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Mathematics within ECOSSE

• Centred on Roger Fletcher’s group in Dundee

• Other work done in Edinburgh under Ken McKinnon

• Engineers were also using Maths!
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Who am I?

• First on Jack’s list!

• Doctoral research assistant to Roger Fletcher (1988–1990)

• Saved from the penury of an SERC studentship. Thanks Jack!

• Worked on a Chemical Engineering problem

Flexible retrofit design of multiproduct batch plants

Fletcher, Hall and Johns (1991)

Computers and Chemical Engineering 15 843–852

• Otherwise, we took the money and ran...

• and went hill-walking...

• and did maths...

• and paved the way for the German invasion
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The Dundee group

• Major focus was the solution of mixed-integer nonlinear programming MINLP problems

minimize f(x,y)

subject to c(x,y) ≥ 0
yi ∈ {0, 1} ∀i

• Why?

Retrofit design problems required the solution of (convex) MINLP problems

• What is required in order to solve MINLP problems?
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s.t. c(x, y
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Components of the first Dundee MINLP solver

• NLP solver from NAG

• MILP solver

◦ Branch-and-bound by Hall

◦ “Reliable” simplex LP solver by Fletcher

◦ Sparse matrix algebra by Hall

• Towards reliable linear programming

Fletcher and Hall (1990)

Pitman Research Notes in Mathematics Series 228 89–104

• Ordering algorithms for irreducible sparse linear systems

Fletcher and Hall (1993)

Annals of Operations Research 43 15–32
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After ECOSSE?

• Came to Edinburgh as a Maths lecturer (1990–date)

• With Ken McKinnon

◦ Wrote a revised simplex solver using improved sparse matrix algebra (1992–2001)

◦ Identifying and exploiting hyper-sparsity was a major revised simplex development

Hyper-sparsity in the revised simplex method and how to exploit it

Hall and McKinnon (2005)

Computational Optimization and Applications 32(3) 259–283

Won the 2005 COAP best paper prize

◦ Developed and implemented parallel revised simplex schemes (1994–97)

• With Jacek Gondzio (Edinburgh)

◦ Applied simplex algebra to interior-point methods (2005–06)

• Still working on (parallelising) the revised simplex method

• Consultancy work in the following software industries

Animal feed, Petroleum, Power and water, Chemical engineering

The Mathematical legacy of ECOSSE 6



What is hyper-sparsity

Consider solving Ax = b when A is sparse



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse

Consequence:



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse

Consequence:

Given sparse LU = A, solving Ax = b by traditional substitution can be very inefficient



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse

Consequence:

Given sparse LU = A, solving Ax = b by traditional substitution can be very inefficient

When does hyper-sparsity occur?



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse

Consequence:

Given sparse LU = A, solving Ax = b by traditional substitution can be very inefficient

When does hyper-sparsity occur?

• During left-looking implementations of Gaussian elimination



What is hyper-sparsity

Consider solving Ax = b when A is sparse

• If b is dense then x is dense

• If b is sparse then x is usually dense—A−1 is usually dense

• If A−1 is sparse then A is hyper-sparse

• If A is hyper-sparse and b is sparse then x is sparse

Consequence:

Given sparse LU = A, solving Ax = b by traditional substitution can be very inefficient

When does hyper-sparsity occur?

• During left-looking implementations of Gaussian elimination

• When applying the revised simplex method to important classes of LP problems
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Exploiting hyper-sparsity

• Traditional technique for solving Lx = b by

transforming b into x do k = 1, n

b := b− bklk
end do

• When b is sparse skip lk if bk is zero
do k = 1, n

if (bk .ne. 0) then
b := b− bklk

end if
end do

• When x is sparse, the dominant cost is the test for zero

• Efficient identification of vectors lk to be applied

◦ Gilbert and Peierls (1988)

◦ Hall and McKinnon (1998–2005)

The Mathematical legacy of ECOSSE 8



The Leyffer years (1989–2002)



The Leyffer years (1989–2002)

• MIQP

Numerical Experience with lower bounds for MIQP branch–and–bound

Fletcher and Leyffer (1998)

SIAM J. Optimization 8(2) 604–616



The Leyffer years (1989–2002)

• MIQP

Numerical Experience with lower bounds for MIQP branch–and–bound

Fletcher and Leyffer (1998)

SIAM J. Optimization 8(2) 604–616

• MINLP



The Leyffer years (1989–2002)

• MIQP

Numerical Experience with lower bounds for MIQP branch–and–bound

Fletcher and Leyffer (1998)

SIAM J. Optimization 8(2) 604–616

• MINLP

◦ Replaced MILP master problems by MIQP



The Leyffer years (1989–2002)

• MIQP

Numerical Experience with lower bounds for MIQP branch–and–bound

Fletcher and Leyffer (1998)

