
A high performance dual revised simplex solver

J. A. J. Hall and Q. Huangfu∗

School of Mathematics
and Maxwell Institute for Mathematical Sciences

The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ

United Kingdom.

Technical Report ERGO-11-007†

12th May 2011

Abstract

When solving families of related linear programming (LP) problems and many classes
of single LP problems, the simplex method is the preferred computational technique. Hith-
erto there has been no efficient parallel implementation of the simplex method that gives
good speed-up on general, large sparse LP problems. This paper presents a variant of the
dual simplex method and a prototype parallelisation scheme. The resulting implementation,
ParISS, is efficient when run in serial and offers modest speed-up for a range of LP test
problems.

Keywords: Linear programming, Dual revised simplex method, Parallel algorithms

∗Email: J.A.J.Hall@ed.ac.uk
†For other papers in this series see http://www.maths.ed.ac.uk/ERGO/

1



A high performance dual revised simplex solver 1

1 Introduction

When solving families of related linear programming (LP) problems and many classes of single
LP problems, the simplex method is the preferred computational technique in the academic and
commercial worlds. There is, therefore, considerable motivation for exploring how the simplex
method may exploit modern high performance computing (HPC) desktop architectures. This
paper describes a variant of the dual simplex method that offers scope for exploiting such archi-
tectures. The relevant background is set out in Section 2 and a dual simplex variant, prototype
parallelisation scheme and implementation as ParISS are described in Section 3. Computational
results using ParISS are given in Section 4 and conclusions in Section 5.

2 Background

A linear programming (LP) problem in standard form is

minimize cT x
subject to Ax = b

x ≥ 0,
(1)

where x ∈ IRn and b ∈ IRm. It may be assumed that the matrix A is of full rank.

In the simplex method, the indices of variables are partitioned into sets B corresponding to m
basic variables xB, and N corresponding to n − m nonbasic variables xN , such that the basis
matrix B formed from the columns of A corresponding to B is nonsingular. The set B itself is
conventionally referred to as the basis. The columns of A corresponding to N form the matrix
N . The components of c corresponding to B and N are referred to as, respectively, the basic
costs cB and non-basic costs cN .

When each nonbasic variable is set to zero, the basic variables take the values b̂ = B−1b and
if they are non-negative then the partition {B,N} is primal feasible. The reduced costs are
ĉT

N = cT
N − cT

BB−1N and if they are non-negative then the partition is dual feasible. Primal
and dual feasibility is a necessary and sufficient condition for {B,N} to be optimal. The primal
simplex method modifies primal feasible partitions until dual feasibility is achieved. Conversely,
the dual simplex method modifies dual feasible partitions until primal feasibility is achieved.

A full discussion of the dual simplex method and modern techniques for its efficient implemen-
tation are given by Koberstein [11]. At the start of any iteration it is assumed that there is an
invertible representation of B, that xN = 0, that values of b̂ = B−1b are known and not feasible,
and that the values of ĉT

N are feasible. An outline of the computational components of a dual
simplex iteration is given in Figure 1, where ep is column p of the identity matrix. Although
dual feasibility is assumed, the algorithm is readily adapted to state-of-the-art techniques for
achieving dual feasibility, as presented by Koberstein and Suhl [12].

In CHUZR, the immediate quality of a candidate to leave the basis is the amount by which it
is negative. Efficient dual simplex implementations weight this quality by (a measure of) the
magnitude of the corresponding row of B−1, the most popular being the steepest edge weight of
Forrest and Goldfarb [4] which, for row p, is sp = ‖B−1ep‖2. To update these weights requires
the pivotal column âq and τ = B−1âq. Although calculating τ adds significantly to the cost



A high performance dual revised simplex solver 2

CHUZR: Scan b̂ for the row p of a good candidate to leave the basis.
BTRAN: Form πT

p = eT
p B−1.

PRICE: Form the pivotal row âT
p = πT

p N .
CHUZC: Scan the ratios ĉj/âpj for a good candidate q to enter the basis.

Update ĉT
N := ĉT

N − βâT
p , where β = ĉq/âpq.

FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.
Update b̂ := b̂− αâq, where α = b̂p/âpq.

If {growth in representation of B} then
INVERT: Form a new representation of B−1.

else
UPDATE: Update the representation of B−1 corresponding to the basis change.

end if

Figure 1: Operations in an iteration of the dual revised simplex method

of an iteration, the investment usually more than pays off due to the steepest edge strategy
reducing the number of iterations.

For the efficient implementation of the revised simplex method, the means by which B−1 is
represented is of fundamental importance. It is based on an LU decomposition of some basis
matrix B0, determined by a sparsity-exploiting variant of Gaussian elimination as discussed, for
example, by Tomlin [18] and Suhl and Suhl [17]. Invertible representations of subsequent basis
matrices are obtained by updates until it is preferable on grounds of efficiency or numerical
stability to form a new representation via Gaussian elimination. There are many approaches to
updating the invertible representation of the basis matrix, the simplest of which is the product
form update of Dantzig and Orchard-Hays [3].

2.1 Suboptimization

When in-core memory was severely restricted, a popular variant of the primal revised simplex
method incorporated minor iterations of the standard (tableau) primal simplex method restricted
to a small subset of the variables. This is described by Orchard-Hays [14] and is referred to as
multiple pricing. Rosander [15] applied the concept to the dual simplex method, using the term
suboptimization, performing minor iterations of the standard dual simplex method restricted to
a small subset of the constraints. An outline of the computational components of a dual simplex
iteration with suboptimization and steepest edge pricing is given in Figure 2.

The disadvantages of using suboptimization for the dual simplex method are that, after the first
minor iteration, P may not contain the row of the best (global) candidate to leave the basis,
and for some of the rows in P the candidate may no longer be attractive. Thus the number of
iterations required to solve the LP problem may increase, and the work of computing some of
the pivotal rows may be wasted.

2.2 Parallelising the simplex method

Previous attempts to develop simplex implementations with the aim of exploiting HPC architec-
tures are reviewed by Hall [7]. Work on exploiting parallelism in the revised simplex method has



A high performance dual revised simplex solver 3

CHUZR: Scan b̂p/sp for p = 1, . . . ,m to identify a set P of rows of good candidates to leave the
basis.

BTRAN: Form πT
p = eT

p B−1, ∀ p ∈ P.
PRICE: Form the pivotal row âT

p = πT
p N , ∀ p ∈ P.

Loop {minor iterations}
CHUZR_MI: Scan b̂ for the row p ∈ P of a good candidate to leave the basis.

If p is not defined End loop {minor iterations}.
CHUZC: Scan the ratios ĉj/âpj for a good candidate q to enter the basis.

Update ĉT
N := ĉT

N − βâT
p , where β = ĉq/âpq.

UPDATE_MI: Update P := P\{p} and ĉT
N := ĉT

N − βâT
p , where β = ĉq/âpq.

Update the rows âT
P and b̂P .

End loop {minor iterations}
For {each basis change} do

FTRAN1: Form âq = B−1aq, where aq is column q of A.
Update b̂ := b̂− αâq, where α = b̂p/âpq.

FTRAN2: Form τ = B−1âq.
Update sp for p = 1, . . . ,m.

If {growth in representation of B} then
INVERT: Form a new representation of B−1.

else
UPDATE: Update the representation of B−1 corresponding to the basis change.

end if
End do

Figure 2: Operations in an iteration of the dual revised simplex method with suboptimization
and steepest edge pricing

mainly been restricted to the primal simplex method, notably Forrest and Tomlin [5], Shu [16],
Hall and McKinnon [8, 9] and Wunderling [19, 20]. Only Bixby and Martin [1] considered the
dual simplex method, parallelising little more than the matrix-vector product πT

p N . This focus
on the primal simplex method is understandable since it is the more natural variant to study
and only since most of the work on parallel simplex was done has the dual simplex method
become the preferred variant.

