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Abstract This paper introduces three novel techniques for updating the invertible
representation of the basis matrix when solving practical sparse linear programming
(LP) problems using a high performance implementation of the dual revised simplex
method, being of particular value when suboptimization is used. Two are variants of
the product form update and the other permits multiple Forrest-Tomlin updates to
be performed. Computational results show that one of the product form variants is
significantly more efficient than the traditional approach, with its performance ap-
proaching that of the Forrest-Tomlin update for some problems. The other is less
efficient, but valuable in the context of the dual revised simplex method with subopti-
mization. Results show that the multiple Forrest-Tomlin updates are performed with
no loss of serial efficiency.
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1 Introduction

For particular classes of linear programming (LP) problems and families of related LP
problems, the revised simplex method is generally the preferred solution technique.
The opportunities and limitations of modern computer architectures, together with
the desire to solve ever larger problem instances, continue to drive developments in
high performance computing techniques for the simplex method [14,19].
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The principal computational challenge when implementing the revised simplex
method is the efficient solution of linear systems of equations whose matrix of coef-
ficients is the simplex basis matrix or its transpose. There are standard efficient tech-
niques [22,24] to obtain an invertible representation of a particular basis matrix and
many more have been developed to update this representation by exploiting the rela-
tion between successive basis matrices, whereby one column is replaced as a result of
each simplex iteration. The original and simplest technique for updating the invertible
representation is the product form update of Dantzig and Orchard-Hays [6]. The class
of updates that is widely accepted as being the most efficient derive from the work of
Bartels and Golub [1], most notable being the techniques of Forrest and Tomlin [9],
Reid [20] and Suhl and Suhl [23]. Several other schemes have been proposed, and of
particular relevance to this paper is the work by Saunders et al. [8,12] and Hall [13]
on generalising the Schur complement update of Bisschop and Meeraus [3]. A recent
review of simplex update procedures is given by Elble and Sahinidis [7].

Motivated by the requirements of the high performance implementation of the
revised simplex method (hsol) developed by Huangfu and Hall [16], this paper in-
troduces three novel procedures for updating the invertible representation of the sim-
plex basis matrix. Section 2 introduces the background necessary to discuss the new
update procedures in Section 3. Results in Section 4 show that the serial performance
of two of them is competitive with traditional techniques and conclusions are offered
in Section 5.

2 Background

An LP problem in standard form is

minimize cT x subject to Ax = b, x≥ 0,

where x ∈ Rn and b ∈ Rm. It may be assumed that the matrix A is of full rank. In the
simplex method, the indices of variables are partitioned into sets B corresponding
to m basic variables and N corresponding to n−m nonbasic variables such that the
basis matrix B formed from the columns of A corresponding to B is nonsingular.
Each iteration of the simplex method chooses an index q ∈N to exchange with the
pth entry of B. The corresponding change in the basis matrix B may be expressed as

B̄ = B+(aq−Bep)eT
p . (1)

In the (primal or dual) revised simplex method the indices p and q are identified
by algorithmic techniques dependent on data obtained by solving linear systems of
equations of the form

Bx̂ = x (2)

x̂T B = xT (or BT x̂ = x), (3)

each at least once per iteration. The linear systems (2) and (3) are referred to as
the forward and transposed system respectively. In particular, each revised simplex
iteration requires the solution of the forward system

Bâq = aq (4)
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and the transposed system
êT

p B = eT
p . (5)

Such linear systems of equations are solved using an invertible representation of B
whose efficient identification and use represent the principal computational challenge
when implementing the revised simplex method.

There are standard efficient techniques [22,24] to obtain an invertible represen-
tation of a particular basis matrix directly, all of which use Gaussian elimination to
identify an LU decomposition of B. The operation of finding the invertible repre-
sentation directly in this way is referred to as INVERT and the matrix to which it is
applied is denoted by B0. Although INVERT involves row and column permutations,
for convenience and with no loss of generality, they may be ignored so B0 = L0U0.
This decomposition is represented as a product of elementary eta matrices of the form

E =


1 η1

. . .
...

ηp
...

. . .
ηm 1

 , (6)

where ηp is referred to as the pivotal entry or simply the pivot, and the remaining
entries in the pth pivotal column form the eta vector η , for which the pth entry is
zero.

The solution procedure for the forward system (2) is referred to as FTRAN and,
within it, the operation with E−1 is given by

E−1x : xp := xp/ηp and then x := x− xpη . (7)

For the backward system (3), the solution procedure is referred to as BTRAN and the
corresponding operation with E−1 is given by

xT E−1 : y = xT
η and then xp := (xp− y)/ηp. (8)

When the vector x is sparse the FTRAN operation (7) is easily skipped when xp is zero.
However, for BTRAN (8), the corresponding null operation occurs when y is zero. This
is just as likely to occur but cannot be identified so easily. However, it is possible to
represent the LU factors as a product of row eta matrices, each of which is of the form

R =


1

. . .
r1 . . . rp . . . rm

. . .
1

 . (9)

Thus the backward system (3) may be solved via a sequence of FTRAN operations (7)
using the row-wise representation of the LU factors. This is observed, for example,
by Hall and McKinnon [15].
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2.1 Updating the invertible representation of B

Obtaining an invertible representation of the basis matrix following the column re-
placement (1) by updating the existing invertible representation is essential for effi-
ciency reasons and is an operation referred to as UPDATE. The first and simplest such
operation is the product form update of Dantzig and Orchard-Hays [6]. Many others
have been proposed, but the update of Forrest and Tomlin [9] and the related Suhl
update [23] are widely accepted as being the most efficient.

