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Abstract

Impossibility of finding local realistic models for quantum correlations due to entanglement is an
important fact in foundations of quantum physics, gaining now new applications in quantum in-
formation theory. We present an in-depth description of a method of testing the existence of such
models, which involves two levels of optimization: a higher-level non-linear task and a lower-level
linear programming (LP) task. The article compares the performances of the existing implementa-
tion of the method, where the LPs are solved with the simplex method, and our new implementation,
where the LPs are solved with a matrix-free interior point method. We describe in detail how the
latter can be applied to our problem, discuss the basic scenario and possible improvements and how
they impact on overall performance. Significant performance advantage of the matrix-free interior
point method over the simplex method is confirmed by extensive computational results. The new
method is able to solve problems which are orders of magnitude larger. Consequently, the noise
resistance of the non-classicality of correlations of several types of quantum states, which has never
been computed before, can now be efficiently determined. An extensive set of data in the form
of tables and graphics is presented and discussed. The article is intended for all audiences, no
quantum-mechanical background is necessary.

Keywords: Quantum Information, Large-Scale Optimization, Interior Point Methods,
Matrix-Free Methods.

1. Introduction

We discuss a new approach to tackling a certain class of large scale optimization problems
arising in quantum information science and linked with Bell’s Theorem [1]. These problems were
described in detail in [2, 3] and are, in fact, two-level optimization problems. The higher level
problem is a non-convex non-linear optimization task. It requires the solution of a sequence of
linear programming problems (LPs for short). Each of the LPs is a lower level task. We will focus
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on LP, as it has been identified as the major computational challenge. Reference [3] reports a range
of problems which have been solved, with the small and medium scale LPs being solved using the
GLPK [4] simplex implementation. However, even for medium scale problems the CPU times were
occasionally prohibitive. The solution time of a single problem with about 64,000 variables using
GLPK sometimes exceeds 24 hours and the upper level optimization may require the solution of
hundreds of such LP problems.

The solution of a single LP is a clear bottleneck in quantum information optimization. In
this paper we report on the efforts to accelerate this part of optimization process. We make two
contributions to achieve the goal:

• we reformulate the problem by removing multiple redundant constraints from its original
definition [3];

• we replace the simplex method with a specialized variant of the matrix-free interior point
method [5].

Although eliminating redundancy significantly reduces the number of LP constraints and produces
more compact problem formulations, it is not sufficient to extend the applicability of the previous
approach [3] which was based on the use of the simplex method. The reduced problems still defy
both standard LP approaches: the simplex method and the interior point method. The use of the
matrix-free variant of an interior point method provides a major breakthrough because it allows the
solution of these problems to be faster by orders of magnitude and guarantees a major reduction
of the memory required to store them.

In the following section we discuss the formulation of the problems without going into excessive
details on quantum physics in order to make the paper accessible to non-specialists. We then discuss
the original approach and the method, its advantages and drawbacks and our revised approach.
Finally, we draw some conclusions and suggestions for potential future investigation.

2. Motivation

Quantum information science, also called quantum informatics, is an attempt to harness para-
doxical aspects of quantum physics in the form of highly non-classical effects in information transfer
and processing, aiming at breaking classical limits (in the form of Shannon’s information theory
or principles of Church-Turing computation). It operates on quantum entangled states of particles
and aims to provide protocols which are faster, more robust, secure or in any other way better than
the ones provided by classical informatics. In order to do this it must harness the non-classical
properties of the states it operates on. This has led to a need for a measure of non-classicality
of quantum entangled states. Such a measure is also important in practical applications where
obtaining a pure state is impossible since it always comes with a bit of noise which reduces its non-
classicality. For our purposes, classicality will be synonymous with local realism or local hidden
variable models [6] (as it was shown that any local-realistic approach can be effectively simulated
by local hidden variable models). In short, local realism requires that no interaction can occur
between particles that exceeds the speed of light, and that particles must have a pre-existing value
for any measurement before the measurement is made. We will now present a formulation of the
problem of computing a certain type of threshold for non-classicality of quantum correlations.
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3. Problem formulation

3.1. Critical visibility

Let us consider an experiment on a quantum entangled state of two particles emitted from a
source in distinct directions. These particles travel towards Alice on one side and Bob on the other.
The names Alice and Bob refer to the observers who both perform measurements of observables on
their particles. The outcome of any single measurement is either 0 or 1. In the simplest case, Alice
and Bob choose from two observables each: A1, A2 for Alice and B1, B2 for Bob1. Additionally, we
assume that the observers are miles apart to ensure that their measurements cannot interact with
one another without exceeding the speed of light (so that locality is assured).

Quantum mechanics provides us with tools to calculate probabilities of measurement outcomes,
which are denoted

P (ra, rb|Ai, Bk), ra, rb ∈ {0, 1}; i, k ∈ {1, 2}. (1)

The above is a probability of a situation (ra, rb|Ai, Bk) by which we denote that Alice obtains
outcome ra while measuring observable Ai and Bob obtains outcome rb while measuring observable
Bk. Under local realism there must also exist an underlying global probability distribution

plr(a1, a2, b1, b2), (2)

where a1 and a2 (b1 and b2) are hypothetical values of measurements performed by Alice (Bob),
if she (he) chooses to measure A1 or A2 (B1 or B2). Both Alice and Bob have to choose exactly
one observable for their measurements on a given pair of particles. The measurements of, say, A1

and A2 may be quantum-mechanically incompatible so are impossible to measure together (due
to partial or full complementarity). Thus quantum formalism does not give us any method of
deriving (2). As a matter of fact, quantum mechanics rules out the possibility of the existence of
plr(a1, a2, b1, b2) and hence is a non-local-realistic theory: it is a non-classical theory. The practical
question for quantum information applications is: where is the border between the classical and
the non-classical?