No parallel implementation of the simplex method has yet offered significantly better perfor-
mance relative to an efficient serial simplex solver for general large scale sparse LP problems [7].
In two of the more successful implementations [8, 9], the limited speed-up came at the cost of
unreliability due to numerical instability. Thus any performance improvement in the revised
simplex method resulting from an efficient and reliable parallel implementation would be a
significant achievement.

Several parallel implementations [8, 9, 19, 20] exploited multiple pricing within the primal revised
simplex method. This had the attractive properties of independent computational components
that could be overlapped on multiple processors, and minor iterations of the standard simplex
method that offered immediate data parallelism. This paper considers the scope for parallelising
the dual simplex method with suboptimization.



A high performance dual revised simplex solver 4

INVERT

UPDATE_MI

3

2

1

0

CHUZC

FTRAN1

FTRAN1

BTRAN PRICE

BTRAN

BTRAN

BTRAN

PRICE

PRICE

PRICE FTRAN1

CHUZR

FTRAN2

FTRAN2

FTRAN2

Figure 3: ParISS: a prototype parallel implementation of the dual revised simplex with subopti-
mization

3 A parallel scheme and its implementation

This section introduces a prototype parallelisation scheme for the dual revised simplex method
with suboptimization and steepest edge pricing, together with the computational techniques
underlying its implementation as the solver ParISS. The inherent strengths and weaknesses of
both the parallel scheme and its implementation are discussed.

A parallelisation scheme

The following scheme exploits some, but by no means all, of the available task and data paral-
lelism in the dual revised simplex method with suboptimization. It is discussed in detail below,
taking the operations in Figure 2 in order. Its implementation, ParISS, assigns one tableau row
to each available core and Figure 3 illustrates an example of the distribution of operations in
the case of four cores.

Firstly, the relatively cheap CHUZR operation of selecting a set P of good candidates to leave
the basis is executed on just one core. Following this, the multiple BTRAN (πT

p = eT
p B−1), and

PRICE (âT
p = πT

p N) operations for p ∈ P are distributed over all cores. Since minor iterations
are performed with only a very small subset of rows, the CHUZR MI operation is trivial so is
performed by one core and not illustrated. The selection of the entering column performed by
CHUZC is relatively cheap so is also performed on one core. The minor iteration is completed by
UPDATE MI, in which the data parallel update of the dual simplex tableau rows (that remain
candidates) and the reduced costs ĉT

N is distributed over all cores. The trivial update of b̂P is
performed by the core that will perform CHUZR MI. Following the minor iterations, FTRAN
operations âq = B−1aq and τ = B−1âq for each basis change are distributed over all cores. If
INVERT is performed, it is executed serially, without overlapping any other computation.

Serial efficiency

In many earlier parallel implementations of the revised simplex method [7], the serial inefficiency
of the computational components yielded greater scope for parallel efficiency but the resulting



A high performance dual revised simplex solver 5

implementation was wholly inferior to a good serial solver. For a parallel simplex solver to be
of greatest practical value, it is important that its components are computationally efficient.
Not only must they exploit the sparsity of the constraint matrix, but they should consider the
more advanced techniques for exploiting hyper-sparsity identified by Hall and McKinnon [10]
that have led to huge performance improvements for important classes of LP problems.

Implementation of the scheme and its parallel efficiency

The aim of the prototype implementation, ParISS, is to identify the immediate scope for paral-
lelism when using efficient serial components. Like the underlying scheme, ParISS is not fully
parallel efficient. In particular, for convenience, it identifies a “master” core that is used for
computation when an alternative core might be preferable on grounds of data locality.

Figure 3 clearly illustrates the major parallel inefficiency in the scheme, that of INVERT being
performed serially with no other overlapping computation. There is a similar, but less serious,
source of parallel inefficiency when performing the very much cheaper operations CHUZR and
CHUZC. Both of these perform comparison operations on each component of a full-length vector,
so it may be significantly more efficient to distribute the data over multiple cores and accumulate
the results from each. In ParISS, CHUZC is performed on the master core rather than the core
where the pivotal row is likely to be available in cache.

