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Abstract This paper introduces the design and implementation of two parallel dual
simplex solvers for general large scale sparse linear programming problems. One
approach, called PAMI, extends a relatively unknown pivoting strategy called subop-
timization and exploits parallelism across multiple iterations. The other, called SIP,
exploits purely single iteration parallelism by overlapping computational components
when possible. Computational results show that the performance of PAMI is superior
to that of the leading open-source simplex solver, and that SIP complements PAMI
in achieving speedup when PAMI results in slowdown. One of the authors has imple-
mented the techniques underlying PAMI within the FICO Xpress simplex solver and
this paper presents computational results demonstrating their value. In developing the
first parallel revised simplex solver of general utility, this work represents a significant
achievement in computational optimization.
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Mathematics Subject Classification 90C05 - 90C06 - 65K05

1 Introduction

Linear programming (LP) has been used widely and successfully in many practical
areas since the introduction of the simplex method in the 1950s. Although an alternative
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solution technique, the interior point method (IPM), has become competitive and
popular since the 1980s, the dual revised simplex method is frequently preferred,
particularly when families of related problems are to be solved.

The standard simplex method implements the simplex algorithm via a rectangular
tableau but is very inefficient when applied to sparse LP problems. For such prob-
lems the revised simplex method is preferred since it permits the (hyper-)sparsity of
the problem to be exploited. This is achieved using techniques for factoring sparse
matrices and solving hyper-sparse linear systems. Also important for the dual revised
simplex method are advanced algorithmic variants introduced in the 1990s, particu-
larly dual steepest-edge (DSE) pricing and the bound flipping ratio test (BFRT). These
led to dramatic performance improvements and are key reasons for the dual simplex
algorithm being preferred.

A review of past work on parallelising the simplex method is given by Hall [10].
The standard simplex method has been parallelised many times and generally achieves
good speedup, with factors ranging from tens to up to a thousand. However, without
using expensive parallel computing resources, its performance on sparse LP problems
is inferior to a good sequential implementation of the revised simplex method. The
standard simplex method is also unstable numerically. Parallelisation of the revised
simplex method has been considered relatively little and there has been less success in
terms of speedup. Indeed, since scalable speedup for general large sparse LP problems
appears unachievable, the revised simplex method has been considered unsuitable for
parallelisation. However, since it corresponds to the computationally efficient serial
technique, any improvement in performance due to exploiting parallelismin the revised
simplex method is a worthwhile goal.

Two main factors motivated the work in this paper to develop a parallelisation of the
dual revised simplex method for standard desktop architectures. Firstly, although dual
simplex implementations are now generally preferred, almost all the work by others on
parallel simplex has been restricted to the primal algorithm, the only published work on
dual simplex parallelisation known to the authors being due to Bixby and Martin [1].
Although it appeared in the early 2000s, their implementation included neither the
BFRT nor hyper-sparse linear system solution techniques so there is immediate scope
to extend their work. Secondly, in the past, parallel implementations generally used
dedicated high performance computers to achieve the best performance. Now, when
every desktop computer is a multi-core machine, any speedup is desirable in terms
of solution time reduction for daily use. Thus we have used a relatively standard
architecture to perform computational experiments.

A worthwhile simplex parallelisation should be based on a good sequential sim-
plex solver. Although there are many public domain simplex implementations, they are
either too complicated to be used as a foundation for a parallel solver or too inefficient
for any parallelisation to be worthwhile. Thus the authors have implemented a sequen-
tial dual simplex solver (hsol) from scratch. It incorporates sparse LU factorization,
hyper-sparse linear system solution techniques, efficient approaches to updating LU
factors and sophisticated dual revised simplex pivoting rules. Based on components
of this sequential solver, two dual simplex parallel solvers (pami and sip) have been
designed and developed.
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Section 2 introduces the necessary background, Sects. 3 and 4 detail the design of
pami and sip respectively and Sect. 5 presents numerical results and performance
analysis. Conclusions are given in Sect. 6.

2 Background

The simplex method has been under development for more than 60 years, during which
time many important algorithmic variants have enhanced the performance of simplex
implementations. As a result, for novel computational developments to be of value
they must be tested within an efficient implementation or good reasons given why they
are applicable in such an environment. Any development which is only effective in
the context of an inefficient implementation is not worthy of attention.