If we now assume local realism is correct then the following equations hold

P (ra, rb|A1, B1) =

1
∑

a2,b2=0

plr(ra, a2, rb, b2)

P (ra, rb|A1, B2) =

1
∑

a2,b1=0

plr(ra, a2, b1, rb)

P (ra, rb|A2, B1) =

1
∑

a1,b2=0

plr(a1, ra, rb, b2)

P (ra, rb|A2, B2) =

1
∑

a1,b1=0

plr(a1, ra, b1, rb). (3)

1Cases where there are more possible measurement outcomes, more observers and more observables available to
the observers can also be solved by our approach but are omitted here for simplicity.
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It can be shown that for some quantum entangled states the marginal sums (3) cannot be
satisfied. This is contained in Bell’s Theorem. We will now discuss a method2 of establishing the
degree to which these are violated by some quantum entangled states. Establishing thresholds of
non-classicality allows us to show the extent to which certain quantum states are robust to noises
or distortion.

If a strongly non-classical state QM violates the above marginal sums (3) with a quantum-
mechanical probability distribution:

PQM (ra, rb|Ai, Bk) (4)

then we can admix to it a fraction f ∈ [0, 1] of a fully classical state called white noise [8] to make
it satisfy them. By white noise we understand completely random results (with a classical model of
two coin tosses, one by Alice and one by Bob). The resulting state, QM with the noise admixture,
will have the following probability distribution

P (ra, rb|Ai, Bk) = v
(

PQM (ra, rb|Ai, Bk) − 1

4

)

+
1

4
, (5)

where v = 1− f is the visibility of the original state QM . If we admix f = 1 of white noise to even
the most non-classical state, then we will always satisfy (3). On the other hand, if v = 1 then, for
some non-classical states, we will see (3) violated. For such states there exists a threshold visibility,
known as the critical visibility, above which we will see violation of the marginal sums. Let us now
state the above as a set of linear equations (constraints) which have to be satisfied. From (3) and
(5) we have:

1
∑

a2,b2=0

plr(ra, a2, rb, b2) + v(
1

4
− P (ra, rb|A1, B1)) =

1

4
,

1
∑

a2,b1=0

plr(ra, a2, b1, rb) + v(
1

4
− P (ra, rb|A1, B2)) =

1

4
,

1
∑

a1,b2=0

plr(a1, ra, rb, b2) + v(
1

4
− P (ra, rb|A2, B1)) =

1

4
,

1
∑

a1,b1=0

plr(a1, ra, b1, rb) + v(
1

4
− P (ra, rb|A2, B2)) =

1

4
,

1
∑

a1,a2,b1,b2=0

plr(a1, a2, b1, b2) = 1; 0 6 v 6 1; 0 6 plr(·) 6 1,

(6)

where the top four lines form 16 equalities (each pair ra, rb accounts for four of them as ra, rb ∈
{0, 1}). The orthant defined by the above 16 marginal sums, the probability summation constraint

2One could define other measures of non-classicality of the correlations, e.g. see [7]. However, as our aims are to
present the basics behind the computational methods, we shall stick here to the simplest one.
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and the bounds on the visibility and probabilities forms the feasible region of our LP. The following
cost function

z(plr(0, 0, 0, 0), plr(0, 0, 0, 1), plr(0, 0, 1, 0), . . . , plr(1, 1, 1, 1), v) = v, (7)

has a maximum on the feasible region equal to the critical visibility. If we adopt the traditional
formulation of the LP problem:

max cTx subject to Ax = b, 0 6 x 6 1, (8)

then, for the problem stated above, we have:

A =































































1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1/4 − P (0, 0, |A1, B1)
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1/4 − P (0, 1, |A1, B1)
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1/4 − P (1, 0, |A1, B1)
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1/4 − P (1, 1, |A1, B1)
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1/4 − P (0, 0, |A1, B2)
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1/4 − P (0, 1, |A1, B2)
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1/4 − P (1, 0, |A1, B2)
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1/4 − P (1, 1, |A1, B2)
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1/4 − P (0, 0, |A2, B1)
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1/4 − P (0, 1, |A2, B1)
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1/4 − P (1, 0, |A2, B1)
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1/4 − P (1, 1, |A2, B1)
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1/4 − P (0, 0, |A2, B2)
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1/4 − P (0, 1, |A2, B2)
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1/4 − P (1, 0, |A2, B2)
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1/4 − P (1, 1, |A2, B2)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0































































,

c =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
]

,

b =
[

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4 1

]

,

x =
[

plr(0000) plr(0001) plr(0010) . . . plr(1111) v
]

.