The product form update

The product form (PF) update rearranges (1) so that

B̄ = B+(aq−Bep)eT
p = B

(
I +(âq− ep)eT

p
)
= BE

where E = I + (âq− ep)eT
p is an eta matrix whose vector âq is naturally available

as the result of the forward system (4). Applying this k times yields the following
representation of the basis matrix and its inverse.

Bk = B0E1E2 . . .Ek ⇒ B−1
k = E−1

k . . .E−1
2 E−1

1 B−1
0 (10)

Thus the original decomposition B0 = L0U0 remains unaltered when the basis matrix
changes.

The Forrest-Tomlin update

By allowing the decomposition B = LU to be modified, the Forrest-Tomlin (FT) up-
date [9] generally achieves greater efficiency with respect to sparsity than the PF
update. This is done by working on the following rearrangement of the basis matrix
update equation.

B̄ = B+(aq−Bep)eT
p

⇒ L−1B̄ =U +(L−1aq−Uep)eT
p

=U +(ãq−up)eT
p =U ′ (11)

Whilst the basis update equation (1) replaces column p of basis matrix B by aq in (11),
column p of the factor U is replaced by the partial FTRAN result ãq = L−1aq. As
illustrated in Figure 1(a), the replacement yields a spiked upper factor U ′.

From U ′, the Forrest-Tomlin update restores triangularity by elimination. Specif-
ically, it uses other rows to eliminate the off-diagonal entries of row p, yielding a
permuted triangular matrix Ū as shown in Figure 1(b).

The elimination process can be represented by a single row transformation R−1,
so that Ū = R−1U ′. Note that this row eta matrix R is a special case of (9) since it
has pivotal entry rp = 1 so R and its inverse can be expressed as R = I + eprT and
R−1 = I− eprT respectively. The computation of the eta vector r was identified by
Forrest and Tomlin [9] as an additional partial BTRAN operation rT = ūT

pU−1, where



Novel update techniques for the revised simplex method 5

p

p

(a) Spiked upper: U ′

p

p

(b) After elimination: Ū

p

p

R−1ãq

(c) Actual implementation

Fig. 1 Forrest-Tomlin update: column spike and elimination

ūT
p is row p of U without the diagonal entry upp. It can easily be verified that applying

R−1 to U as R−1U =U − epūT
p modifies only the entries in row p, eliminating all its

off-diagonal entries. Since U and U ′ differ only in their pth column, applying R−1

to U ′ also eliminates its off-diagonal entries in row p. Meanwhile, applying R−1 to
column p of U ′ modifies only the pth entry of the newly inserted vector ãq which
becomes ãpq := ãpq− rT ãq. Therefore, applying the row transformation R−1 to U ′

yields the permuted triangular matrix Ū as shown in Figure 1(b).
As identified later by Tomlin [25], the additional partial BTRAN operation can be

avoided by forming r from the intermediate result ẽT
p = eT

pU−1 of the regularly solved
transposed system (5). This can be identified by observing that ūT

p = eT
pU−uppeT

p so

rT = ūT
pU−1 = (eT

pU−uppeT
p )U

−1 = eT
p −uppẽT

p . (12)

Since its pth entry is zero, it follows that r is given by scaling ẽp by −upp and setting
the pth entry to zero. Thus, if the partial BTRAN result ẽp is stored, it can be assumed
that the eta vector r is available at negligible cost.

Clearly Ū = R−1U ′ is not a triangular matrix, but it can be put into this form via a
symmetric cyclic permutation of rows and columns p to m. However, in practice, no
permutations are performed since all that is required is an invertible representation
of Ū rather than an explicit triangular matrix. Within an implementation, triangular
matrices in basis matrix decompositions are represented in product form as sequences
of eta vectors, pivotal entries and pivotal indices. Thus the representation of Ū is
obtained by deleting the eta vector corresponding to column p of U , setting all entries
corresponding to row p of U to zero and appending a new eta vector R−1ãq, pivotal
entry ãpq and index p to the sequence, as illustrated in Figure 1(c).

Combining B̄ = LU ′ (11) and Ū = R−1U ′ yields the following updated represen-
tation of the basis matrix and its inverse.