This section introduces all the necessary background knowledge for developing
the parallel dual simplex solvers. Section 2.1 introduces the computational form of
LP problems and the concept of primal and dual feasibility. Section 2.2 describes
the regular dual simplex method algorithm and then details its key enhancements and
major computational components. Section 2.3 introduces suboptimization, a relatively
unknown dual simplex variant which is the starting point for the pami parallelisation
in Sect. 3. Section 2.4 briefly reviews several existing simplex update approaches
which are key to the efficiency of the parallel schemes.

2.1 Linear programming problems
A linear programming (LP) problem in general computational form is

minimize f = c’x subjectto Ax =0and! <x < u, (D)

where A € R™*" is the coefficient matrix and x, ¢, Il and u € R™ are, respectively,
the variable vector, cost vector and (lower and upper) bound vectors. Bounds on the
constraints are incorporated into / and u via an identity submatrix of A. Thus it may
be assumed that m < n and that A is of full rank.

As A is of full rank, it is always possible to identify a non-singular basis partition
B € R™™ consisting of m linearly independent columns of A, with the remaining
columns of A forming the matrix N. The variables are partitioned accordingly into
basic variables x ; and nonbasic variables x 5, so Ax = Bxz + Nx, = 0, and the cost
vector is partitioned into basic costs ¢ and nonbasic costs ¢y, so f = ¢l x; +eclxy.
The indices of the basic and nonbasic variables form sets B and A respectively.

In the simplex algorithm, the values of the (primal) variables are defined by setting
each nonbasic variable to one of its finite bounds and computing the values of the
basic variables as x; = —B~! Nx . The values of the dual variables (reduced costs)
are defined as ’E,\T, = c£ — c,,TB—]N. When l; < x5 < ujg holds, the basis is said to
be primal feasible. Otherwise, the primal infeasibility for each basic variable i € B is
defined as
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l,‘ — X ifx,' < l,'
Ax; = x; —u; ifx; > u; 2)
0 otherwise

If the following condition holds for all j € A such thatl; # u;
i z0(x;=1j), ¢ =0(x;=u)) 3)

then the basis is said to be dual feasible. It can be proved that if a basis is both primal
and dual feasible then it yields an optimal solution to the LP problem.

2.2 Dual revised simplex method

The dual simplex algorithm solves an LP problem iteratively by seeking primal fea-
sibility while maintaining dual feasibility. Starting from a dual feasible basis, each
iteration of the dual simplex algorithm can be summarised as three major operations.

1. Optimality test. In a component known as CHUZR, choose the index p € B of
a good primal infeasible variable to leave the basis. If no such variable can be
chosen, the LP problem is solved to optimality.

2. Ratio test. In a component known as CHUZC, choose the index g € N of a good
nonbasic variable to enter the basis so that, within the new partition, ?q is zeroed
whilst ¢, and other nonbasic variables remain dual feasible. This is achieved via
a ratio test with 'Eg and ﬁIT,, where ii; is row p of the reduced coefficient matrix
A=BlA

3. Updating. The basis is updated by interchanging indices p and g between sets
B and N, with corresponding updates of the values of the primal variables x
using @, (being column g of A) and dual variables ¢7 using ZiIT,, as well as other
components as discussed below.

What defines the revised simplex method is a representation of the basis inverse
B~! to permit rows and columns of the reduced coefficient matrix A=B""Atbe
computed by solving linear systems. The operation to compute the representation of
B~ ! directly is referred to as INVERT and is generally achieved via sparsity-exploiting
LU factorization. At the end of each simplex iteration the representation of B! is
updated until it is computationally advantageous or numerically necessary to compute
a fresh representation directly. The computational component which performs the
update of B~! is referred to as UPDATE-FACTOR. Efficient approaches for updating
B~! are summarised in Sect. 2.4.

For many sparse LP problems the matrix B~ is dense, so solutions of linear systems
involving B or BT can be expected to be dense even when, as is typically the case in the
revised simplex method, the RHS is sparse. However, for some classes of LP problem
the solutions of such systems are typically sparse. This phenomenon, and techniques
for exploiting it in the simplex method, was identified by Hall and McKinnon [13]
and is referred to as hyper-sparsity. This advanced technique has been incorporated
throughout the design and development of the new parallel dual simplex solvers.
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The remainder of this section introduces advanced algorithmic components of the
dual simplex method.

