing row count. The �ll-in incurred when Markowitz pivoting is used issigni�cantly lower than that for the MINCOL strategy applied to any a priori ordering.The evidence of Tables 6.5 and 6.6 supports the view that when a threshold pa-rameter is used that is su�ciently large to give acceptable stability, the number of in-terchanges is such that the column assignment of the ordering algorithms is somewhatirrelevant. Hence they are e�ectively reduced to the status of row ordering algorithms.A further conclusion from these results is that the row permutation determined by thethree tie-break rules may be no better than that determined simply by increasing rowcount.The conclusions which we o�er are based on the results obtained from experimentson a small number of test matrices in an area of numerical linear algebra which isnotoriously problem-dependent. Some would point to the density of the the largerproblems and say that a matrix with around 10 entries per column is at best `notvery sparse'. Certainly the size of the diagonal blocks and border in the P5 borderedblock triangular form appears greater than that observed by Arioli and Du� in [1] soperhaps our problems are not amenable to exploitation by more sophisticated orderingalgorithms. We plan to extend these results to a wider selection of test problems at afuture date.7. References[1] Arioli M., Du� I.S., Gould N.I.M. and Reid J.K. (1987). The practical use of theHellerman-Rarick P4 algorithm and the P5 algorithm of Erisman et al. A.E.R.E.Harwell Report CSS 213. 16
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