B̄ = LRŪ and B̄−1 = ŪR−1L−1

Repeating these operations, after k updates, the basis matrix Bk and its inverse can be
expressed as

Bk = LR1R2 . . .RkUk ⇒ B−1
k =U−1

k R−1
k . . .R−1

2 R−1
1 L−1. (13)
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The essential difference between the FT and PF updates is that the former stores
two partially transformed results ãq and ẽp and deletes one row and one column from
the eta file, whereas the PF update simply stores the final FTRAN result âq. These
deletions and the sparsity of the partially transformed results relative to âq is such
that the FT update frequently has a significantly lower storage requirement than the
PF update. This, in turn, leads to generally superior performance when the invertible
representation based on the FT update is used to solve linear systems. However, the
operations of the FT update require dynamic data structures to accommodate deletion
and insertion, making it significantly more difficult to implement than the PF update.

For several reasons, the FT update is used as a benchmark for the experiments
in Section 4 and as the basis of the CFT update introduced in Section 3.2. It is pre-
ferred to other FT-like updates such as that of Suhl and Suhl [23] since the latter’s
efficiency is compromised by the requirement for the BTRAN operation which, as ob-
served above, can be avoided with the FT update. The FT update is chosen over the
Reid update [20] since the former is preferable when solving hyper-sparse LP prob-
lems. The results in Section 4 comparing Huangfu and Hall’s FT-based solver hsol
to clp and cplex give an empirical justification for this choice of update technique.

3 New update techniques

This section introduces two novel variants of the product form update and an ex-
tension of the Forrest-Tomlin update. Although applicable in general, all are mo-
tivated by the requirements of the high performance implementation by Hall and
Huangfu [14,16] of the dual revised simplex method with suboptimization introduced
by Rosander [21].

3.1 Variants of the product form update

Although the variants of the product form update set out below are relatively sim-
ple, the authors are unaware of them having been described before. This is possibly
because, until now, the scope for them to be useful has not arisen.

The elementary matrix for a general rank-one update

The updates introduced below are based on elementary matrices for rank-one updates
which are more general than the eta matrices of LU factors or the PF and FT updates.
This general elementary matrix can be expressed as

T = I +uvT , (14)

where u and v are arbitrary compatible vectors. When v = ep, T is an eta matrix E (6)
and when u = ep, T is a row-wise eta matrix R (9). When T is nonsingular,

T−1 = I− 1
µ

uvT , (15)
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where µ = 1+vT u. Clearly T and its inverse can be represented by u and v. Although
strictly unnecessary, when operating with T−1 it is also convenient to record the value
of µ . Solving linear systems with T is straightforward, the operations with T−1 for
FTRAN being

T−1x = x− vT x
µ

u, (16)

and those for BTRAN

xT T−1 = xT − xT u
µ

vT . (17)

3.1.1 Alternate product form update

Working from the basis update expression (1), if B is taken out as a factor on the right
then

B̄ = (I +(aq−Bep)êT
p )B = (I +(aq−ap′)ê

T
p )B,

where p′ is the index within A of column p of B. The matrix T = I +(aq− ap′)êT
p

is in the general form (14) so, using (15), the inverse of the updated basis matrix is
given by

B̄−1 = B−1(I− 1
µ
(aq−ap′)ê

T
p ),

where µ = 1+ êT
p (aq−ap′) = âpq is the pth entry of âq. In contrast to the PF update,

which requires the FTRAN result âq, the new update formula uses the BTRAN result êp
and thus is called the alternate product form (APF) update. It follows from (16) that
the operation with T−1 for FTRAN is

T−1x : y = êT
p x/µ and then x := x− y(aq−ap′)

and, from (17), that the corresponding operation for BTRAN is

xT T−1 : y = xT (aq−ap′)/µ and then xT := xT − yêT
p .

After k APF updates, the basis matrix and its inverse can be expressed as

Bk = TkTk−1 . . .T1B0 ⇒ B−1
k = B−1

0 T−1
1 . . .T−1

k−1T−1
k .

Note that, in contrast to the PF update, the elementary matrices which constitute the
update are applied before rather than after the LU decomposition of B0 when solving
forward systems with B−1

k .
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Discussion

The relation between the APF and PF updates may be viewed as being analogous
to that between the alternative block LU update (introduced and implemented by
Hall [13]) and the Block LU (BLU) update of Eldersveld and Saunders [8]. However,
the APF is distinctive since it avoids the requirement for an invertible representation
of a Schur complement. This yields a significant overhead when large numbers of
updates are performed.

Relative to the PF update, trading operations with xp for operations with aq−
ap′ makes the APF update appear unattractive. However, there is minimal additional
storage overhead since aq and ap′ are columns from the coefficient matrix A so may
be represented by the indices q and p′. Hall and McKinnon [15] also identify (classes
of) LP problems where it is typical for âq to be dense but êp to be sparse, in which
case the APF update will require significantly less storage. Performance-wise, unless
êp is significantly more sparse than âq, the overhead of the operations with aq−ap′ is
such that using the APF rather than the PF update can be expected to be less efficient.

Since the cost of using the APF update corresponds to the density of the final
BTRAN result êp, rather than partial results ãq and ẽp that underpin the FT update,
it is expected that, like the PF update, the storage requirement and performance of
the APF update will be inferior to those of the FT update. However, it is shown
by Huangfu and Hall in [16] that the APF is particularly valuable in the context of
a high performance parallel scheme for the dual simplex method since it permits
particular multiple FTRAN operations to be performed as a single FTRAN. The number
of elementary APF operations that must be performed is of the same order as the
number of FTRAN operations. Thus the saving of all but one of these FTRANs that is
achieved by using the APF update is not expected to be compromised by the overhead
of maintaining or applying APF updates rather than an alternative scheme.