2.2.1 Optimality test

In the optimality test, a modern dual simplex implementation adopts two important
enhancements. The first is the dual steepest-edge (DSE) algorithm [6] which chooses
the basic variable with greatest weighted infeasibility as the leaving variable. This
variable has index

Ax
p = argmax ———

i
—
i le; 12

For each basic variable i € B3, the associated DSE weight w; is defined as the 2-norm of
row i of B~! sow; = |[e] ||> = ||le] B™!||,. The weighted infeasibility o; = Ax; /w;
is referred to as the attractiveness of a basic variable. The DSE weight is updated at
the end of the simplex iteration.

The second enhancement of the optimality test is the hyper-sparse candidate
selection technique originally proposed for column selection in the primal simplex
method [13]. This maintains a short list of the most attractive variables and is more
efficient for large and sparse LP problems since it avoids repeatedly searching the less
attractive choices. This technique has been adapted for the dual simplex row selection

component of hsol.

2.2.2 Ratio test

In the ratio test, the updated pivotal row ﬁIT,

and then forming the matrix vector product ii[T, = ?[T,A. These two computational
components are referred to as BTRAN and SPMV respectively.

The dual ratio test (CHUZC) is enhanced by the Harris two-pass ratio test [14] and
bound-flipping ratio test (BFRT) [8]. Details of how to apply these two techniques are
set out by Koberstein [18].

For the purpose of this report, advanced CHUZC can be viewed as having two stages,
an initial stage CHUZC1 which simply accumulates all candidate nonbasic variables
and then a recursive selection stage CHUZC2 to choose the entering variable ¢ from
within this set of candidates using BFRT and the Harris two-pass ratio test. CHUZC also
determines the primal step 6, and dual step 6,, being the changes to the primal basic
variable p and dual variable g respectively. Following a successful BFRT, CHUZC also
yields an index set F of any primal variables which have flipped from one bound to
the other.

. . . AT _ T _1
is obtained by computing €, = e, B

2.2.3 Updating
In the updating operation, besides UPDATE-FACTOR, several vectors are updated.

Update of the basic primal variables x ; (UPDATE-PRIMAL) is achieved using 6, and
@,, where @, is computed by an operation @, = B~ 'a, known as FTRAN. Update of
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124 Q. Huangfu, J. A.J. Hall

Table 1 Major components of the dual revised simplex method and their percentage of overall solution
time

Components Brief description Percentage
INVERT Recompute B! 13.3
UPDATE-FACTOR | Update basis inverse Bk_1 to Bk_il 2.3
CHUZR Choose leaving variable p 2.9
BTRAN Solve for €] = el B! 8.7
SPMV Compute EZ; = A;A 18.4
CHUZC1 Collect valid ratio test candidates 7.3
CHUZC2 Search for entering variable p 1.5
FTRAN Solve for @q = B~ la, 10.8
FTRAN-BFRT Solve for ar = B~ lar 3.5
FTRAN-DSE Solve for = B~ 1e, 26.4
UPDATE-DUAL Update €7 using ag

UPDATE-PRIMAL Update g using aq or ar 4.8
UPDATE-WEIGHT | Update DSE weight using a4 and 7

the dual variables ’c\g (UPDATE-DUAL) is achieved using 6, and ?i;. The update of the
DSE weights is given by

wy = wy/dr,

w; — 2(Zl\iq/apq)fi + (aiq/apq)zwpi #p

w; -

This requires both the FTRAN result @, and 7 = B_l’é,,. The latter is obtained by
another FTRAN type operation, known as FTRAN-DSE.

Following a BFRT ratio test, if F is not empty, then all the variables with indices
in F are flipped, and the primal basic solution x ; is further updated (another UPDATE-
PRIMAL) by the result of the FTRAN-BERT operation @, = B~ la,, where ay is a linear
combination of the constraint columns for the variables in F.

2.2.4 Scope for parallelisation

The computational components identified above are summarised in Table 1. This also
gives the average contribution to solution time for the LP test set used in Sect. 5.

