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Abstract

We provide the first meaningful documentation and analysis of the “Idiot” crash
implemented by Forrest in Clp that aims to obtain an approximate solution to
linear programming (LP) problems for warm-starting the primal simplex method.
The underlying algorithm is a penalty method with naive approximate minimiza-
tion in each iteration. During initial iterations an approach similar to augmented
Lagrangian is used. Later the technique corresponds closely to a classical quadratic
penalty method. We discuss the extent to which it can be used to obtain fast ap-
proximate solutions of LP problems, in particular when applied to linearizations of
quadratic assignment problems.

1 Introduction

The efficient solution of linear programming (LP) problems is crucial for a wide range
of practical applications, both as problems modelled explicitly, and as subproblems for
discrete and nonlinear optimization problems. Finding an approximate solution rapidly
is valuable as a “crash start” to an exact solution method. There are also applications
where it is preferable to trade solution accuracy for a significant increase in speed.

The “Idiot” crash within the open source LP solver Clp [2] of Forrest aims to find an
approximate solution of an LP problem prior to application of the primal revised simplex
method. In essence, the crash replaces minimization of the linear objective subject to
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linear constraints by minimization of the objective plus a multiple of a quadratic function
of constraint violations.

Section 2 sets out the context of the Idiot crash within Clp and the very limited
documentation and analysis that exists. Since the Idiot crash is later discussed in relation
to the quadratic penalty and augmented Lagrangian methods, a brief introduction to
these established techniques is also given. The algorithm used by the Idiot crash is set
out in Section 3, together with results of experiments on representative LP test problems
and a theoretical analysis of its properties. The extent to which the Idiot crash can be
used to obtain fast approximate solutions of LP problems, in particular when applied
to linearizations of quadratic assignment problems (QAPs), is explored in Section 4.
Conclusions are set out in Section 5.

2 Background

For convenience, discussion and analysis of the algorithms in this paper are restricted to
linear programming (LP) problems in standard form:

minimize f = cTx subject to Ax = b, x ≥ 0, (1)

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and m < n. In problems of practical interest,
the number of variables and constraints can be large and the matrix A is sparse. It can
also be assumed that A has full rank ofm. The algorithms, discussion and analysis below
extend naturally to more general LP problems.

The Idiot crash was introduced into the open source LP solver Clp [2] in 2002 and
aims to find an approximate solution of an LP problem prior to application of the primal
revised simplex method. Beyond its definition as source code [6], a 2014 reference by
Forrest to having given “a bad talk on it years ago” [5], as well as a few sentences of
comments in the source code, documentation for the mixed-integer programming solver
Cbc [7], and a public email [5], the Idiot crash lacks documentation or analysis. Forrest’s
comments stress the unsophisticated nature of the crash and only hint at its usefulness
for preceding the primal simplex algorithm. However, for several test problems used in
the Mittelmann benchmarks [12], Clp is significantly faster than at least one of the three
major commercial solvers (Cplex, Gurobi and Xpress), and experiments in Section 3.2
show that the Idiot crash is a major factor in this relative performance. For three
of these test problems, nug12, nug15 and qap15, which are quadratic assignment
problem (QAP) linearizations, it is shown to be particularly effective. This serves as due
motivation for studying the algorithm, understanding why it performs well on certain
LP problems, notably QAPs, and how it might be of further value.

The Idiot crash terminates at a point that has no guaranteed properties other than
satisfying the bounds x ≥ 0. In particular, it satisfies no known bound on the residual
‖Ax− b‖2 or distance (positive or negative) from the optimal objective value. Although
some variables may be at bounds, there is no reason why the point should be a vertex
solution. Thus, within the context of Clp, before the primal simplex method can be used
to obtain an optimal solution to the LP problem, a “crossover” procedure is required to
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identify a basic solution from the point obtained by the Idiot crash. We believe that Clp
uses the same crossover code as is used to get a basic solution after the Clp interior point
solver, but one crucial difference in the case of the Idiot crash is that it yields no dual
values. How this absence is accommodated is beyond the scope of this paper. Since the
Idiot crash seeks a primal feasible point and has nothing corresponding to dual values, it
would seem more appropriate to use it to warm-start the primal simplex method rather
than dual simplex.