3.1.2 Middle product form update

The middle product form (MPF) update inserts the updates in product form into the
middle of factors L and U . In detail, the MPF update is derived as follows from the
basis update expression (1), assuming that B = LU .

B̄ = LU +(aq−Bep)eT
p

= LU +LL−1(aq−Bep)eT
pU−1U

= L(I +(ãq−Uep)ẽT
p )U

= L(I +(ãq−up)ẽT
p )U

where ãq = L−1aq and ẽT
p = eT

pU−1 are partial FTRAN and BTRAN results respectively,
and up =Uep is the pth column of U . The matrix T = I+(ãq−up)ẽT

p is in the general
form (14) so, using (15), the inverse of the updated basis matrix is given by

B̄−1 =U−1(I− 1
µ
(ãq−up)ẽT

p )L
−1,
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where µ = 1+ ẽT
p (ãq−up) = âpq is the pth entry of âq. It follows from (16) that the

operation with T−1 for FTRAN is

T−1x : y = ẽT
p x/µ and then x := x− y(ãq−up)

and, from (17), that the corresponding operation for BTRAN is

xT T−1 : y = xT (ãq−up)/µ and then xT := xT − yẽT
p .

Note that T is inserted after L so the invertible representation of B̄ is given by L̄ = LT
and Ū =U . Since U remains unchanged, its pth column is always available directly.
After k updates, the basis matrix and its inverse can be expressed as

Bk = L0T1T2 . . .TkU0 ⇒ B−1
k =U−1

0 T−1
k . . .T−1

2 T−1
1 L−1

0 .

Discussion

The relation between the MPF and PF updates is analogous to that between the par-
titioned LU update (introduced by Gill et al. [12] but not implemented) and the BLU
update of Eldersveld and Saunders [8]. However, like the APF, the MPF is distinctive
since it avoids a Schur complement.

The MPF update is comparable with the FT update since both are based on the
partial FTRAN result ãq and partial BTRAN result ẽp. However the MPF has no dele-
tion corresponding to that of the FT update so will have greater storage overhead. In
terms of update efficiency, the MPF update is preferable since it only involves storing
operations, whereas the FT update needs additional deletion and insertion work to
update the factor U . In terms of solving efficiency, it is expected to be preferable to
operate with the FT update since it replaces up by ãq and stores only ẽp as an eta
matrix R. Thus solving with the FT update requires only additional simple eta matrix
operations with R, while solving with the MPF requires slightly more complicated
and time-consuming operations with T .

Concerns over the numerical stability of product form representations of B−1 mo-
tivated the introduction of LU decompositions into simplex implementations by Bar-
tels and Golub [2] and partial pivoting for stability when updating the LU decomposi-
tion [1]. Although some FT-like update procedures derived from the work of Bartels
and Golub have incorporated threshold pivoting, modern descriptions of such update
procedures and codes based on them [5,18,20,23] include no numerical pivoting.
Thus the superior numerical performance of FT-like updates must be assumed to de-
rive from the following two observations. The first is the fact that FT-like updates
may delete etas corresponding to ill-conditioned bases, whereas PF-like updates re-
tain all etas. The second follows from the observation (see results in Section 4) that
FT-like updates have lower storage requirements, implying fewer floating-point oper-
ations and, hence, a lower probability of numerical instability actually occurring. In
practice, numerical difficulties with PF-like updates are not encountered when solv-
ing most classes of LP problem, particularly those which are hyper-sparse since little
numerical elimination is necessary. Any poor numerical behaviour is readily identi-
fied and rectified by reinversion so it is very rare for a good PF-based solver to fail to
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solve an LP problem. Finally, in the context of Huangfu and Hall’s FT-based simplex
solver hsol [16], PF-like updates are only used for very limited numbers of basis
changes and no numerical instability has been observed.

3.2 Collective Forrest-Tomlin update

The collective Forrest-Tomlin (CFT) update is designed to perform a set of t Forrest-
Tomlin operations simultaneously to obtain the FT invertible representation of Bk+t
directly from that of Bk. This requirement arises naturally within the dual simplex
method with suboptimization.

The dual simplex method with suboptimization

The details of this simplex variant are given by Huangfu and Hall [16]. However,
it is necessary to set out some of its data requirements to motivate the collective
Forrest-Tomlin update described below. Suboptimization in the dual simplex method
requires the vectors êT

p = eT
p B−1

k for p in a small subset P of the rows. Iterations of
suboptimization then identify t basis changes given by {(pi, qi)}t−1

i=0 , where {pi}t−1
i=0 ⊆

P . When, during the course of suboptimization, the vector eT
pi

B−1
k+i is required, it is

obtained from êpi by a few APF operations. Following the suboptimization iterations,
updating data for the whole LP problem requires the pivotal columns âqi =B−1

k+iaqi for
i = 0, . . . , t−1, which are also obtained in two steps as âq = B−1

k aq and then regular
PF operations.