There is immediate scope for data parallelisation within CHUZR, SPMV, CHUZC and
most of the update operations since they require independent operations for each
(nonzero) component of a vector. Exploiting such parallelisation in SPMV and CHUZC
has been reported by Bixby and Martin [1] who achieve speedup on a small group of LP
problems with relatively expensive SPMV operations. The scope for task parallelism by
overlapping FTRAN and FTRAN-DSE was considered by Bixby and Martin but rejected
as being disadvantageous computationally. Another notable development extending
the ideas of Bixby and Martin [1] is Aboca, which was introduced by Forrest at a
conference in 2012 [4]. Other than making the source code available [5], the authors
believe that there is no published reference to this work.
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2.3 Dual suboptimization

Suboptimization is one of the oldest variants of the revised simplex method and con-
sists of a major-minor iteration scheme. Within the primal revised simplex method,
suboptimization performs minor iterations of the standard primal simplex method
using small subsets of columns from the reduced coefficient matrix A = B~ !A.
Suboptimization for the dual simplex method was first set out by Rosander [21] but
no practical implementation has been reported. It performs minor operations of the
standard dual simplex method, applied to small subsets of rows from A.

1. Major optimality test. Choose index set P C B of primal infeasible basic variables
as potential leaving variables. If no such indices can be chosen, the LP problem
has been solved to optimality.

2. Minor initialisation. For each p € P, compute ’éIT, = e;B -1,

3. Minor iterations.

(a) Minor optimality test. Choose and remove a primal infeasible variable p from
P. If no such variable can be chosen, the minor iterations are terminated.

(b) Minor ratio test. As in the regular ratio test, compute Zig = ?;A (SPMV) then
identify an entering variable ¢.

(¢c) Minor update. Update primal variables for the remaining candidates in set P
only (xp) and update all dual variables Cy.

4. Major update. For the pivotal sequence identified during the minor iterations,
update the primal basic variables, DSE weights and representation of B~!.

Originally, suboptimization was proposed as a pivoting scheme with the aim of
achieving better pivot choices and advantageous data affinity. In modern revised sim-
plex implementations, the DSE and BFRT are together regarded as the best pivotal
rules and the idea of suboptimization has been largely forgotten.

However, in terms of parallelisation, suboptimization is attractive because it pro-
vides more scope for parallelisation. For the primal simplex algorithm, suboptimiza-
tion underpinned the work of Hall and McKinnon [11,12]. As discussed by Hall [10],
Wunderling [22] also experimented with suboptimization for the primal simplex
method. For dual suboptimization the major initialisation requires s BTRAN operations,
where s = |P|. Following ¢ < s minor iterations, the major update requires # FTRAN
operations, t FTRAN-DSE operations and up to t FTRAN-BFRT operations. The detailed
design of the parallelisation scheme based on suboptimization is discussed in Sect. 3.

2.4 Simplex update techniques

Updating the basis inverse B, "to B +11 after the basis change By = By + (a; —
Be ,,)e,{ is a crucial component of revised simplex method implementations. The
standard choices are the relatively simple product form (PF) update [20] or the efficient
Forrest—Tomlin (FT) update [7]. A comprehensive report on simplex update techniques
is given by Elble and Sahinidis [3] and novel techniques, some motivated by the design
and development of pami, are described by Huangfu and Hall [16]. For the purpose
of this report, the features of all relevant update methods are summarised as follows.
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126 Q. Huangfu, J. A.J. Hall

— The product form (PF) update uses the FTRAN resultiiq, yielding B;_ J: = E -1 B, 1,
where the inverse of £ = I + (@, — e ,,)elT,, is readily available.

— The Forrest-Tomlin (FT) update assumes By = LUy and uses both the partial
FTRAN result a, = L,:laq and partial BTRAN result ég = eg U, "o modify Uy
and augment L.

— The alternate product form (APF) update [16] uses the BTRAN result ’éﬁ so that
BI:+11 = Bk*IT*], where T =1 + (ay —apr)’éIT, and ay is column p of B. Again,
T is readily inverted.

— Following suboptimization, the collective Forrest—Tomlin (CFT) update [16]
updates B, "o B! directly, using partial results obtained with B, ! which are

k+t
required for simplex iterations.

Although the direct update of the basis inverse from B, "o B, +1t can be achieved
easily via the PF or APF update, in terms of efficiency for future simplex iterations,
the collective FT update is preferred to the PF and APF updates. The value of the APF

update within pami is indicated in Sect. 3.

3 Parallelism across multiple iterations

This section introduces the design and implementation of the parallel dual simplex
scheme, pami. It extends the suboptimization scheme of Rosander [21], incorporating
(serial) algorithmic techniques and exploiting parallelism across multiple iterations.