2.1 Penalty function methods

Although Forrest states that the Idiot crash minimizes a multiple of the LP objective
plus a sum of squared primal infeasibilities [5], a more general quadratic function of
constraint violations is minimized in Clp. This includes a linear term, making the Idiot
crash objective comparable with an augmented Lagrangian function. For later reference,
these two established penalty function methods are outlined below.

The quadratic penalty method

For the nonlinear equality problem

minimize f(x) subject to r(x) = 0, (2)

the quadratic penalty method minimizes

φ(x, µ) = f(x) +
1

2µ
r(x)Tr(x), (3)

for a decreasing sequence of positive values of µ. If xk is the global minimizer of φ(x, µk)
and µk ↓ 0, Nocedal and Wright [13] show that every limit point x∗ of the sequence
{xk} is a global solution of (2). The subproblem of minimizing φ(x, µk) is known to be
increasingly ill-conditioned as smaller values of µk are used [13] and this is one motivation
for use of the augmented Lagrangian method, for which µ would not need to be as small
as machine precision.

The augmented Lagrangian method

The augmented Lagrangian method, outlined in Algorithm 1, was originally presented as
an approach to solving nonlinear programming problems like (2). It was first proposed
by Hestenes in his survey of multiplier and gradient methods [9] and then fully inter-
preted and analysed, first by Powell [15] and then by Rockafellar [17]. The augmented
Lagrangian function (4) is a combination of the Lagrangian function and the quadratic
penalty function [13]. It is the quadratic penalty function with an explicit estimate of
the Lagrange multipliers λ:

LA(x,λ, µ) = f(x) + λTr(x) +
1

2µ
r(x)Tr(x). (4)
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Algorithm 1 The augmented Lagrangian algorithm for problem (2)

Initialize x0 ≥ 0, µ0, λ0 and a tolerance τ0

For k = 0, 1, 2, . . .
Find an approximate minimizer xk of LA(,̇λk, µk), starting at xk

and terminating when ‖∇xLA(xk,λk, µk)‖ ≤ τk
If a convergence test for (2) is satisfied

stop with an approximate solution xk

End if
Update Lagrange multipliers λ

Set λk+1 = λk + µkr(xk)
Choose new penalty parameter µk+1 so that 0 ≤ µk+1 ≤ µk
Choose new tolerance τk+1

End

Although originally intended for nonlinear programming problems, the augmented La-
grangian method has also been applied to linear programming problems [4, 8]. However,
neither article assesses its performance on large-scale practical LP problems.

3 The Idiot crash algorithm

This section presents the Idiot crash algorithm (ICA) in Clp, followed by some practical
and mathematical analysis of its behaviour. Experiments assess the extent to which
ICA accelerates the solution of representative LP test problems using the primal simplex
method, and can be used to find a feasible and near-optimal solution of the problems.
Theoretical analysis of the limiting behaviour of the algorithm shows that it will solve
any LP problem that has an optimal solution.

3.1 The algorithm

ICA approximately minimizes the function

h(x) = cTx+ λTr(x) +
1

2µ
r(x)Tr(x), where r(x) = Ax− b, (5)

subject to the bounds x ≥ 0 for sequences of values of parameters λ and µ. The
minimization is performed with respect to each component of x in turn, with the starting
index of this loop over all components being chosen randomly. The general structure
of the algorithm is set out in Algorithm 2. Except for the alternative expression for
updating λk and the component-wise minimization of h(x), this algorithm is very close to
that of LANCELOT [3] applied to problem (1). The number of ICA iterations is determined
heuristically according to the size of the LP and progress of the algorithm. Unless ICA
is abandoned after around 20 “sample” iterations (see below), the number of iterations
performed ranges between 30 and 200. The value of µ0 ranges between 0.001 and 1000,
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Algorithm 2 The Idiot crash algorithm for problem (1), with r(x) = Ax− b