The Forrest-Tomlin update after suboptimization

To perform Forrest-Tomlin updates after suboptimization requires

ãqi = R−1
k+i . . .R

−1
k . . .R−1

1 L−1aqi and ẽT
pi
= eT

pi
U−1

k+i, (18)

for i= 0, . . . , t−1, so that the next elimination matrix Rk+i+1 can be constructed using
ẽT

pi
and the new column transformation can be formed as R−1

k+i+1ãqi . In the sequential
simplex method, they are naturally available as partial results of the routinely solved
forward (4) and transposed (5) systems. In suboptimization, initialisation of êT

p =

eT
p B−1

k and the subsequent computation of âq = B−1
k aq yield only

āqi = R−1
k . . .R−1

1 L−1aqi and ēT
pi
= eT

pi
U−1

k . (19)

The challenge, therefore, is to obtain the partial results for the appropriate basis (18)
from the partial results (19) obtained naturally, for i = 1, . . . , t − 1. The results for
i = 0 are known. The rest of this section will discuss how to achieve this efficiently
using simple linear algebra operations.
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3.2.1 Updating the partial FTRAN results

Updating the partial FTRAN results āqi to ãqi is a relatively straightforward task. By
comparing the available (19) and the required (18) results, the updating operation is
readily identified as applying new row eta transformations after Rk,

ãqi = R−1
k+i . . .R

−1
k+2R−1

k+1āqi ,

where each new row transformation Rk+ j,(0 < j ≤ i) is available once ẽp j−1 is com-
puted. Thus the computation of ãqi is scheduled after the computation of ẽpi−1 , which
corresponds to the latest required row transformation Rk+i.

3.2.2 Updating the partial BTRAN results

Compared to updating the partial FTRAN results, updating the partial BTRAN results
from

ēT
pi
= eT

pi
U−1

k to ẽT
pi
= eT

pi
U−1

k+i

is more complicated because the difference between Uk and Uk+i when i ≥ 1 in-
volves (multiple) replacements and eliminations. However, by carefully rearranging
the replacement and elimination involved, computation of ẽpi can still be achieved by
simple linear algebra operations. Their derivation is explored in detail by updating
ēp1 to ẽp1 , with reference to the first two upper factors Uk and Uk+1.

Recall that the Forrest-Tomlin update derives Uk+1 via the following elimination
operations on the spiked matrix U ′k

Uk+1 = R−1
k+1U ′k, (20)

where U ′k = Uk +(ãq0 −Ukep0)e
T
p0

. Rearranging U ′k by taking out Uk as a factor on
the left, it follows that

U ′k =Uk +Uk(U−1
k ãq0 − ep0)e

T
p0

=Uk
(
I +(âq0 − ep0)e

T
p0

)
=UkEk+1,

where Ek+1 = I + (âq0 − ep0)e
T
p0

is the eta matrix used in the PF update (10). By
substituting U ′k =UkEk+1 into (20), Uk+1 and its inverse can be represented by

Uk+1 = R−1
k+1UkEk+1 and U−1

k+1 = E−1
k+1U−1

k Rk+1. (21)

By using this new representation for U−1
k+1, the calculation of ẽp1 can be considered in

three steps applying E−1
k+1, U−1

k and Rk+1 respectively. Using y to represent interme-
diate results, starting from y = ep1 , the following three-step process is given by (21).

(1) Applying E−1
k+1 updates y by

yT := yT E−1
k+1 = eT

p1
E−1

k+1 =

{
eT

p1
+µeT

p0
p1 6= p0

αeT
p1

p1 = p0
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where α = 1/âp0q0 and µ =−âp1q0/âp0q0 are the pivotal entry and the pth
1 entry of the

eta vector of E−1
k+1. The first situation p1 6= p0 is the common case, which is implied in

the suboptimization framework, as each row in P is used only once. In more general
applications, it is possible to have p1 = p0. However, since this case corresponds to
µ = 0 and a scaling of y, it is reasonable and convenient to omit it from the following
analysis.

(2) Applying U−1
k to y gives

yT := yTU−1
k = (eT

p1
+µeT

p0
)U−1

k = ēT
p1
+µ ẽT

p0
.

This expresses y in terms of the available partial BTRAN results ẽp0 and ēp1 , where
both are computed with U−1

k .
(3) Applying Rk+1 to y completes the process, giving the required partial BTRAN

result ẽp1 thus.
ẽT

p1
= yT Rk+1 = ēT

p1
Rk+1 +µ ẽT

p0
Rk+1 (22)

When transposed as RT
k+1ēp1 , calculation of the first term in (22) is seen to be a

standard FTRAN operation (7) which adds a multiple [ēp1 ]p0 of rk+1 to ēp1 so

ēT
p1

Rk+1 = ēT
p1
+[ēp1 ]p0 rT

k+1. (23)

As for the second term in (22), by substituting for Rk+1 using (9) and rk+1 using (12),

µ ẽT
p0

Rk+1 = µ ẽT
p0
(I + ep0rT

k+1)

= µ ẽT
p0
+µ(eT

p0
−up0 p0 ẽT

p0
)/up0 p0

=
µ

up0 p0

eT
p0

(24)

so the second term in (22) is seen as adding the scalar value µ/up0 p0 to yp0 . Substi-
tuting (23) and (24) for the two terms in (22) yields the following update formula.