The concept of pami was introduced by Hall and Huangfu [9], where it was
referred to as ParISS. This prototype implementation was based on the PF update and
was relatively unsophisticated, both algorithmically and computationally. Subsequent
revisions and refinements, incorporating the advanced algorithmic techniques outlined
in Sect. 2 as well as FT updates and some novel features introduced in this section, have
yielded a very much more sophisticated and efficient implementation. Specifically,
our implementation of pami out-performs ParISS by almost an order of magnitude
in serial and to achieve the speed-up demonstrated in Sect. 5 has required new levels
of task parallelism and parallel algorithmic control techniques described in Sects. 3.2
and 3.3, in addition to the linear algebra techniques introduced by Huangfu and Hall
in [16].

Section 3.1 provides an overview of the parallelisation scheme of pami and
Sect. 3.2 details the task paralle] FTRAN operations in the major update stage and
how to simplify it. A novel candidate quality control scheme for the minor optimality
test is discussed in Sect. 3.3.

3.1 Overview of the pami framework

This section details the general pami parallelisation scheme with reference to the
suboptimization framework introduced in Sect. 2.3.
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3.1.1 Major optimality test

The major optimality test involves only major CHUZR operations in which s candidates
are chosen (if possible) using the DSE framework. In pami the value of s is the
number of processors being used. It is a vector-based operation which can be easily
parallelised, although its overall computational cost is not significant since it is only
performed once per major operation. However, the algorithmic design of CHUZR is
important and Sect. 3.3 discusses it in detail.

3.1.2 Minor initialisation

The minor initialisation step computes the BTRAN results for (up to s) potential can-
didates to leave the basis. This is the first of the task parallelisation opportunities
provided by the suboptimization framework.

3.1.3 Minor iterations

There are three main operations in the minor iterations.

(a) Minor CHUZR simply chooses the best candidates from the set P. Since this is
computationally trivial, exploitation of parallelism is not considered. However,
consideration must be given to the likelihood that the attractiveness of the best
remaining candidate in P has dropped significantly. In such circumstances, it may
not be desirable to allow this variable to leave the basis. This consideration leads
to a candidate quality control scheme introduced in Sect. 3.3.

(b) The minor ratio test is a major source of parallelisation and performance improve-
ment. Since the BTRAN result is known (see below), the minor ratio test consists
of SPMV, CHUZCI and CHUZC2. The SPMV operation is a sparse matrix-vector
product and CHUZCI is a one-pass selection based on the result of SPMV. In the
actual implementation, they can share one parallel initialisation. On the other
hand, CHUZC?2 often involves multiple iterations of recursive selection which, if
exploiting parallelism, requires many synchronisation operations. According to
the component profiling in Table 1, CHUZC2 is a relative cheap operation thus, in
pami, it is not parallelised. Data parallelism is exploited in SPMV and CHUZC1
by partitioning the variables across the processors before any simplex iterations
are performed. This is done randomly with the aim of achieving load balance in
SPMV.

(c) The minor update consists of the update of dual variables and the update of
BTRAN results. The former is performed in the minor update because the dual
variables are required in the ratio test of the next minor iteration. It is simply a
vector addition and represents immediate data parallelism. The updated BTRAN
result eiT B Jll is obtained by observing that it is given by the APF update as
el B7'T~! =T 7=, Exploiting the structure of 7~ yields a vector operation
which may be parallelised. After the BTRAN results have been updated, the DSE
weights of the remaining candidates are recomputed directly at little cost.
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3.1.4 Major update

Following ¢ minor iterations, the major update step concludes the major iteration. It
consists of three types of operation: up to 3f FTRAN operations (including FTRAN-DSE
and FTRAN-BFRT), the vector-based update of primal variables and DSE weights, and
update of the basis inverse representation.

The number of FTRAN operations cannot be fixed a priori since it depends on the
number of minor iterations and the number involving a non-trivial BFRT. A simplifi-
cation of the group of FTRANS is introduced in 3.2.

The updates of all primal variables and DSE weights (given the particular vector
T = B’l?p) are vector-based data parallel operations.