Another source of parallel inefficiency in the scheme occurs if not all the candidates in P yield
a basis change, in which case the number of FTRAN operations may not be a multiple of the
number of available cores. In ParISS, a core performs both FTRAN operations if and only if its
(single) tableau row is pivotal. Thus, if the candidate variable in this row does not leave the
basis, the core performs no FTRAN operations. Figure 3 illustrates this in the case where the
last candidate in P does not leave the basis. With hindsight, this tableau row is computed and
updated unnecessarily but this is a serial consequence of suboptimization.

The idealised Gantt chart assumes that all BTRAN, PRICE and FTRAN operations have the same
computational cost but this is not so in practice when they are performed efficiently. Immediate
variance results from the fact that for FTRAN1 (âq = B−1aq) vector aq is a column of the
(sparse) constraint matrix whereas, for FTRAN2 (τ = B−1âq), âq may be a full vector. When
exploiting hyper-sparsity, the variance increases further. In ParISS, hyper-sparsity is exploited
partially during BTRAN and FTRAN, and fully during PRICE, with A being held row-wise and
combined according to the nonzeros in πp. Thus ParISS can also be expected to suffer from
parallel inefficiency due to load imbalance.

4 Results

ParISS, a prototype implementation of the dual revised simplex with suboptimization has been
developed in C++ with OpenMP using the techniques discussed in Section 3. Using the Intel
C++ compiler, the code was tested on a dual quad-core AMD Opteron 2378 system.

Experiments were performed using problems from the standard Netlib [6] and Kennington [2]
test sets of LP problems. Results are given in Table 1 for a subset of problems chosen as follows.
Of the original 114 problems, many are unrealistically small so the 84 that ParISS solved in less



A high performance dual revised simplex solver 6

Speed-up
Relative to 1 core Relative to Clp

Problem Rows Columns Entries 2 cores 4 cores 8 cores 1 cores 8 cores
25fv47 822 1571 11127 1.18 1.07 0.53 0.51 0.27
80bau3b 2263 9799 29063 0.94 1.03 0.85 0.21 0.18
cre-b 9649 72447 328542 0.86 1.27 1.07 1.13 1.21
cre-d 8927 69980 312626 1.16 1.33 1.68 0.90 1.51
degen3 1504 1818 26230 1.28 1.19 1.12 0.31 0.35
fit2p 3001 13525 60784 0.96 0.92 0.94 0.44 0.41
osa-14 2338 52460 367220 0.93 0.84 1.01 0.17 0.17
osa-30 4351 100024 700160 1.06 1.00 0.90 0.20 0.18
pds-06 9882 28655 82269 1.62 2.19 3.06 0.47 1.43
pds-10 16559 48763 140063 1.27 1.83 1.97 0.51 1.00
qap8 913 1632 8304 1.37 1.24 1.72 0.31 0.54
stocfor3 16676 15695 74004 1.80 2.57 3.39 0.13 0.46
truss 1001 8806 36642 0.98 1.08 1.10 0.46 0.50
Mean 1.16 1.28 1.30 0.37 0.48

Table 1: Speed-up of ParISS on up to 8 cores and performance relative to Clp

than one second were discounted. Of the remaining 30, ParISS failed to solve 14 in one or more
of the runs using 1, 2, 4 and 8 cores. To ensure that results are given for problems that ParISS
solves efficiently, observe that when a single core is used only one tableau row is computed
so ParISS executes the standard serial revised dual simplex algorithm. Thus its efficiency was
assessed by comparing ParISS on one core with version 1.06 of the COIN-OR [13] (serial) dual
simplex solver Clp. For the remaining 16 problems ParISS was more than ten times slower than
CLP on three, so these problems were also discounted. Thus the results in Table 1 are for the
13 LP test problems for which ParISS required at least one second of CPU on one core but were
solved efficiently on one core and successfully on 2, 4 and 8 cores.

As the results in columns 5–7 of Table 1 show, some speed-up was obtained for all but two of
the problems and the (geometric) mean speed-up was about 30% on 4 and 8 cores. Column 8
indicates the speed of ParISS on one core relative to Clp: ParISS was faster for only one problem
and was slower by a factor of 2.7 on average. However, using 8 cores, ParISS was at least as fast
as Clp for four problems, and 2.1 times slower on average.