ẽT
p1
= ēT

p1
+[ēp1 ]p0rT

k+1 +
µ

up0 p0

eT
p0

(25)

In practice, to obtain µ = −âp1q0/âp0q0 requires only one inner product, âp1q0 =
ēT

p1
ãq0 , since âp0q0 is available as the simplex pivotal entry. Thus updating the partial

BTRAN result from ēp1 to ẽp1 involves only one vector addition and the evaluation of
one inner product.

The partial BTRAN result ēT
p2

= eT
p2

U−1
k corresponding to the third pivot choice,

can be updated in two steps, firstly to eT
p2

U−1
k+1 by using (25), and then to eT

p2
U−1

k+2
by repeating the same operations with partial results ẽp1 and ãq1 . Using this stepwise
updating procedure for i = 1, . . . , t−1, the partial BTRAN result ēpi corresponding to
the (i+ 1)st pivot choice can be updated to the required form ẽpi in i steps of the
form (25). Note that to apply (25) requires the previous partial FTRAN results ãp j for
j = 0, . . . , i− 1. Thus the updating of ēpi is scheduled after the computation of last
required partial FTRAN result ãqi−1 . Therefore, together with the data requirement of
operations with ãi discussed previously, the calculation for updating the two types of
partial transformed results is interlaced as the sequence ãq1 , ẽp1 , ãq2 , ẽp2 , etc.
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3.3 New techniques and hyper-sparsity

For hyper-sparse LP problems, it is generally possible to skip most of the operations
with elementary matrices in the invertible representation of Bk, so it is important to
identify the operations which must be performed at a cost proportional to the number
of resulting floating-point operations. This is readily achieved by established tech-
niques [11,15] if the elementary matrices are column (6) or row (9) eta matrices.
Thus hyper-sparsity may be exploited fully with the PF or FT updates. However, in
the case of the APF and MPF updates, the form of the general elementary matrix (14)
prohibits the extension of these techniques within the phase of FTRAN and BTRAN

associated with UPDATE.

4 Results

The serial efficiency of the novel updates introduced in Section 3 is assessed in this
section using the set of 30 LP test problems in Table 1.

The LP problems and testing environment

The LP test problems are drawn from the Netlib [10] and Kennington [4] test sets, as
well as other publicly-available collections. Although not particularly large, the range
of algebraic properties exhibited by these problems is representative of practical and
large scale problems. The experiments are performed using modules of Huangfu’s
dual revised simplex solver hsol which uses the Forrest-Tomlin update. As a measure
of the computational efficiency of these modules, results in Table 2 give the solution
time, iteration count and iteration time of hsol and the dual revised simplex solvers of
clp 1.15 [5] and cplex 12.4 [17]. These results are illustrated using the performance
profiles in Figures 2 and 3 which show, for each solver, the proportion of problems
for which the particular measure relative to the best solver is within the factor on the
horizontal axis. It is clear from these results that hsol is competitive with cplex and
clp, both overall and per iteration, so the observations on the results presented below
for the update techniques developed in this paper are applicable to the most efficient
of simplex solvers.

Of particular relevance to the experiments discussed below is the average relative
size of the matrix B0 and its invertible representation, given in the column of Table 1
headed “Fill-in”, and the proportion of the results of FTRAN and BTRAN with den-
sity less than 10%, given in the corresponding columns of Table 1. Hall and McK-
innon [15] introduced this measure of an LP problem’s hyper-sparsity and discuss
reasons for the extreme variance between these values for some problems. The claim
that the LP test set is representative is based on the range of values for these three
measures, as well as problem size. Unsurprisingly there is clear correlation between
the fill-in during INVERT and the measures of hyper-sparsity.

For a given LP problem and simplex update technique there is an optimal interval
between successive INVERT operations which balances the cost of INVERT and the
overheads associated with having an updated invertible representation. The particular
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hsol clp cplex