The update of the invertible representation of B is performed using the collective
FT update unless it is desirable or necessary to perform INVERT to reinvert B. Note that
both of these operations are performed serially. Although the (collective) FT update is
relatively cheap (see Table 1), so has little impact on performance, there is significant
processor idleness during the serial INVERT.

3.2 Parallelising three groups of FTRAN operations

Within pami, the pivot sequence {p;, g; };;(1) identified in minor iterations yields up
to 3¢ forward linear systems (where ¢ < s). Computationally, there are three groups
of FTRAN operations, being ¢ regular FTRANs for obtaining updated tableau columns
@, = B~'a, associated with the entering variable identified during minor iterations;
¢t additional FTRAN-DSE operations to obtain the DSE update vector T = B‘l?p
and FTRAN-BFRT calculations to update the primal solution resulting from bound

flips identified in the BFRT. Each system in a group is associated with a different

basis matrix, By, Bkt1, - .., Bx+:—1. For example the ¢ regular forward systems for

obtaining updated tableau columns are @, = B;laqo,ﬁql = B,;rllaql, ce by =
-1

B 18-

For the regular FTRAN and FTRAN-DSE operations, the ith linear system (which
requires B, 411') in each group, is solved by applying B, ! followed by i — 1 PF trans-
formations given by 'ziqj , J < i tobring the result up to date. The operations with B~ !
and PF transformations are referred to as the inverse and update parts respectively. The
multiple inverse parts are easily arranged as a task parallel computation. The update
part of the regular FTRAN operations requires results of other forward systems in the
same group and thus cannot be performed as task parallel calculations. However, it is
possible and valuable to exploit data parallelism when applying individual PF updates
when @, is large and dense. For the FTRAN-DSE group it is possible to exploit task
parallelism fully if this group of computations is performed after the regular FTRAN.
However, when implementing pami, both FTRAN-DSE and regular FTRAN are per-
formed together to increase the number of independent inverse parts in the interests
of load balancing.

The group of up to ¢ linear systems associated with BFRT is slightly different from
the other two groups of systems. Firstly, there may be anything between none and ¢
linear systems depending how many minor iterations are associated with actual bound
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flips. More importantly, the results are only used to update the values of the primal
variables x 5 by simple vector addition. This can be expressed as a single operation

t—1 t—1

0
X ::xB+ZB](_<:iaFi:xB+Z l_[ Ej_lBk_laFl (4)
i=0 i—0 \j=i-1

where one or more of ay; may be a zero vector. If implemented using the regular PF
update, each FTRAN-BFRT operation starts from the same basis inverse B ! but finishes
with different numbers of PF update operations. Although these operations are closely
related, they cannot be combined. However, if the APF update is used, so B _:l. can be
expressed as

B—l

[ | -1
i = B Ty Ty,

1

the primal update Eq. (4) can be rewritten as

t—1 i—1 t—1i—1

xp=xs+ Y B []77 e | =xs+ B | D[] 75 "0 Q)
i=0 j=0

i=0 j=0

where the ¢ linear systems start with a cheap APF update part and finish with a single
B, ! operation applied to the combined result. This approach greatly reduces the total
serial cost of solving the forward linear systems associated with BFRT. An additional
benefit of this combination is that the UPDATE-PRIMAL operation is also reduced to a
single operation after the combined FTRAN-BFRT.

By combining several potential FTRAN-BFRT operations into one, the number of
forward linear systems to be solved is reduced to 2¢ + 1, or 2¢ when no bound flips
are performed. An additional benefit of this reduction is that, when ¢ < s — 1, the total
number of forward linear systems to be solved is less than 2s, so that each of the s
processors will solve at most two linear systems. However, when ¢ = s and FTRAN-
BFRT is nontrivial, one of the s processors is required to solve three linear systems,
while the other processors are assigned only two, resulting in an “orphan task”. To
avoid this situation, the number of minor iterations is limited to t = s — 1 if bound
flips have been performed in the previous s — 2 iterations.

The arrangement of the task parallel FTRAN operations discussed above is illustrated
in Fig. 1. In the actual implementation, the 2¢ + 1 FTRAN operations are all started
the same time as parallel tasks, and the processors are left to decide which ones to
perform.