Initialize x0 = 0, µ0, λ0 = 0
Set µ1 = µ0 and λ1 = λ0

For k = 1, 2, 3, . . .

xk ≈ arg min
x≥0

h(x) = cTx+ λkTr(x) +
1

2µk
r(x)Tr(x)

If a criterion is satisfied (see 3.3.1) update µk:
µk+1 = µk/ω, for some factor ω > 1
λk+1 = λk

Else update λk:
µk+1 = µk

λk+1 = µkr(xk)
End

again according to the LP dimensions. When µ is changed, the factor by which it is
reduced is typically ω = 0.333. The final value of µ is typically a little less than machine
precision.

The version of ICA implemented in Clp has several additional features. If x0 is feasible
then the algorithm is not performed and the value x = x0 is returned. Otherwise,
initially, the approximate component-wise minimization is performed twice. If a 10%
decrease in primal infeasibility is not observed in about 30 iterations, it is considered
that ICA would not be beneficial and the value x = x0 is returned. Otherwise, ICA
continues but the mechanism for approximate minimization is adjusted. During each
subsequent iteration, the function h(x) is minimized componentwise 105 times. There is
no indication why this particular value was chosen. However, one of the features is the
option to decrease this number. From the 50th minimization onward, a check is performed
after the function is minimized componentwise 10 times. Progress is measured with a
moving average of expected progress. If it is considered that not enough progress is being
made, the function is not minimized any longer for the same values of the parameters.
Instead, either µ or λ is updated and the next iteration is performed. Thus, in the cases
when it is likely that the iteration would not be beneficial, not much unnecessary time
is spent. Another feature is that in some cases there is a limit on the step size for the
update of each xj . Additionally, there is a statistical adjustment of the values of x at the
end of each iteration. These features are omitted from this paper because experiments
showed that they have little effect on performance. Depending on the problem size
and structure, the weight parameter (µ) is updated either every 3 iterations or every
6. Again, there is no indication why these values are chosen. To a large extent it must
be assumed that the algorithm has been tuned to achieve a worthwhile outcome when
possible, and terminate promptly when not. The dominant computational cost for each
component-wise minimization of h(x) is about the same as a matrix-vector product Av.
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Relation to augmented Lagrangian and quadratic penalty function methods

In form, the augmented Lagrangian function (4) and the ICA function (5) are identical
for LP problems and in both methods the penalty parameter µ is reduced over a sequence
of iterations. However, they differ fundamentally in the update of λ. For ICA, new values
of λ are given by λk+1 = µkr(xk). Since µ is reduced to around machine precision and
the aim is to reduce r(x) to zero, the components of λ become small. Contrast this with
the values of λ in the augmented Lagrangian method, as set out in Algorithm 1. These
are updated by the value µkr(xk) and converge to the (generally non-zero) Lagrange
multipliers for the equations.

In ICA, when the values of λ are updated, the linear and quadratic functions of the
residual r(x) in the ICA function (4) are respectively µkr(xk)Tr(x) and (2µk)−1r(x)Tr(x).
Thus, since the values of µk are soon significantly less than unity, the linear term be-
comes relatively negligible. In this way the ICA function reduces to the quadratic penalty
function (3) and the later behaviour of ICA is akin to that of a simple quadratic penalty
method.

3.2 Preliminary experiments

The effectiveness of ICA is assessed via experiments with Clp (Version 1.16.10), using a
set of 30 representative LP test problems in Table 1. This is the set used by Huangfu and
Hall in [10], with qap15 replacing dcp2 because QAP problems are of particular interest
and dcp2 is not a public test problem, and nug15 replacing nug12 for consistency with
the choice of QAP problems used by Mittelmann [12]. The three problems nug15,
qap12 and qap15 are linearizations of quadratic assignment problems, where nug15
and qap15 differ only by row and column permutations. The experiments are carried
out on an Intel i7-6700T processor rated at 2.80GHz with 16GB of available memory. In
all cases the Clp presolve routine is run first, and is included in the total solution times.