(9)

Let us observe that the above LP depends solely on the set of observables A1, A2, B1, B2 that the
observers choose from during the measurements. In our experimental situation any observable can
be (and in practice is) effectively parametrised by a pair of angles θ, φ so our rightmost probabilities
become

P (ra, rb|Ai, Bk) ≡ P (ra, rb, θ
A
i , φ

A
i , θ

B
k , φ

B
k ). (10)

The details of why such a parametrization takes place can be found in [9] so are omitted here.
However, what is important is that the critical visibility can be defined as the following function of
the angles parameterising the observables.

vc(θ
A
1 , φ

A
1 , θ

A
2 , φ

A
2 , θ

B
1 , φ

B
1 , θ

B
2 , φ

B
2 ) ∈ [0, 1] (11)

5



3.2. Minimal critical visibility

A single evaluation of this function is the lower-level task, requiring the solution of the LP
problem described above with the maximum of the cost function z as the critical visibility function’s
value. Our ultimate goal is to minimize (11), thus arriving at the minimal critical visibility,
the non-classicality measure that we seek. The minimization of the critical visibility function is the
higher-level non-convex non-linear optimization task mentioned in Section 1.

The following sections contain much discussion, both about individual LPs and the higher-level
optimization. Hence, we would like to clarify certain vocabulary here. We will from now on use the
expression “solve an LP” interchangeably with “calculate the value of the critical visibility func-
tion”, and the expression “minimize the critical visibility function” interchangeably with “execute
the higher-level optimization procedure”. We will also say “solve a sequence of LPs leading to the
minimum of the critical visibility function”, as this is exactly what the higher-level optimization
procedure does. It requests a number of critical visibility function values (each of which requires
the solution of a separate LP) in order to minimize it.

This work is mainly concerned with the method of obtaining numerical results rather than the
results themselves. Therefore, for simplicity we will only analyse a single quantum entangled state
called the Greenberger-Horne-Zeilinger (GHZ) state described in [10, 11].

3.3. Redundancy in the problem formulation

One of our first findings was that the LPs constructed as described above contain a significant
proportion of redundant constraints which increases with the problem size. For the 65536x65536
problem, where the first number is the number of rows excluding the summation of probabilities
and the second is the number of variables excluding the visibility, only 6561 rows are needed for full
formulation of the LP problem. We found that, when constructing the matrix A, it is possible to
skip the rows according to the following rule. If d is the number of possible measurement outcomes
(in our case d = 2), then:

Rule 1. A row is redundant if its last column contains probabilities of measurements for which any

of the observers obtained a result equal to d − 1 while measuring an observable with index higher

than 1.

In our example this means that one can skip rows 6, 8, 11, 12, 14, 15, 16. It is also
possible to skip the last row representing the summation of probabilities to one since it is never
needed. So, since 8 of 17 rows of matrix A can be removed, the rank of the problem matrix
(A) is 9. The percentage of redundant rows in matrix A is, therefore, slightly less than 50%.
This percentage, however, increases rapidly with the problem size and allows us to get rid of
more than 90% of the rows for sufficiently large problems. This finding significantly sped up
calculations both with the matrix-free interior point method and with the simplex method (GLPK).

Let us observe that, typically, both the number of rows and the number of variables in our LPs
are multiples of 2 so, from now on, we will use ‘k’ to mean 1024, so the 65536x65536 problem will
become problem 64kx64k. Thus the problem name refers to its origin (since it is informative for
researchers in the field of quantum information science) but the size quoted for the problem is that
of the LP after elimination of redundancy. Furthermore, since all the problems analysed in this
paper are square, we will skip one of the dimensions and problem 64kx64k will also be referred to
as problem 64k.
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4. Original approach

The original approach adopted by the authors of [3] used the implementation of the simplex
method [12] from the GLPK library [4] for solving the lower-level LP task, and the downhill simplex
method (DSM) [13] from the SciPy package [14] as the higher-level non-linear optimizer. As shown
in [7, 15] the critical visibility function is continuous but not differentiable so a robust higher-level
optimizer was needed. The DSM is a good fit since, in the vast majority of cases, it can be applied to
any continuous function. It is worth mentioning that these two optimization techniques (the simplex
method for LP and the DSM) are extremely powerful tools that have been used successfully in a
plethora of applications. However, both of them have occasional drawbacks. The simplex method
may struggle when applied to degenerate LP problems [16] and the DSM is not guaranteed to
converge to even a local minimizer [17]. The implementation has since been revised and now uses
a newer version of the GLPK library (4.47 instead of 4.31) and a different implementation of DSM
[18]. This new code is called steam-roller2. It exploits the property that the LP problems being
solved in sequence are related to one another and differ only in the last column of A, allowing the
simplex solver to hot-start its solution procedure.

A typical execution of the method chooses random angles as a starting point for the higher-
level DSM optimization procedure. These angles are used to generate the first LP and its solution
yields the value of the critical visibility function for the starting point. The DSM then modifies the
angles as it sees fit and another LP is then generated and solved to calculate the critical visibility
function value for the new angles. The procedure thus generates a sequence of LPs, each of which
is solved by the simplex method. Finally, after a couple of hundred of such steps, the minimum of
the continuous non-differentiable critical visibility function is found.

Such an approach had a number of advantages: the two algorithms were a good fit since the
DSM always converged and often returned the global minimum outright, and the simplex method
could take advantage of the similarities between the subsequent LPs. They were also very precise:
the results could be matched with known theoretical values (up to 15 significant digits). This is
very much the limit of the machine’s precision.