3.3 Candidate persistence and quality control in CHUZR
Major CHUZR forms the set P and minor CHUZR chooses candidates from it. The design

of CHUZR contributes significantly to the serial efficiency of suboptimization schemes
so merits careful discussion.
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FTRAN FTRAN FTRAN
RIANEEEE | EEEEEEEEEE] | EEEERREEEE | (EEEEEEEEEE
BFRT FTRAN FTRAN FTRAN
DSE DSE DSE

FTRAN UPDATE

Fig. 1 Task parallel scheme of all FTRAN operations in pami

When suboptimization is performed, the candidate chosen to leave the basis in the
first minor iteration is the same as would have been chosen without suboptimization.
Thereafter, the candidates remaining in P may be less attractive than the most attractive
of the candidates not in P due to the former becoming less attractive and/or the latter
becoming more attractive. Indeed, some candidates in P may become unattractive. If
candidates in the original P do not enter the basis then the work of their BTRAN oper-
ations (and any subsequent updates) is wasted. However, if minor iterations choose
less attractive candidates to leave the basis the number of simplex iterations required
to solve a given LP problem can be expected to increase. Addressing this issue of
candidate persistence is the key algorithmic challenge when implementing subopti-
mization. The number of candidates in the initial set P must be decided, and a strategy
determined for assessing whether a particular candidate should remain in P.

For load balancing during the minor initialisation, the initial number of candidates
s = |P| should be an integer multiple of the number of processors used. Multiples
larger than one yield better load balance due to the greater amount of work to be
parallelised, particularly before and after the minor iterations, but practical experience
with pami prototypes demonstrated clearly that this is more than offset by the amount
of wasted computation and an increase in the number of iterations required to solve the
problem. Thus, for pami, s was chosen to be eight, whatever the number of processors.

During minor iterations, after updating the primal activities of the variables given
by the current set P, the attractiveness of «, for each p € P is assessed relative to its
initial value oz; by means of a cutoff factor iy > 0. Specifically, if

oy < 1//04;,,

thenindex p is removed from P. Clearly if the variable becomes feasible or unattractive
(ap < 0) then it is dropped whatever the value of .

To determine the value of ¥ to use in pami, a series of experiments was carried out
using a reference set of 30 LP problems given in Table 3 of Sect. 5.1, with cutoff ratios
ranging from 1.001 to 0.01. Computational results are presented in Table 2 which
gives the (geometric) mean speedup factor and the number of problems for which the
speedup factor is respectively 1.6, 1.8 and 2.0.
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Table 2 Experiments with different cutoff factor for controlling candidate quality in pami

cutoff (¢p) | speedup  #1.6 speedup  #1.8 speedup  #2.0 speedup
1.001 1.12 1 1 0
0.999 1.52 11 7 5
0.99 1.54 13 6 4
0.98 1.53 15 8 5
0.97 1.48 11 6 5
0.96 1.52 12 8 6
0.95 1.49 13 8 4
0.94 1.56 13 8 4
0.93 1.47 13 9 4
0.92 1.52 14 7 4
0.91 1.52 14 5 3
0.9 1.50 12 9 4
0.8 1.46 13 9 3
0.7 1.46 15 9 4
0.6 1.44 11 8 6
0.5 1.42 13 5 3
0.2 1.36 10 6 4
0.1 1.29 10 7 3
0.05 1.16 9 4 2
0.02 1.28 10 6 2
0.01 1.22 8 5 3
The cutoff ratio v = 1.001 corresponds to a special situation, in which only

candidates associated with improved attractiveness are chosen. As might be expected,
the speedup with this value of v is poor. The cutoff ratio ¥y = 0.999 corresponds to a
boundary situation where candidates whose attractiveness decreases are dropped. An
mean speedup of 1.52 is achieved.

For various cutoff ratios in the range 0.9 < ¢ < 0.999, there is no really difference
in the performance of pami: the mean speedup and larger speedup counts are relatively
stable. Starting from ¢ = 0.9, decreasing the cutoff factor results in a clear decrease
in the mean speedup, although the larger speedup counts remain stable until ¢ = 0.5.

In summary, experiments suggest that any value in interval [0.9,0.999] can be
chosen as the cutoff ratio, with pami using the median value ¥ = 0.95.

