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Abstract

Many real world applications lack of reliable analytic models for optimizing the system
performance. Even if it is possible to design an analytical model for the problem, this may
result either too complex to be managed e�ciently by the decision maker or too simple
and therefore some complex dynamics of the system can be neglected. Moreover, when
stochastic variables are involved in the complex system, their distribution should be known a
priori in order to correctly de�ne an analytic model. In many applications, simulation-based
approaches are superior to analytic models for investigating complex stochastic systems.
Indeed, the system performance can be described by means of a black-box function and there
is no need to know the probability distribution of the stochastic components. Moreover, this
distribution can change accordingly to the system design variables and stochastic constraints
can also be included in the model, thus adding an higher level of uncertainty.

Our framework consider optimization problems where the objective is a black-box function
which depends both on the design variables and on the stochastic components which distri-
bution in turn depends on the design variable. There are also some constraints on the design
and stochastic variables. In particular in this work we propose an approach that tackles the
high computational cost, the black-box formulation and the stochasticity. In recent litera-
ture, these features have been addressed separately and, as in stochastic optimization, there
is the underline assumption that the probability distribution of the stochastic components
do not depend on the design variables.

The optimization algorithm used is based on a multi-start approach to explore the feasible
region for the design variable. Then a sample of the stochastic component is generated and
its size is adapted dynamically according to a de�ned criterion which aims to guarantee
feasibility in probability. In other words, we de�ne a con�dence level to accept a point as
feasible and then the sample size is accordingly adapted (it can be di�erent by each design
variable). In this way we can control the feasibility and the computational cost of evaluating
the model, which is related to the sampling cost.
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