SIAM J. Optimization 8(2) 604–616

• MINLP

◦ Replaced MILP master problems by MIQP

◦ Generalised outer approximation

Solving mixed integer nonlinear programs by outer approximation

Fletcher and Leyffer (1994)

Mathematical Programming 66 327–349



The Leyffer years (1989–2002)

• MIQP

Numerical Experience with lower bounds for MIQP branch–and–bound

Fletcher and Leyffer (1998)

SIAM J. Optimization 8(2) 604–616

• MINLP

◦ Replaced MILP master problems by MIQP

◦ Generalised outer approximation

Solving mixed integer nonlinear programs by outer approximation

Fletcher and Leyffer (1994)

Mathematical Programming 66 327–349

◦ Integrated NLP within branch-and-bound

Integrating SQP and branch-and-bound for mixed integer nonlinear programming

Leyffer (2001)

Computational Optimization & Applications 18 295–309
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The Leyffer years (1989–2002)

• Eventually did some chemical engineering!

Comparison of certain MINLP algorithms when applied to a model structure

determination and parameter estimation problem

Skrifvars, Leyffer and Westerlund (1998)

Computers and Chemical Engineering 22(12) 1829–1835
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The “Filter” method

For NLP

minimize f(x) subject to c(x) ≥ 0

• Want to minimize both f(x) and h(x) = ‖c(x)−‖
• Traditionally: minimize single objective f(x)+πh(x)

• Hard to identify penalty parameter π

• Filter avoided this using a multi-objective approach

Where did the idea come from?

• Used by Radcliffe and Surry (Edinburgh) with genetic algorithms (1995)

• First presented by Leyffer at an ECOSSE meeting (1996)

• First presented by Fletcher in a plenary talk at SIAM Optimization (May 1996)
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SIAM J. Optimization 13(3) 635–659

• Extended (with Fletcher, Gould and Toint) to algebraic inequalities, nonlinear systems of

equations and nonlinear least squares



Legacy

• Convergence proof and extensions generated a sequence of landmark papers

◦ Nonlinear programming without a penalty function

Fletcher and Leyffer (2002)

Mathematical Programming 91 239–270

◦ On the global convergence of a filter-SQP algorithm

Fletcher, Leyffer and Toint (2002)

SIAM J. Optimization 13(1) 44–59

◦ Global convergence of trust-region SQP-filter algorithms for general nonlinear programming

Fletcher, Gould, Leyffer, Toint, and Wächter (2002)

SIAM J. Optimization 13(3) 635–659

• Extended (with Fletcher, Gould and Toint) to algebraic inequalities, nonlinear systems of

equations and nonlinear least squares

• With Fletcher and Toint, won the SIAM Lagrange prize in 2006
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After ECOSSE?

• Work on mathematical programs with equilibrium constraints (MPEC) was motivation by Bill

Morton’s multi-phase flow example presented at an ECOSSE meeting)

• Went to Argonne as a researcher (2002–date)

• Applies mathematical programming to a range of problems

• Makes up wacky titles for conference presentations

The Return of the Filter Dundee/SIAM

How the Grinch Solved MPECs Dundee

Filter Methods By Dummies (*) Argonne

MPECs: Much Ado About Nothing? ISMP-00

The M&M of Optimization: Modeling and Methods Argonne

QPPAL: A Friendly Solver for Large-Scale QPs INFORMS

(*) actually a misprint: should have been “For”
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The rest of the German invasion

• Christine Zoppke (1991–95)

◦ Worked on “tolerance tubes” (unpublished)

◦ Led to filter “to some extent”

◦ Rediscovered as a “funnel” by Gould and Toint

• Not funded by ECOSSE, but part of the “scene”

◦ Frank Plab (Dundee 1989–90; Edinburgh 1990-99)

Early work on parallel revised simplex

◦ Andreas Grothey (Dundee 1994–96; Edinburgh 1996–date)

Serial and parallel interior point
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Meanwhile, in Edinburgh...

• Under Ken McKinnon

◦ Marcel Mongeau: post-doctoral research assistant (1993–94)

◦ Colin Millar: masters research assistant (1994–1998)

• Worked on applications of optimization in chemical engineering

◦ A generic global optimization algorithm for the chemical and phase equilibrium problem

McKinnon and Mongeau (1998)

Journal of Global Optimization 12(4) 325–351

◦ Global optimization for the chemical and phase equilibrium problem using interval analysis

McKinnon, Millar and Mongeau (1996)

In State of the Art in Global Optimization: Computational Methods and Applications

365–382

• Where are they now?

◦ Marcel Mongeau: mâıtre de conférences at Université Paul Sabatier, Toulouse

◦ Colin Millar: DJ?
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Future work?

Differential equation constrained optimization

• Part of an early (pre-1990) planning document

• Now a major field of optimization
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Conclusions

• Funding mathematicians isn’t a good way to do Chemical Engineering research

• Asking them to solve MINLP problems was a good idea!

• ECOSSE was the springboard for some outstanding optimization research

Thanks Jack!
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