Solution Iteration Solution Iteration Solution Iteration
Problem Time Count Time Time Count Time Time Count Time
CRE-B 6.4 11599 551 4.2 11489 368 2.1 16030 130
DANO3MIP LP 53.2 60161 885 31.8 42506 747 8.8 23608 372
DCP2 12.9 25360 508 15.3 24456 626 5.6 23432 237
DFL001 16.0 26322 607 17.9 26866 667 9.8 20255 483
FOME12 101.1 103005 982 66.9 84818 789 78.6 90732 867
GEN4 5.3 1107 4757 16.7 4157 4025 16.5 5276 3125
KEN-18 13.6 107471 127 19.3 106158 182 8.5 96533 88
L30 11.2 10290 1091 11.5 10233 1124 8.1 10857 742
LINF 520C 3646.8 132244 27576 3349.1 140119 23902 8242.8 117755 70000
LP22 22.2 25080 883 21.0 22963 913 14.9 24308 612
MAROS-R7 11.5 6025 1914 12.0 5531 2172 3.9 6585 596
MOD2 53.2 43386 1226 31.3 35308 886 26.2 47995 547
NS1688926 25.0 13849 1804 4424.7 196353 22535 52.8 23819 2217
OSA-60 6.5 4694 1394 2.1 4792 434 0.8 5014 158
PDS-20 6.9 38872 177 8.6 40183 213 4.5 22825 199
PDS-40 28.8 94914 304 36.5 104217 350 15.6 56126 278
PDS-100 87.4 234184 373 194.7 319231 610 56.6 163076 347
PILOT87 7.0 7240 970 7.2 7179 1009 4.7 7285 645
QAP12 158.3 128131 1235 146.7 89194 1645 139.9 140184 998
SELF 40.2 4738 8483 30.2 4713 6406 54.4 15281 3559
SGPF5Y6 180.2 348115 518 242.1 360809 671 7.9 97918 81
STAT96V1 97.6 16904 5777 82.5 17984 4588 51.9 14226 3646
STAT96V4 157.5 72531 2172 52.3 34657 1510 79.0 43124 1832
STORMG2-125 9.5 81869 116 23.5 89988 262 4.4 92755 47
STORMG2-1000 530.7 658534 806 1876.8 730471 2569 228.2 873329 261
STP3D 602.5 130689 4610 350.0 115329 3035 328.7 114533 2870
TRUSS 8.2 18929 433 5.5 18817 290 4.2 19693 213
WATSON 1 50.4 238973 211 65.8 223522 294 9.6 87148 110
WATSON 2 55.1 334733 165 12976.9 498860 26013 35.3 358621 99
WORLD 66.1 47104 1402 41.0 41279 993 22.2 50538 438

Table 2 Solution time (s), iteration count and iteration time (µs) for the hsol, cplex and clp dual revised
simplex solvers

optimal interval can be expected to vary as the simplex method solves a given LP.
In theory this interval should be chosen so that the time associated with INVERT

equals the total time forming and operating with the etas associated with UPDATE.
To ensure deterministic performance, in hsol the interval is determined using a flop-
based pseudo-clock and practical experience shows that performance is not sensitive
to the parameters in the model. The sequence of optimal reinversion intervals was
estimated for the FT update, and the average value is given in the column headed
“Interval”.

Experiments with the PF, APF, MPF, FT and CFT updates were performed using
the same sequence of basis changes from a “logical” basis B= I to an optimal solution
of the LP. This eliminates variance in the results due to the fact that a change in update
technique typically leads to the simplex method taking a different path to an optimal
solution. The same sequence of optimal (FT) reinversion intervals was also used for
all experiments with a given problem. This facilitates some comparisons between
methods and ensures that the FT update is not disfavoured. Results for each update
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Fig. 2 Performance profiles for the solution time of hsol, clp and cplex on the test problems
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Fig. 3 Performance profiles for the iteration time of hsol, clp and cplex on the test problems

technique’s particular sequence of optimal reinversion intervals were obtained but did
not lead to deeper insight or any alternative conclusions so are omitted.

Results and analysis

The principal measure of the efficiency of a particular update procedure is the total
CPU time to perform the update and then perform FTRAN and BTRAN for each basis
in the sequence. This is given in the columns headed PF, APF, MPF, FT and CFT in
Table 1 where, for each LP problem, the best performance of the three product form
updates is highlighted in bold.

The superiority of the MPF update over the PF and APF updates is clear: it is the
best for 26 of the 30 problems. Of the other four problems, the APF update is the best
for three and in all of these cases the proportion of sparse BTRAN results is at least
that of FTRAN. However, on 16 of the 30 problems the APF update is the worst, with
the PF update being the worst for all but one of the others. A further measure of the
superiority of the MPF update is obtained by considering the CPU time relative to the
better of the CPU time for the PF and APF updates. The geometric mean of this ratio
shows the use of the MPF update to be 40% more efficient.

The FT update is better than the best of the product form updates for 27 of the
problems and, on average, is 61% more efficient than the better of the PF and APF



Novel update techniques for the revised simplex method 17

updates. However, the FT update is only 34% more efficient than the MPF update.
Thus the efficiency of the MPF update is rather closer to that of the FT update than it
is to the other product form updates.

The performance when using the collective FT update (CFT) is very similar to that
when using the standard FT update, the former being 4% faster. This demonstrates
that the CFT update incurs no significant overhead.

A secondary measure of efficiency is the storage requirement so, for each LP
problem and each update technique, the relative size of Bk and its invertible represen-
tation was calculated. The relative performances of the update procedures was similar
to the CPU results, so details are not given. Using the MPF update was 31% more
efficient than the better of the PF and APF updates. Using the FT update was 16%
more efficient than the MPF update and 42% more efficient than the better of the PF
and APF updates. There was no significant difference between the average fill-in for
the FT and CFT updates.