It was found, however, that the calculations slowed down when the problem size increased and
the GLPK simplex implementation struggled to solve the LP problems larger than 16k. The simplex
method for linear programming is a non-polynomial algorithm. Indeed, there does not exist a
polynomial bound on the number of iterations that it may need to solve a given LP and occasionally
it may need to perform a huge number of iterations. Although in practice such situations are rare
[16] the LPs which model the critical visibility seem to challenge the simplex method. The solution
of a single LP may require hours (or days) of computations so, since a sequence of hundreds of such
LPs may have to be solved, the whole approach is questionable.

We have made a radical change in the solution approach and decided to use an interior point
method (IPM) rather then the simplex method to solve the LPs. Such is the improvement of
efficiency delivered by the use of the matrix-free interior point method on these LPs that we
can afford to sacrifice the hot-start facility of the simplex method that would normally dictate
its superiority. IPMs enjoy a polynomial worst-case iteration complexity. Indeed, an LP with n
variables is solved to ε-optimality in O(

√
n log(1

ε
)) iterations [19]. These methods are generally

believed to be well-suited to the solution of very large scale optimization problems [20]. IPMs
converge to the optimal solution in very few iterations: they usually need only O(log n) iterations
to reach a solution of the problem with n variables. However, a single iteration might be costly.
A new variant, called the matrix-free IPM [5], removes this potential drawback. It replaces the
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exact Newton method with the inexact one and employs an iterative method based on conjugate
gradients to solve the underlying systems of linear equations. In the next section we describe briefly
the matrix-free interior point method and discuss in detail how it is applied to LPs which model
the critical visibility.

5. New approach

We start this section with a discussion of a general purpose interior point method for linear
programming and its special variant called the matrix-free interior point method. The reader
familiar with IPMs may skip this part. The reader interested in more detail on the theory and
implementation of IPMs should consult the excellent book of Wright [19] and the recent survey by
Gondzio [20], respectively. The matrix-free IPM itself is introduced by Gondzio [5].

5.1. Matrix-free interior point method

Consider the following linear optimization problem in general form

max cTx subject to Ax = b, x > 0, (12)

where A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm. An IPM approaches its solution by moving through the
interior of the orthant defined by the non-negativity constraints. This is achieved by removing the
non-negativity constraints and adding logarithmic barrier terms −µ lnxj to the objective function
to give the problem

max cTx− µ
n
∑

j=1

lnxj subject to Ax = b. (13)

The parameter µ controls the force of the logarithmic barrier so influences the distance of iterates
from the boundary of the positive orthant. This parameter is gradually reduced as the algorithm
progresses, in order to allow it to get arbitrarily close to the optimum which, for LP problems, is
always found on the boundary of the orthant [19]. The first order optimality conditions for (13)
are nonlinear equations of the form

Ax = b,

AT y + s = c, (14)

XSe = µe,

(x, s) > 0.

Here y ∈ Rm and s ∈ Rn, s > 0 are the dual variables (Lagrange multipliers) associated with the
linear equality constraint Ax = b and the linear inequalities x ≥ 0, respectively, e ∈ Rn is the
vector of ones and X (S) is a diagonal matrix in Rn×n with elements of the vector x (s) along
the diagonal. In interior point methods the system of equations (14) is solved using the Newton
method [5]. One IPM iteration calculates the Newton direction, making one step in this direction
and reduces the parameter µ. The Newton direction is obtained by solving





A 0 0
0 AT In
S 0 X









∆x
∆y
∆s



 =





ξp
ξd
ξµ



 =





b−Ax
c−AT y − s
σµe−XSe



 , (15)
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where In is the identity matrix of size n and σ ∈ (0, 1) represents the reduction of the parameter
µ in every iteration of the algorithm. We can transform (15) by eliminating ∆s = X−1(ξµ − S∆x)
to get the following symmetric but indefinite augmented system

[

−Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

=

[

ξd −X−1ξµ
ξp

]

, (16)

where Θ = XS−1. Further elimination of ∆x = Θ(AT∆y− f) gives the following system of normal
equations whose matrix of coefficients is symmetric and positive definite:

(AΘAT )∆y = g = AΘf + d. (17)

The component-wise products xjsj = µ are driven to zero (recall the 3rd equation in (14)) and
ultimately define an optimal splitting of indices j ∈ {1, 2, . . . , n} into two subsets: j ∈ B for which
xj = O(1) and sj = O(µ) and j ∈ N = {1, 2, . . . , n} \ B for which xj = O(µ) and sj = O(1).
Consequently, the diagonal scaling matrix Θ is very ill-conditioned: when µ approaches zero, the
elements Θj go to infinity or zero for indices j ∈ B or j ∈ N , respectively. The matrices of linear
systems (16) and (17) are therefore both very ill-conditioned. Different regularization techniques
have been proposed to cure this ill-conditioning. Following Saunders [21], Altman and Gondzio [22]
propose regularizing both the primal and the dual formulation of the problem, replacing (16) by

[

−(Θ−1 + Rp) AT

A Rd

] [

∆x
∆y

]

=

[

f ′

d′

]

. (18)

Here Rp ∈ Rn×n and Rd ∈ Rm×m are the dynamically chosen primal and dual positive definite
diagonal regularization matrices and f ′ ∈ Rn and d′ ∈ Rm are appropriately computed right hand
side vectors. The regularized version of the normal equations is obtained by pivoting on the (1, 1)
block of (18) to give

(A(Θ−1 + Rp)
−1AT + Rd)∆y = g = AΘf ′ + d′, (19)

Thus the matrix G = AΘAT in (17) is replaced by GR = A(Θ−1 + Rp)−1AT + Rd in (19).
The matrix-free interior point method [5] applies the inexact Newton method to (15). It replaces

(17) by the regularized system (19) and applies the preconditioned conjugate gradients algorithm
to solve (19) only approximately, and to rather loose accuracy. The resulting solution ∆y is used to
compute the corresponding ∆x and ∆s, but clearly the complete Newton direction (∆x,∆y,∆s) is
only an approximate solution to (15). It is an inexact Newton direction for the first order optimality
conditions (14).