To assess the effectiveness of ICA in speeding up the Clp primal simplex solver over
all the test problems, total solution times were first recorded for Clp with the -primals
option. This forces Clp to use the primal simplex solver but makes no use of ICA.
To compare these with total solution time when Clp uses the primal simplex solver
following ICA, it was necessary to edit the source code so that Clp is forced to use ICA
and the primal simplex solver. Otherwise, Clp ran in its default state. The relative total
solution times are given in the columns in Table 1 headed “Speed-up”. The geometric
mean speed-up is 1.9, demonstrating clearly the general value of ICA for the Clp primal
simplex solver. Although ICA is of little value (speed-up below 1.25) for seven of the 30
problems, for only two of these problems does it lead to a small slow-down. However, for
ten of the 30 problems the speed-up is at least 2.5, a huge improvement. The columns
headed “Idiot (%)” give the percentage of the total solution time accounted for by ICA,
the mean value being 6.2%. For five problems the percentage is ten or more, and this
achieves a handsome speed-up in three cases. However, it does include truss, for which
ICA takes up 17% of an overall solution time that is 20% more than with the vanilla
primal simplex solver. For only this problem can ICA be considered a significant and
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Table 1: Test problems, the speed-up of the Clp primal simplex solver when ICA is used,
and the percentage of solution time accounted for by ICA. Only for the problem names
in bold does default Clp use ICA and the primal simplex solver.

Model Speed-up Idiot (%) Model Speed-up Idiot (%)
cre-b 2.6 28.9 pds-40 1.3 5.0
dano3mip 1.4 3.6 pds-80 1.0 0.1
dbic1 1.5 40.6 pilot87 1.3 2.5
dfl001 1.0 0.1 qap12 2.5 0.6
fome12 1.1 0.1 qap15 4.0 0.1
fome13 1.9 3.3 self 6.1 22.7
ken-18 1.0 0.7 sgpf5y6 1.4 4.8
l30 1.9 1.4 stat96v4 1.7 1.2
Linf_520c 9.4 8.2 storm_1000 4.5 0.8
lp22 1.4 1.9 storm-125 4.1 10.1
maros-r7 0.9 7.8 stp3d 6.5 0.9
mod2 1.4 2.7 truss 0.8 17.1
ns1688926 1.4 1.0 watson_1 1.8 8.9
nug15 4.2 0.1 watson_2 1.1 4.4
pds-100 2.5 5.4 world 1.3 2.0

unwise investment. Of the ten problems where ICA results in a speed-up of at least 2.5,
for only three does it account for at least ten percent of the total solution time. Indeed,
for five of these problems ICA is no more than one percent of the total solution time.

This remarkably cheap way to improve the performance of the primal simplex solver
is not always of value to Clp because, when it is run without command line options (other
than the model file name), it decides whether to use its primal or dual simplex solver.
When the former is used, Clp uses problem characteristics to decide whether to use ICA
and, if used, to set parameter values for the algorithm. Default Clp chooses the primal
simplex solver (and always performs ICA) for just the ten LP problems whose name is
given in bold type. For half of these problems there is a speed-up of at least 2.5, so ICA
contributes significantly to the ultimate performance of Clp. However, for five problems
(cre-b, pds-100, storm-125, storm_1000 and stp3d), ICA yields a primal simplex
speed-up of at least 2.5 but, when free to choose, Clp uses its dual simplex solver. In
each case the dual simplex solver is at least as fast as using the primal simplex solver
following ICA, the geometric mean superiority being a factor of 4.0, so the choice to use
the dual simplex solver is justified.