Although the deletion and insertion operations of the FT update result in a CPU
overhead that is not shared with the product form updates, the overall computational
efficiency when using the FT update rather than the MPF or the best of the product
form updates is greater than the storage efficiency. This is due to the fact that hyper-
sparsity may be exploited fully when using the FT update, but only when operating
with B−1

0 in the case of the APF and MPF updates.
Further insight into why the MPF update is significantly more efficient than the

PF and APF updates is given in the results presented in Table 3. Although it is un-
surprising that the average density of the vectors ãq and ẽp is lower than the average
density of âq and êp for the PF and APF updates respectively, the relative densities
are generally so much lower that it is much more efficient to store and apply ãq and
ẽp rather than just one of âq and êp. An intuitive explanation follows from the ob-
servation that ãq and ẽp are the solution of triangular rather than square systems of
equations. Specifically, the initial fill-in which occurs when forming ãq = L−1aq and
ẽT

p = eT
pU−1 is likely to imply the need to apply etas in the representation of U−1 and

L−1 when forming âq =U−1ãq and êT
p = ẽT

p L−1, resulting in significant further fill-in.
However, the initial fill-in is very much less likely to require the application of further
etas in the representation of L−1 and U−1 when forming ãq = L−1aq and ẽT

p = eT
pU−1

since much of the fill-in occurs in components for which any corresponding eta oc-
curs earlier in the representation so need not be applied. Table 3 also illustrates the
greater efficiency of the FT update with respect to sparsity.

5 Conclusions

Three novel update procedures have been introduced in this paper. Two of them are
variants of the product form and one is an extension of the Forrest-Tomlin (FT) up-
date.

Of the two product form variants, the middle product form (MPF) update is gen-
erally much more efficient than the alternate product form (APF) update. The APF
is very inefficient for some problems and is not recommended as a valuable general
technique. However, its limited use in a variant of the dual revised simplex method
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Average density
PF APF MPF FT

Model âq êp ãq ẽp ãq ẽp
CRE-B 0.313 4.237 0.137 0.022 0.229 0.038
DANO3MIP LP 47.206 56.684 10.373 0.721 2.524 1.332
DCP2 3.194 0.877 1.223 0.026 0.141 0.062
DFL001 26.926 31.374 4.888 0.213 0.667 0.441
FOME12 6.893 8.503 1.776 0.056 0.197 0.151
GEN4 97.135 31.433 86.840 16.533 26.823 20.709
KEN-18 0.030 0.104 0.010 0.002 0.009 0.002
L30 88.009 75.486 17.018 3.224 3.876 4.506
LINF 520C 67.949 26.318 7.101 0.575 0.645 0.789
LP22 62.458 42.579 19.856 2.679 2.952 3.582
MAROS-R7 79.525 36.413 45.516 10.664 9.487 11.569
MOD2 9.101 7.441 0.802 0.030 0.125 0.088
NS1688926 15.797 0.329 1.127 0.059 0.249 0.140
OSA-60 0.123 0.489 0.112 0.019 0.086 0.036
PDS-20 0.239 0.947 0.103 0.008 0.051 0.013
PDS-40 0.232 0.825 0.085 0.005 0.034 0.008
PDS-100 0.071 0.387 0.036 0.002 0.016 0.003
PILOT87 66.639 47.045 32.635 5.465 8.173 5.949
QAP12 88.641 73.825 29.858 3.930 4.271 4.650
SELF 98.875 85.018 96.353 26.404 49.351 28.758
SGPF5Y6 0.004 0.012 0.003 0.001 0.002 0.001
STAT96V1 67.349 74.287 5.261 0.754 1.218 1.219
STAT96V4 20.358 40.531 4.483 0.912 0.980 0.870
STORMG2-125 0.034 0.021 0.012 0.004 0.007 0.005
STORMG2-1000 0.028 0.003 0.003 0.001 0.001 0.001
STP3D 2.235 4.943 0.134 0.006 0.021 0.015
TRUSS 24.768 77.844 10.812 1.132 3.661 1.966
WATSON 1 0.021 0.016 0.006 0.001 0.004 0.001
WATSON 2 0.007 0.002 0.002 0.000 0.001 0.000
WORLD 9.945 8.938 0.849 0.032 0.140 0.097

Table 3 Average density of eta vectors for the PF, MPF and APF updates

that is amenable to parallelisation yields a valuable computational saving. The per-
formance of the MPF is generally very much better than that of the APF and original
product form update. Indeed, its performance frequently approaches that of the FT
update. Since the MPF update does not require any elimination operations or dy-
namic data structures it is very much easier to implement than the FT update so is
an attractive update procedure when developing a simple, relatively efficient imple-
mentation of the revised simplex method for either research studies or in an industrial
context where an independent code-base is necessary.

The collective Forrest-Tomlin (CFT) update organises the calculations required to
perform multiple FT updates with the same efficiency as the corresponding sequence
of standard FT updates. This ensures that there is no loss of serial efficiency when the
CFT is used in the context of the dual revised simplex method with suboptimization.
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