To accelerate the convergence of the conjugate gradients method the system is preconditioned
by a matrix P to reduce its condition number κ so that

κ(P−1GR) ≪ κ(GR). (20)

For matrix-free IPM, a specially designed preconditioner [5] is identified as follows. Consider the
rank k partial Cholesky decomposition

GR =

[

L11

L21 I

] [

DL

S

] [

LT
11 LT

21

I

]

, (21)
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where S ∈ R(m−k)×(m−k) is the Schur complement obtained by eliminating k pivots, L = [LT
11 L

T
21]T

is a trapezoidal matrix containing the first k columns of the Cholesky factor of GR and DL ∈ Rk×k

is a diagonal matrix containing the k largest pivots of GR. The preconditioner

P =

[

L11

L21 I

] [

DL

DS

] [

LT
11 LT

21

I

]

(22)

is (21) with the Schur complement matrix S replaced by its diagonal DS .
The rank k of the partial Cholesky decomposition is carefully chosen to obtain an optimal trade-

off between precision and execution time. In general the approximation becomes more precise as
the rank increases, but greater effort has to go into its computation and use. When k = m the
Cholesky decomposition is complete: there is no Schur complement matrix and P−1GR = I so
the conjugate gradients method terminates in one iteration. However, for reasons of efficiency, we
always set k ≪ m. The choice of rank of the partial Cholesky used in the LP problems considered
in this paper will be discussed in the following sections.

Another important feature of the matrix-free interior point method is its ability to allow for an
implicit treatment of matrix A [5]. This is relevant when A is very large and therefore requires a
lot of memory to store. This is clearly the case for LPs arising in quantum information problems.
The matrix-free IPM needs only the following results of operations performed with matrix A.

(i) Multiply the matrix A and vector x.

(ii) Multiply the matrix AT and vector y.

(iii) Retrieve an arbitrary column of the matrix AΘAT .

(iv) Retrieve the diagonal of the matrix AΘAT .

Therefore, neither matrix A nor matrix GR needs to be fully stored in order to solve (19). All
that is needed is the implementation of the above operations. In the following sections we will
discuss the implications of this feature and we will illustrate the practical behaviour of the method
both in terms of the memory and CPU time requirements.

5.2. Implementation

As described above the matrix-free interior point method requires implementations of a number
of operations which define the LP. Here is a full summary:

(i) f a times x : the product of the matrix A and vector x, which is a parameter,

(ii) f at times y : the product of the matrix AT and vector y, which is a parameter,

(iii) f get col aat : the the i-th column of the matrix AΘAT , where i is a parameter,

(iv) f get diag aat : the diagonal of the matrix AΘAT .

We implemented them all in a program integrating steam-roller2 and the matrix-free interior
point method of HOPDM software [5].

5.2.1. Performance optimization

The above functions are called very frequently during program execution and are responsible
for a significant percentage of the CPU time used. Hence, it is essential that they are implemented
efficiently. Our implementations are based on a row-wise storage of the matrix A. For each row
only the column indices of non-zeros are stored to save space (with the exception of the last column
of the matrix, for which real values in the interval [0, 1] also need to be stored). This turned out to
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be a very efficient method of storage, with a 64k problem consuming less than 10 MB of memory.
Indeed, after the redundancy of the problem has been removed, the memory required to store the
problem grows sub-linearly with its dimension. There are two reasons for this:

1. The vast majority of nonzero entries are equal to 1.

2. The percentage of redundant constraints increases with the problem size.

Our first implementations contained solely the definition of how each of the operations should be
performed in the C programming language (without any optimization) and showed how much room
for optimization there was. All results in this section are obtained from a development workstation
and are, therefore, non-indicative in terms of absolute times and a production code would be
much faster (see next section for production code results). Table 1 contains output from the UNIX
operating system’s profiler gprof when solving a single 16k problem. After reduction of redundancy
we have m = 2187 and n = 16385, the latter being 16 × 1024 plus one variable representing the
visibility. We report the number of calls of each routine, the CPU time (in seconds) per 1000 calls,
and the percentage of overall solution time spent while executing a given routine.

operation calls time / 1000 calls % of total time

f a times x 12306 1.255 13.22
f at times y 11307 3.766 36.46
f get col aat 1000 ≈ 0 ≈ 0
f get diag aat 10 ≈ 0 ≈ 0

Table 1: Execution time profile for a single 16k LP with unoptimized functions.

Only the costs of f a times x and f at times y are significant, accounting for about half of
the execution time, so the following optimizations were performed to improve their efficiency.