5 Conclusions

For a prototype solver with the limited parallel efficiency recognised in Section 3, the results
in Table 1 are very encouraging, both in terms of speed-up and performance relative to Clp.
They demonstrate that it is possible to get a worthwhile performance improvement in an efficient
implementation of the dual revised simplex method by exploiting the scope for parallelism offered
by suboptimization when solving a range of sparse LP problems. Enhancements to the parallel
efficiency of the scheme and its implementation, together with improved serial performance of
its components are all the subject of current research.

References

[1] R. E. Bixby and A. Martin, Parallelizing the dual simplex method, INFORMS Journal



A high performance dual revised simplex solver 7

on Computing, 12 (2000), pp. 45–56.

[2] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann, An
empirical evaluation of the KORBX algorithms for military airlift applications, Operations
Research, 38 (1990), pp. 240–248.

[3] G. B. Dantzig and W. Orchard-Hays, The product form for the inverse in the simplex
method, Math. Comp., 8 (1954), pp. 64–67.

[4] J. J. Forrest and D. Goldfarb, Steepest-edge simplex algorithms for linear program-
ming, Mathematical Programming, 57 (1992), pp. 341–374.

[5] J. J. H. Forrest and J. A. Tomlin, Vector processing in the simplex and interior
methods for linear programming, Annals of Operations Research, 22 (1990), pp. 71–100.

[6] D. M. Gay, Electronic mail distribution of linear programming test problems, Mathematical
Programming Society COAL Newsletter, 13 (1985), pp. 10–12.

[7] J. A. J. Hall, Towards a practical parallelisation of the simplex method, Computational
Management Science, 7 (2010), pp. 139–170.

[8] J. A. J. Hall and K. I. M. McKinnon, PARSMI, a parallel revised simplex algo-
rithm incorporating minor iterations and Devex pricing, in Applied Parallel Computing,
J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, eds., vol. 1184 of Lecture Notes in
Computer Science, Springer, 1996, pp. 67–76.

[9] , ASYNPLEX, an asynchronous parallel revised simplex method algorithm, Annals of
Operations Research, 81 (1998), pp. 27–49.

[10] , Hyper-sparsity in the revised simplex method and how to exploit it, Computational
Optimization and Applications, 32 (2005), pp. 259–283.

[11] A. Koberstein, Progress in the dual simplex algorithm for solving large scale LP prob-
lems: techniques for a fast and stable implementation, Computational Optimization and
Applications, 41 (2008), pp. 185–204.

[12] A. Koberstein and U. H. Suhl, Progress in the dual simplex method for large scale LP
problems: practical dual phase 1 algorithms, Computational Optimization and Applications,
37 (2007), pp. 49–65.

[13] R. Lougee-Heimer et al., The COIN-OR initiative: Open source accelerates operations
research progress, ORMS Today, 28 (2001), pp. 20–22.

[14] W. Orchard-Hays, Advanced Linear programming computing techniques, McGraw-Hill,
New York, 1968.

[15] R. R. Rosander, Multiple pricing and suboptimization in dual linear programming algo-
rithms, Mathematical Programming Study, 4 (1975), pp. 108–117.

[16] W. Shu, Parallel implementation of a sparse simplex algorithm on MIMD distributed mem-
ory computers, Journal of Parallel and Distributed Computing, 31 (1995), pp. 25–40.

[17] U. H. Suhl and L. M. Suhl, Computing sparse LU factorizations for large-scale linear
programming bases, ORSA Journal on Computing, 2 (1990), pp. 325–335.

[18] J. A. Tomlin, Pivoting for size and sparsity in linear programming inversion routines,
J. Inst. Maths. Applics, 10 (1972), pp. 289–295.

[19] R. Wunderling, Paralleler und objektorientierter simplex, Tech. Rep. TR-96-09, Konrad-
Zuse-Zentrum für Informationstechnik Berlin, 1996.

[20] , Parallelizing the simplex algorithm. ILAY Workshop on Linear Algebra in Optimza-
tion, Albi, April 1996.