Further evidence of the importance of ICA to the performance of Clp is given in
Table 2, which gives the solution times from the Mittelmann benchmarks [12] for the
three major commercial simplex solvers and Clp when applied to five notable problem
instances. When solving Linf_520c, Clp is vastly faster than the three commercial
solvers. For the three QAP linearizations (nug15, qap12 and qap15), Clp is very much
faster than Cplex. Finally, for self, Clp is significantly faster than the commercial
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Table 2: Solution times for Cplex-12.8.0, Gurobi-7.5.0, Xpress-8.4.0 and Clp-1.16.10 on
five notable problem instances from the Mittelmann benchmarks (29/12/17) [12]

Model Cplex Gurobi Xpress Clp
Linf_520c 495 1057 255 35
nug15 338 14 7 14
qap12 26 1 1 5
qap15 365 14 6 13
self 18 12 15 5

Table 3: Residual and relative objective error following ICA in Clp

Model Residual Objective Model Residual Objective
cre-b 1.3×10-9 6.1×10-2 pds-40 7.0×10-8 3.0×10-2

dano3mip 6.1×10-10 2.0×10-2 pds-80 2.2×10-7 3.4×10-1

dbic1 3.8×10-1 8.5×10-2 pilot87 2.1×100 6.8×10-1

dfl001 1.1×10-9 3.7×10-3 qap12 3.6×10-10 1.7×10-1

fome12 6.4×10-9 4.3×10-3 qap15 2.1×10-10 2.8×10-3

fome13 1.2×10-8 5.2×10-3 self 5.7×10-5 2.4×10-3

ken-18 5.4×10-8 7.1×10-2 sgpf5y6 4.0×10-10 2.1×10-1

l30 1.1×10-9 3.9×100 stat96v4 3.0×10-3 1.0×100

Linf_520c 1.1×10-1 9.1×10-3 storm_1000 5.9×10-6 5.9×10-2

lp22 1.1×10-9 1.3×10-3 storm-125 1.4×100 1.2×10-1

maros-r7 4.0×10-9 2.3×10-5 stp3d 7.0×10-5 2.7×10-2

mod2 3.9×100 2.1×10-1 truss 7.1×10-1 3.2×10-1

ns1688926 2.5×10-9 4.8×105 watson_1 7.7×10-6 8.7×10-1

nug15 2.1×10-10 3.7×10-4 watson_2 1.4×10-10 9.7×10-1

pds-100 7.6×10-10 3.7×10-4 world 4.3×100 5.5×10-1

solvers.
To asses the limiting behaviour of ICA as a means of finding a point that is both

feasible and optimal, Clp was run with the -idiot 200 option using the modified code
that forces ICA to be used on all problems. The results are given in Table 3, where the
columns headed “Residual” contain the final values of ‖Ax − b‖2. The columns headed
“Objective” contain values of (f − f∗)/max{1, |f∗|} as a measure of how relatively close
the final value of f is to the known optimal value f∗, referred to below as the objective
error. This measure of optimality is clearly of no practical value because f∗ is not
known. However, it is instructive empirically, and motivates later theoretical analysis.
The geometric mean of the residuals is 1.2×10-6 and the geometric mean of the objective
error measures is 6.1×10-2.

For 17 of the 30 problems in Table 3, the norm of the final residual is less than 10−7.
Since this is the default primal feasibility tolerance for the Clp simplex solver, ICA can
be considered to have obtained an acceptably feasible point. Among these problems,
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Figure 1: Distribution of residual and objective errors

the objective error ranges between 4.8×105 for ns1688926 and 2.3×10-5 for maros-r7,
with only eight problems having a value less than 10−2. Thus, even if ICA yields a
feasible point, it may be far from being optimal. A single quality measure for the point
returned by ICA is convenient, and this is provided by the product of the residual and
objective error, conveniently referred to as the “solution error”. As illustrated by the
distribution of the objective errors and residual in Figure 1, it is unsurprising that there
are no problems for which a low value of this product corresponds to an accurate optimal
objective function value but large residual.

The observations resulting from the experiments above yield three questions that
merit further study. First, since ICA yields a near-optimal solution for some problems, to
what extent does it possess theoretical optimality and convergence properties? Second,
since ICA performs particularly well for some problems and badly for others, which
problem features might characterize this behaviour? Third, for any problem class where
ICA appears to perform well, might this be valuable other than in the context of crash-
starting the primal simplex method? These questions are addressed in the remainder of
this paper.