Optimization of f a times x . Since all columns of A apart from the last contain either ones
or zeros, the contributions of these entries in a summation Ax = u are either skipped (if zero) or
added (if one) when the intermediary sum builds a particular component of the resulting vector.
Thus the multiplication by one that would occur in general is skipped. For sufficiently large
problems (larger than 256) loop unrolling is performed (following an established practice described,
for example, by Sarkar and Vivek [23] and commonly used in, for example, LAPACK [24]). Each
row contains the same number of non-zero elements. These are divided into groups of 16 and
added to the intermediate sum all at once. This reduces the loop control overhead and yields an
almost two-fold speed-up of the f a times x routine (see Table 2).

operation calls time / 1000 calls % of total time

f a times x 11943 0.677 9.07
f at times y 10944 2.404 29.50

Table 2: Execution time profile for a single 16k LP with loop unrolling.

Optimization of f at times y . As for f a times x , multiplication by one is skipped and
loop unrolling is performed. Here it is somewhat less efficient due to the row-wise storage of
matrix A (see Table 2). The intermediate sums have to be stored in the resulting n-dimensional
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vector itself and, despite loop unrolling, they are frequently accessed at each step of the algorithm.
Further speed-up was achieved when column-wise storage of matrix A was used. This enabled
us to use intermediary sums and store them only once in the resulting vector, just as in the case
of f a times x . As mentioned at the beginning of this section, storage is very efficient so we
can safely afford to store a duplicate copy of the problem matrix. The implementation of loop
unrolling for the column-wise storage was more difficult due to the different number of nonzero
elements in columns, with even very large problems containing multiple columns with one, three
or five elements. After a considerable effort, resulting in more than a hundred lines of loop
unrolling code, we achieved the significant speed-up seen in Table 3. The total resulting speed-up
of f at times y after optimizations is more than three-fold compared to unoptimized version of
the function.

operation calls time / 1000 calls % of total time

f a times x 11697 0.694 11.19
f at times y 10698 0.955 14.08

Table 3: Execution time profile for a single 16k LP (f at times y uses the column-wise storage of A and an optimized
loop unrolling).

We do not provide total execution times as they are not informative. This is due to the
order of additions and the associated numerical errors, causing the optimized and unoptimized
implementations to differ in the last significant digits and, hence, gradually alter the path to
optimality taken by the matrix-free interior point method. This is also the reason why the optimized
and the unoptimized implementations have different numbers of function calls. Having run the
program many times for different input we noticed a significant variation in the number of calls
between the optimized and unoptimized functions and it is safe to assume that the difference does
not favour either implementation. Neither of the two versions is numerically superior to the other
in terms of precision and they would behave identically if no numerical errors were present.

Significant overall speed-up of execution in the range 25–75% was observed after implementing
the above improvements.

5.2.2. Precision

Obtaining sufficient precision was the major challenge of our investigations. It depends on a
number of parameter settings and we have made a considerable effort to choose these parameters
optimally. In the results reported below we analyse problems with d = 2 so there are two possible
outcomes for any measurement (0 or 1), 2 observables per each observer and increasing numbers
of observers. In this setting the problem size grows four-fold each time an observer is added to
the problem. So the minimal problem with 2 observers is 16, the problem with 3 observers is 64.
However, after eliminating redundancy, the size of LP increases three-fold with each additional
observer.

The rank of partial Cholesky determines precision since, when it is large, it allows for more
precise direction calculations. It cannot, however, be increased indefinitely lest the execution
time exceed that of the simplex-based approach. We found a value of 100 to be optimal for
our computations and we used it for all problem sizes. As a result, for LP problems of size 100
or less the preconditioner is exact so conjugate gradients is exact in one iteration and the interior
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point method uses the exact Newton direction. Since problems 256 and 1k (with 4 and 5 observers
respectively) yield LPs of size 81 and 243 respectively, we only analyse problems with at least 5
observers since only for these problems is conjugate gradients non-trivial.

The matrix-free interior point method applies the preconditioned conjugate gradients algorithm
to the system (19) and uses the partial Cholesky preconditioner (22). The solution of (19) is
controlled by two parameters: the maximum number of conjugate gradient iterations allowed and
the desired precision achieved by the algorithm. The use of high accuracy and/or setting a large
conjugate gradients iterations limit might increase the execution time but these settings are needed
to provide the accuracy required by (inexact) Newton directions. We vary these settings and start
from a lower iteration limit at the first steps of IPM, gradually increasing it to 1000 towards the
end of optimization. We also set the relative error tolerance in the CG algorithm to εCG = 10−6.

Another parameter which influences the precision of the method is the optimality tolerance ǫ
used to terminate the IPM when

|cTx− bT y|
|cTx| + 1

≤ ǫ, (23)

where c, b, x, y are defined in Section 5.1. We set ǫ = 10−5 for all problems.

With the above settings we managed to obtain two-digit exact optimal solutions for all problems
up to 16k that were attempted. We also achieved a precision of ±25% in the solutions for larger
problems. Although these solutions are less accurate than those published in [3] they are sufficiently
accurate to elicit the qualitatively important properties of most states. In practice the results are
typically much more precise than this worst-case value, as may be seen in the tables in Section 6.

