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e Centred on Roger Fletcher's group in Dundee
e Other work done in Edinburgh under Ken McKinnon

e Engineers were also using Maths!
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e First on Jack’s list!
e Doctoral research assistant to Roger Fletcher (1988-1990)
e Saved from the penury of an SERC studentship. Thanks Jack!

e Worked on a Chemical Engineering problem

Flexible retrofit design of multiproduct batch plants
Fletcher, Hall and Johns (1991)
Computers and Chemical Engineering 15 843-852

Otherwise, we took the money and ran...
and went hill-walking...
and did maths...

and paved the way for the German invasion
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The Dundee group

e Major focus was the solution of mixed-integer nonlinear programming MINLP problems

minimize f(x,y)
subject to e¢(x,y) > 0
y; € {0, 1} V1

o Why?
Retrofit design problems required the solution of (convex) MINLP problems

e What is required in order to solve MINLP problems?
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Components of the first Dundee MINLP solver

e NLP solver from NAG
e MILP solver
o Branch-and-bound by Hall

o “Reliable” simplex LP solver by Fletcher
o Sparse matrix algebra by Hall

e Towards reliable linear programming

Fletcher and Hall (1990)

Pitman Research Notes in Mathematics Series 228 89-104
e Ordering algorithms for irreducible sparse linear systems

Fletcher and Hall (1993)
Annals of Operations Research 43 15-32
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e Came to Edinburgh as a Maths lecturer (1990—date)

e With Ken McKinnon

o Wrote a revised simplex solver using improved sparse matrix algebra (1992-2001)
o ldentifying and exploiting hyper-sparsity was a major revised simplex development

Hyper-sparsity in the revised simplex method and how to exploit it
Hall and McKinnon (2005)

Computational Optimization and Applications 32(3) 259-283

Won the 2005 COAP best paper prize
o Developed and implemented parallel revised simplex schemes (1994-97)

e With Jacek Gondzio (Edinburgh)
o Applied simplex algebra to interior-point methods (2005-06)
e Still working on (parallelising) the revised simplex method

e Consultancy work in the following software industries

Animal feed, Petroleum, Power and water, Chemical engineering
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What is hyper-sparsity

Consider solving Ax = b when A is

o Ifbis then x is
o Ifbis then @ is usually — A~ ! is usually dense
o If A~!is sparse then A is hyper-sparse

e If A is hyper-sparse and b is then @ is sparse

Consequence:
Given sparse LU = A, solving Ax = b by traditional substitution can be very inefficient

When does hyper-sparsity occur?

e During left-looking implementations of Gaussian elimination

e When applying the revised simplex method to important classes of LP problems
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Exploiting hyper-sparsity

e Traditional technique for solving L = b by
transforming b into @

e When b is sparse skip 1. if by is zero

dok =1 n
b:=bb— bklk

end do

dok =1 n
if (by .ne. 0) then

b:=b— bklk

end if

end do

e When x is sparse, the dominant cost is the test for zero

e Efficient identification of vectors I, to be applied
o Gilbert and Peierls (1988)
o Hall and McKinnon (1998-2005)
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The Leyffer years (1989-2002)

e MIQP

Numerical Experience with lower bounds for MIQP branch—and—bound
Fletcher and Leyffer (1998)
SIAM J. Optimization 8(2) 604-616

e MINLP

o Replaced MILP master problems by MIQP
o Generalised outer approximation

Solving mixed integer nonlinear programs by outer approximation
Fletcher and Leyffer (1994)
Mathematical Programming 66 327-349

o Integrated NLP within branch-and-bound

Integrating SQP and branch-and-bound for mixed integer nonlinear programming
Leyffer (2001)

Computational Optimization & Applications 18 295-309
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The Leyffer years (1989-2002)

e Eventually did some chemical engineering!

Comparison of certain MINLP algorithms when applied to a model structure
determination and parameter estimation problem

Skrifvars, Leyffer and Westerlund (1998)
Computers and Chemical Engineering 22(12) 1829-1835
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fix)

For NLP ‘ L

minimize f(ax) subject to c(x) > 0

e Want to minimize both f(x) and h(x) = ||c(x) || Sz .
e Traditionally: minimize single objective f(x)+mh(x) :-—1'
e Hard to identify penalty parameter 7 By
e Filter avoided this using a multi-objective approach upper bound !
U hfx)

Where did the idea come from?

e Used by Radcliffe and Surry (Edinburgh) with genetic algorithms (1995)
e First presented by Leyffer at an ECOSSE meeting (1996)
e First presented by Fletcher in a plenary talk at SIAM Optimization (May 1996)
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Legacy

e (Convergence proof and extensions generated a sequence of landmark papers

o Nonlinear programming without a penalty function
Fletcher and Leyffer (2002)
Mathematical Programming 91 239-270
o On the global convergence of a filter-SQP algorithm
Fletcher, Leyffer and Toint (2002)
SIAM J. Optimization 13(1) 44-59
o Global convergence of trust-region SQP-filter algorithms for general nonlinear programming
Fletcher, Gould, Leyffer, Toint, and Wachter (2002)
SIAM J. Optimization 13(3) 635-659

e Extended (with Fletcher, Gould and Toint) to algebraic inequalities, nonlinear systems of
equations and nonlinear least squares

e With Fletcher and Toint, won the SIAM Lagrange prize in 2006
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After ECOSSE?

e Work on mathematical programs with equilibrium constraints (MPEC) was motivation by Bill
Morton's multi-phase flow example presented at an ECOSSE meeting)

e Went to Argonne as a researcher (2002—date)

e Applies mathematical programming to a range of problems

e Makes up wacky titles for conference presentations

The Return of the Filter

How the Grinch Solved MPECs

Filter Methods By Dummies (*)

MPECs: Much Ado About Nothing?

The M&M of Optimization: Modeling and Methods
QPPAL: A Friendly Solver for Large-Scale QPs

(*) actually a misprint: should have been “For" =

The Mathematical legacy of ECOSSE

Dundee/SIAM
Dundee
Argonne
ISMP-00
Argonne
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e Christine Zoppke (1991-95)

o Worked on “tolerance tubes” (unpublished)

o Led to filter “to some extent”

o Rediscovered as a “funnel” by Gould and Toint
e Not funded by ECOSSE, but part of the “scene”

o Frank Plab (Dundee 1989-90; Edinburgh 1990-99)
Early work on parallel revised simplex

o Andreas Grothey (Dundee 1994-96; Edinburgh 1996—date)
Serial and parallel interior point
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o Marcel Mongeau: post-doctoral research assistant (1993-94)
o Colin Millar: masters research assistant (1994—-1998)

e Worked on applications of optimization in chemical engineering

o A generic global optimization algorithm for the chemical and phase equilibrium problem
McKinnon and Mongeau (1998)
Journal of Global Optimization 12(4) 325-351

o Global optimization for the chemical and phase equilibrium problem using interval analysis
McKinnon, Millar and Mongeau (1996)

In State of the Art in Global Optimization: Computational Methods and Applications
365-382

e Where are they now?

o Marcel Mongeau: maitre de conférences at Université Paul Sabatier, Toulouse
o Colin Millar: DJ?
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Differential equation constrained optimization

e Part of an early (pre-1990) planning document

e Now a major field of optimization
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e Funding mathematicians isn't a good way to do Chemical Engineering research
e Asking them to solve MINLP problems was a good ideal

e ECOSSE was the springboard for some outstanding optimization research

Thanks Jack!
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