3.3 Analysis

In analysing ICA, the initial focus is the function (5). Fully expanded, this is the
quadratic function

h(x) =
1

2µ
xTATAx+ (cT + λTA− 1

µ
bTA)x− λTb+

1

2µ
bTb.
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Although convexity of the function follows from the Hessian matrix ATA being positive
semi-definite, the Hessian has rank m < n. However, the possibility of unboundedness
of h(x) on x ≥ 0 can be discounted as follows. First, observe that unboundedness could
only occur in non-negative directions of zero curvature, so they must satisfy Ad = 0.
Hence h(x + αd) = h(x) + αcTd, which, if unbounded below for increasing α, implies
unboundedness of the LP along the ray x+αd from any point x ≥ 0 satisfying Ax = b.
Thus, as long as the LP is neither infeasible nor unbounded, h(x) is bounded below on
x ≥ 0.

For some problems, the size of the residual and objective measures in Table 3 indicate
that ICA has found a point that is close to being optimal. It is therefore of interest to
know whether ICA possesses theoretical optimality and convergence properties. With
approximate minimization of the ICA function (5), it is not conducive to detailed math-
ematical analysis. However, Theorem 1 shows that if the ICA function is minimized
exactly and an optimal solution to the LP exists, every limit point of the sequence

{
xk

}
is a solution to the problem.

3.3.1 Notes

• During each iteration, at most one of the parameters µ and λ is updated: in Clp,
µ is updated once every few (e.g. 3 or 6) iterations. How often µ is updated does
not affect the validity of the proof as long as

{
µk

}
→ 0 as k →∞ and λ is updated

at least once every W iterations for some constant W ≥ 1.

• In the statement of Algorithm 2 it is said that ω is larger than 1. This is not
required for the proof, which would still hold in the case of non-monotonicity of{
µk

}
as long as

{
µk

}
→ 0 as k →∞.

Theorem 1. Suppose that xk is the exact global minimizer of hk(x) for each k = 1, 2, . . .
and that

{
µk

}
→ 0 as k →∞. Then every limit point of the sequence

{
xk

}
is a solution

to problem (1).

Proof. Let x̄ be a solution of (1) so that, for all feasible x, cT x̄ ≤ cTx. For each k, xk

is the exact global minimizer for

min
x

hk(x) = cTx+ λkTr(x) +
1

2µk
r(x)Tr(x)

s.t. x ≥ 0,
(6)

and, since x̄ is feasible for (1), it is also feasible for (6). Thus, since hk(xk) ≤ hk(x̄) for
each k, it follows that

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄+ λkTr(x̄) +

1

2µk
r(x̄)Tr(x̄). (7)
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Since x̄ is a solution of (1), r(x̄) = 0 and (7) simplifies to

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄

=⇒ 1

2µk
r(xk)Tr(xk) ≤ cT x̄− cTxk − λkTr(xk)

=⇒ r(xk)Tr(xk) ≤ 2µk
(
cT x̄− cTxk − λkTr(xk)

)
. (8)

At the end of the previous iteration of the loop in Algorithm 2, one of the two parameters
µ and λ was updated. If during the previous iteration the update was of λ, then

λk = µk−1r(xk−1).

Alternatively, during the previous iteration, µ was updated and λ remained unchanged,
so λk = λk−1. Consider iterations k−W, . . . , k− 1 of the loop and let p be the index of
the latest iteration when λ was changed. Then for some p satisfying k −W ≤ p < k,

λk = µpr(xp).

Suppose x∗ is a limit point of
{
xk

}
, so that there is an infinite subsequence K such that

lim
k∈K

xk = x∗.