6. Performance comparison

We begin our comparison with individual LPs solved by the two approaches: the simplex
method (GLPK) and the matrix-free interior point method (HOPDM). Results in this section are
based on runs on a computer with an Intel R© CoreTM i7 3.07GHz processor and 24 GB of RAM.
Computational tests are performed using a Bell experiment with 2 observables per observer since
the minimal critical visibility of the GHZ state is known and given in [25] as

min vc = 2
1−n

2 , (24)

where n is the number of observers.
Table 4 reports the worst-case precision obtained with the matrix-free interior point method

during an execution of the program which stopped after one hundred critical visibility function
evaluations. This means that one hundred LPs were generated and solved successively. The angles
used to generate LPs were provided by the higher-level optimization method (DSM), as in a typical
execution of the program. For a given number of observers, each line in Table 4 reports different
execution results, one for each problem size. The rank of the problem matrix corresponds to the
number of rows in the constraint matrix after the redundancy is removed. For all problems solved
with both solvers (GLPK and HOPDM) the solution results have been compared. The last column
in the table contains the largest difference between the objective returned by GLPK (which have
been confirmed repeatedly to be correct and precise) and by matrix-free HOPDM.
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observers problem size problem rank the largest difference

5 1k 243 0.006535
6 4k 729 0.006738
7 16k 2187 0.003662

Table 4: Worst-case precision for 100 consecutive LPs of each problem size.

In Table 5 we report the time required by the two solvers, the expected solution and the optimal
objective function value (critical visibility) returned by HOPDM. The value returned by GLPK
always matched the expected solution obtained analytically so it is skipped from the tables. Values
calculated with (24) are given in the solution column of the table. The angles used to generate
each LP were the same for both GLPK and HOPDM. They were also minimal for each problem for
the GHZ state. Each line in Table 5 corresponds to one LP. Problems 64k and larger were scaled
so that the returned value was in fact 8 times greater. This helped preserve the precision of the
results, where the value of the solution is close to zero. As one can see from studying the table
some of them are still off by a small fraction, which is the expected speed-accuracy trade-off.

problem
Simplex
Method

Interior Point
Method

n name size solution time time solution

4 256 81 0.354 ≈ 0s ≈ 0s 0.354
5 1k 243 0.250 0.02s 0.08s 0.250
6 4k 729 0.177 0.93s 0.87s 0.177
7 16k 2187 0.125 1m13s 11.88s 0.125
8 64k 6561 0.088 6h51m 3m22s 0.088
9 256k 19683 0.063 ≫ 24h 28m38s 0.068

10 1m 59049 0.044 unknown 1h34m 0.051
11 4m 177147 0.031 unknown 9h15m 0.029

Table 5: Comparison of the performance of the simplex method (GLPK) and interior point method (HOPDM) applied
to solve a single LP. The n column represents the number of observers in a Bell experiment with 2 observables per
observer. Minimal angles for the GHZ state were used in each case. The solution column contains results obtained
analytically. The results returned by the simplex method always matched the analytical values so they are omitted.

The analysis of results collected in Table 5 reveals that the simplex method is faster for smaller
problems but its solution time grows very quickly with problem size. For problem 16k (of size 2187)
GLPK is already an order of magnitude slower than HOPDM.

Computations using GLPK for problem 256k were terminated after about 24 hours and com-
putations for problem 1m were not even attempted as they cannot be expected to complete within
any reasonable time. HOPDM times, on the other hand, increase roughly linearly with problem
size, with successive factors being 10.9, 13.66, 17.00, 8.50, 3.29, 5.88. This confirms that there is
no explosion of algorithm steps to take when solving the LP as the problem size increases. One can
expect that the computation time will increase linearly with the rank of the problem matrix (and
depend very little on the number of variables in the problem).

It should be noted, however, that the simplex method has a significant advantage over the
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interior point method when a sequence of similar LPs are solved. Successive LPs differ merely by
the last column in the matrix A which contains the angles and therefore one may expect that the
solutions of two successive problems are similar. The simplex method in GLPK has an option which
allows the optimal solution of one problem to be used to warm-start another and this technique
proved very useful. Although, in general, it is possible to use the warm-starting facility of IPMs,
this option is not available for the matrix-free variant of IPM. Therefore another comparison which
reflects this relative advantage of the simplex method is needed. The results collected in Table 6
demonstrate the performance of the complete approach which uses DSM to solve the upper level
optimization problem and employs either the simplex method (GLPK) or the matrix-free interior
point method (HOPDM) to solve the LPs at the lower level. For both variants of the program
we report the number of LPs solved, the overall time of running the program and the optimal
function value. We report only two significant digits of the result which corresponds to the pre-
cision requested from the DSM procedure. We also leave out problems larger than 64k both in
the simplex method and in the interior point method case. The simplex method is simply not
capable of delivering a solution to such large problems in a reasonable time. Replacing the simplex
method with the matrix-free interior point method made possible the solution of problems which
are orders of magnitude larger. However, this advantage come at a price because the accuracy of
solutions which may be delivered with the matrix-free IPM is limited. The cumulative precision
error introduced by inaccurate solutions misguides the DSM procedure and may eventually hamper
its convergence. This is the case for problems larger than 64k so they are omitted in Table 6. Let
us mention, however, that deducing potential minimal angles is possible and frequently applied
[25]. Therefore, even when full DSM minimization is not possible as in the case of problems larger
than 64k, single LP calculations are still of paramount value for researchers in the field as they are
a way to calculate the critical visibility for the deduced minimal angles.

problem Simplex Method Interior Point Method

n name size solution # LPs time # LPs time solution

2 16 9 0.71 44 ≈ 0s 44 0.05s 0.71
3 64 27 0.50 78 ≈ 0s 78 0.13s 0.50
4 256 81 0.35 156 0.07s 156 0.90s 0.35
5 1k 243 0.25 231 1.67s 161 21s 0.25
6 4k 729 0.18 251 56s 265 5m28s 0.18
7 16k 2187 0.13 346 2h00m 330 56m52s 0.13

Table 6: Efficiency comparison of two approaches for computing the minimal critical visibility of the GHZ state.
Subsequent LPs are solved with the simplex method (GLPK) and the matrix-free IPM (HOPDM). The n column
represents the number of observers in a Bell experiment with 2 observables per observer. The solution column contains
results obtained analytically. The results returned by the simplex method always matched the analytical ones so they
are skipped from the table.

In both cases the same set of angles (drawn randomly beforehand) were provided to DSM as
a starting point for the optimization process. Since GLPK and HOPDM return slightly different
results for a single LP, the execution of DSM differs slightly (as one can deduce from the different
number of LPs generated). Both, however, return the same correct result to within two-digits.

For the three smallest problems the number of LPs solved by both approaches are the same.
This is because the number of constraints for first three problems in our test set (9, 27 and 81)
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Figure 1: Comparison of the range of single-LP problems possible to solve with the simplex method and the interior
point method in 24 hours or less. Gray indicates problems possible to solvable with both the interior point and
the simplex method, black indicates problems solvable with the interior point method only. Light-grey indicates
problems, which could potentially be solved with the interior point method, if sufficient RAM was available. For each
square the same number of observables was available to all observers in the experiment and is given on the “number
of observables” axis.

are less than the rank of the partial Cholesky preconditioner so the latter is the complete Cholesky
decomposition of GR. This perfect preconditioner allows the matrix-free IPM to produce very
accurate optimal solutions. Analysis of results collected in Table 6 confirms an advantage of the
simplex method approach over the matrix-free interior point method for smaller problems. However,
it also indicates that for the largest problem (16k) the latter approach provides better efficiency.

7. Comparison of range of problems within reach

Finally let us present a broader range of single-LP problems that it is possible to solve with the
simplex method and the interior point method. Table 7 and Figure 1 summarize this comparison.
For each count of observers we solved the minimal problem and steadily increased the number of
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observables available to each of the observers by one (that is, for 2 observers we began with a
2x2 observable configuration, then tried 3x3, 4x4 and so on). We continued this process until we
encountered a problem which either used too much RAM or exceed a 24 hour computation time
threshold. We selected 24 hours as a threshold as we found that this is a maximal period which
allows comfortable trial and error work with different states (used e.g. in [3]).

As one can see in both Table 7 and Figure 1, for each count of observers experiments with
greater number of observables are within reach of the interior point method. By “within reach” we
mean that it is possible to compute them on our production machine in 24 hours or less. Also, a
greater number of observers is within reach of the interior point method than of the simplex method
in the case of the minimal number (2) of observables. It should also be noted that, as with all other
results presented in this section, we were limited to the 24 GB of RAM available on the machine we
used for the computations. Thus, a number of problems can be expected to complete in a reasonable
time, but it was not possible to verify it due to limited RAM. We indicated such problems in both
the table and the figure. Our rule of thumb for distinguishing problems potentially possible to solve
from the ones definitely beyond our reach, even with enough RAM, is very approximate and roughly
based on the sequence of time-increase factors (see Table 5). We assumed that if the preceding
problem can be solved in about 2 hours or less, then the next problem could potentially be solved
in 24 hours or less. Our estimation is obviously not precise and the results in the right-most column
of the table should be treated as directions of future investigation, when machines with more RAM
are available.

Simplex Method Interior Point Method

n
Maximal #

of observables
Maximal #

of observables
Time

required

Potentially
within reach

with more RAM

2 11x11 12x12 22m 13x13
3 7x7x7 8x8x8 1h15m 9x9x9
4 5x5x5x5 6x6x6x6 22h11m -
5 3x3x3x3x3 4x4x4x4x4 2h00m 5x5x5x5x5
6 2x2x2x2x2x2 3x3x3x3x3x3 41m 4x4x4x4x4x4
7 2x2x2x2x2x2x2 3x3x3x3x3x3x3 9h23m -
8 2x2x2x2x2x2x2x2 2x2x2x2x2x2x2x2 3m 3x3x3x3x3x3x3x3
9 - 2x2x2x2x2x2x2x2x2 28m 3x3x3x3x3x3x3x3x3

10 - 2x2x2x2x2x2x2x2x2x2 1h34m 3x3x3x3x3x3x3x3x3x3
11 - 2x2x2x2x2x2x2x2x2x2x2 9h15m -

Table 7: Comparison of the range of single-LP problems possible to solve with the simplex method and the interior
point method in 24 hours. The “Potentially within reach with more RAM” column lists those problems, for which
the preceding problem’s solution time was 2 hours or less.

8. Conclusions

Minimal critical visibility of a quantum entangled state is a very useful measure in quantum
information. However its computation poses a substantial numerical challenge. At the heart of
this challenge lie the very large linear programming problems, the solution of which is necessary
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each time the critical visibility itself is calculated. Previous work always used the simplex method
to solve these LPs, an approach providing satisfactory precision in the computed results, but
restricting researchers to a limited range of problems which can be solved. We proposed to replace
the simplex method with an advanced matrix-free interior point method HOPDM and found that
it enabled us to analyse problems much faster and extend our investigations to more complicated
ones, which were not previously within our reach. We found that even though the results provided
by the interior point method were less precise, they sufficed to analyse, order and compare quantum
entangled states, even in complicated cases.
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