Taking the limit in inequality (8) gives

lim
k∈K

r(xk)Tr(xk) ≤ lim
k∈K

2µk
(
cT x̄− cTxk − λkTr(xk)

)
. (9)

For all k > W there is an index p with k −W ≤ p < k and λk = µpr(xp), so the value
of λk can be substituted in (9) to give

lim
k∈K

r(xk)Tr(xk) ≤ lim
k∈K

2µk
(
cT x̄− cTxk − λkTr(xk)

)
=⇒ r(x∗)Tr(x∗) = lim

k∈K
2µk

(
cT x̄− cTxk − µpr(xp)Tr(xk)

)
=⇒ ‖r(x∗)‖2 = lim

k∈K
2µk(cT x̄− cTxk)− lim

k∈K
2µkµpr(xp)Tr(xk) = 0,

since
{
µk

}
→ 0 for k ∈ K, so Ax∗ = b. For each xk, xk ≥ 0, so after taking the limit,

x∗ ≥ 0. Thus, x∗ is feasible for (1). To show optimality of r(x∗), from (7)

cTxk + λkTr(xk) +
1

2µk
r(xk)Tr(xk) ≤ cT x̄

=⇒ lim
k∈K

(
cTxk + λkTr(xk) +

1

2µk
r(xk)Tr(xk)

)
≤ lim

k∈K
cT x̄

=⇒ cTx∗ + lim
k∈K

λkTr(xk) + lim
k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄. (10)
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For all k > W there is an index p with k −W ≤ p < k and λk = µpr(xp) such that

lim
k∈K

λkTr(xk) = lim
k∈K

µpr(xp)Tr(xk) = 0,

since
{
µk

}
→ 0 for k = 1, 2, . . . and p→∞ as k →∞. This value can be substituted in

(10) to give

cTx∗ + lim
k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄.

For each k, µk > 0 and r(x)Tr(x) ≥ 0 for each x, so that

1

2µk
r(xk)Tr(xk) ≥ 0 ∀k =⇒ cTx∗ ≤ cTx∗ + lim

k∈K

1

2µk
r(xk)Tr(xk) ≤ cT x̄.

Consequently, x∗ is feasible for (1) and has an objective value less than or equal to the
optimal value cT x̄, so x∗ is a solution of (1).

4 Fast approximate solution of LP problems

Although Theorem 1 establishes an important “best case” result for the behaviour of
ICA, the results in Table 3 show that this is far from being representative of its practical
performance. For some problems ICA yields a near-optimal point; for others it terminates
at a point that is far from being feasible. Which problem characteristics might explain
this behaviour and, if it is seen to perform well for a whole class of problems, to what
extent is this of further value?

4.1 Problem characteristics affecting the performance of the Idiot crash

There is a clear relation between the condition number of the matrix A and the solution
error of the point returned by ICA. Of the problems in Table 3, all but storm_1000
are sufficiently small for the condition of A (after the Clp presolve) to be computed with
the resources available to the authors. These values are plotted against the solution
error in Figure 2, where the solution error is the product of the residual and (relative)
objective error introduced in Section 3.2. Figure 2 clearly shows that the problems solved
accurately have low condition number. Notable amongst these are the QAPs which, with
the exception of maros-r7, have very much the smallest condition numbers of the 29
problems in Table 3 for which condition numbers could be computed.

Nocedal and Wright [13, p.512] observe that “there has been a resurgence of interest in
penalty methods, in part because of their ability to handle degenerate problems”. How-
ever, analysis of optimal basic solutions of the problems in Table 3 showed no meaningful
correlation between their primal or dual degeneracy and accuracy of the point returned
by ICA.

12
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Figure 2: Solution error and LP condition

4.2 The Idiot crash on QAPs

Since ICA yields a near-optimal point for the three QAPs in Table 3, it is of interest to
know the extent to which this behaviour is typical of the whole class of such problems,
and its practical value. Both of these issues are explored in this section.

Quadratic assignment problems

The quadratic assignment problem (QAP) is a combinatorial optimization problem, being
a special case of the facility location problem. It concerns a set of facilities and a set of
locations. For each pair of locations there is a distance, and for each pair of facilities
there is a weight or flow specified, for instance the number of items transported between
the two facilities. The problem is to assign all facilities to different locations so that the
sum of the distances multiplied by the corresponding flows is minimized. QAPs are well
known for being very difficult to solve, even for small instances. They are NP-hard and
the travelling salesman problem can be seen as a special case. Often, rather than the
quadratic problem itself, an equivalent linearization is solved. A comprehensive survey
of QAP problems and their solution is given by Loiola et al. [11].

The test problems nug15, qap12 and qap15 referred to above are examples of the
Adams and Johnson linearization [1]. Although there are many specialized techniques for
solving QAP problems, and alternative linearizations, the popular Adams and Johnson
linearization is known to be hard to solve using the simplex method or interior point
methods [16]. Table 4 gives various performance measures for ICA when applied to
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Table 4: Performance of the Idiot crash on QAP linearizations

Model Rows Columns Optimum Residual Objective Error Time
nug05 210 225 50.00 9.4×10-9 50.01 1.5×10-4 0.04
nug06 372 486 86.00 7.8×10-9 86.01 1.2×10-4 0.11
nug07 602 931 148.00 7.9×10-9 148.64 4.3×10-3 0.25
nug08 912 1613 203.50 7.0×10-9 204.41 4.5×10-3 0.47
nug12 3192 8856 522.89 8.8×10-9 523.86 1.8×10-3 2.58
nug15 6330 22275 1041.00 8.9×10-9 1041.38 3.7×10-4 5.13
nug20 15240 72600 2182.00 7.5×10-9 2183.03 4.7×10-4 14.94
nug30 52260 379350 4805.00 1.1×10-8 4811.41 1.3×10-3 82.28

the Nugent [14] problems, using the default iteration limit of Clp. The first of these
is the value of the residual ‖Ax − b‖2 at the point obtained by ICA, which is clearly
feasible to within the Clp simplex tolerance. The objective function value and relative
error are also given, and the latter is well within 1%. Finally, the time for ICA is given.
Whilst this is growing, ICA clearly obtains a near-optimal solution for QAP instances
nug20 and nug30, which cannot be solved with commercial simplex or interior point
implementations on the machine used for ICA experiments because of excessive time or
memory requirements.

There is currently no practical measure of the point obtained by ICA that gives
any guarantee it can be taken as a near-optimal solution of the problem. The result of
Theorem 1 cannot be used because the major iteration minimization is approximate, and
the major iterations are terminated rather than being performed to the limit. Clearly
the measure of objective error in Table 4 requires knowledge of the optimal objective
function value. What can be guaranteed, however, is that since the point returned is
feasible, the corresponding objective value is an upper bound on the optimal objective
function value. With the aim of identifying an interval containing the optimal objective
function value, ICA was applied to the dual of the linearization. Although it obtained
points that were feasible for the dual problems to within the Clp simplex tolerance, the
objective values were far from being optimal, so the lower bounds thus obtained were too
weak to be of value.

5 Conclusions

Forrest’s aim in developing ICA for LP problems was to determine a point that, when used
to obtain a starting basis for the primal revised simplex method, results in a significant
reduction in the time required to solve the problem. This paper has distilled the essence
of ICA and presented it in algorithmic form for the first time. Practical experiments
have demonstrated that, for some large-scale LP test problems, Forrest’s aim is achieved.
For LP problems when ICA is not advantageous, this is identified without meaningful
detriment to the performance of Clp. For the best case in which ICA subproblems are
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solved exactly, Theorem 1 shows that every limit point of the sequence of ICA iterations is
a solution of the corresponding LP problem. It is observed empirically that, typically, the
lower the condition of the constraint matrix A, the closer the point obtained by ICA is to
being an optimal solution of the LP problem. For linearizations of quadratic assignment
problems, it has been demonstrated that ICA consistently yields near-optimal solutions,
achieving this in minutes for instances that are intractable on the same machine using
commercial LP solvers. Thus, in addition to achieving Forrest’s initial aim, ICA is seen
as being useful in its own right as a fast solver for amenable LP problems.

Acknowledgements: The Authors would like to thank the Editor-in-Chief for his pa-
tience throughout the review process, and one particular Reviewer for his/her painstaking
work on revisions of the manuscript of this paper.
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