3.4 Hyper-sparse LP problems

In the discussions above, when exploiting data parallelism in vector operations it
is assumed that one independent scalar calculation must be performed for most of
the components of the vector. For example, in UPDATE-DUAL and UPDATE-PRIMAL a
multiple of the component is added to the corresponding component of another vector.
In CHUZR and CHUZC1 the component (if nonzero) is used to compute and then compare
a ratio. Since these scalar calculations need not be performed for zero components of
the vector, when the LP problem exhibits hyper-sparsity this is exploited by efficient
serial implementations [13]. When the cost of the serial vector operation is reduced
in this way it is no longer efficient to exploit data parallelism so, when the density
of the vector is below a certain threshold, pami reverts to serial computation. The
performance of pami is not sensitive to the thresholds of 5-10% which are used.
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4 Single iteration parallelism

This section introduces a relative simple approach to exploiting parallelism within a
single iteration of the dual revised simplex method, yielding the parallel scheme sip.
Our approach is a significant development of the work of Bixby and Martin [1] who
parallelised only the SPMV, CHUZC and UPDATE-DUAL operations, having rejected the
task parallelism of FTRAN and FTRAN-DSE as being computationally disadvantageous.
It also extends the work of Forrest’s Aboca code [4,5]. Based on the little evidence
available, Aboca needs an additional (partial) BTRAN operation which is not necessary
in sip, which incorporates the FTRAN-BFRT and a combined SPMV and CHUZC1 not
exploited by Aboca.

Our serial simplex solver hsol has an additional FTRAN-BFRT component for the
bound-flipping ratio test. However, naively exploiting task parallelism by simply over-
lapping this with FTRAN and FTRAN-DSE is inefficient since the latter is seen in Table 1
to be relatively expensive. This is due to the RHS of FTRAN-DSE being €,, which is
dense relative to the RHS vectors a, of FTRAN and a of FTRAN-BFRT. There is also
no guarantee in a particular iteration that FTRAN-BFRT will be required.

The mixed parallelisation scheme of sipisillustrated in Fig. 2, which also indicates
the data dependency for each computational component. Note that during CHUZC1
there is a distinction between the operations for the original (structural) variables
and those for the logical (slack) variables, since the latter correspond to an identity
matrix in A. Thereafter, one processor performs FTRAN in parallel with (any) FTRAN-
BFRT on another processor and UPDATE-DUAL on a third. The scheme assumes at least
four processors, but with more than four only the parallelism in SPMV and CHUZC is
enhanced.

5 Computational results
5.1 Test problems

Throughout this report, the performance of the simplex solvers is assessed using a
reference set of 30 LP problems listed in Table 3. Most of these are taken from a
comprehensive list of representative LP problems [19] maintained by Mittelmann.

The problems in this reference set reflect the wide spread of LP properties and
revised simplex characteristics, including the dimension of the linear systems (num-
ber of rows), the density of the coefficient matrix (average number of non-zeros per
column), and the extent to which they exhibit hyper-sparsity (indicated by the last two
columns). These columns, headed FTRAN and BTRAN, give the proportion of the results
of FTRAN and BTRAN with a density below 10%, the criterion used to measure hyper-
sparsity by Hall and McKinnon [13] who consider an LP problem to be hyper-sparse
if the occurrence of such hyper-sparse results is greater than 60%. According to this
measurement, half of the reference set are hyper-sparse. Since all problems are sparse,
it is convenient to use the term “dense” to refer to those which are not hyper-sparse
(Table 3).
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Fig. 2 sip data dependency and parallelisation scheme

The performance of pami and sip is assessed using experiments performed on
a workstation with two Intel Xeon E5-2670s, 2.6 GHz (16 cores, 16 threads in total),
using eight threads for the parallel calculations. Numerical results are given in Tables 4
and 5, where mean values of speedup or other relative performance measures are
computed geometrically. The relative performance of solvers is also well illustrated
using the performance profiles in Figs. 3,4 and 5.

5.2 Performance of pami
The efficiency of pami is appropriately assessed in terms of parallel speedup and

performance relative to the sequential dual simplex solver (hsol) from which it was
developed. The former indicates the efficiency of the parallel implementation and the
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Table 3 The reference set of 30 LP problems with hyper-sparsity measures

MODEL #row #col #nnz | FTRAN  BTRAN
CRE-B 9648 72447 256095 100 83
DANO3MIP_LP 3202 13873 79655 1 6
DBIC1 43200 183235 1038761 100 83
DCP2 32388 21087 559390 100 97
DFLO01 6071 12230 35632 34 57
FOME12 24284 48920 142528 45 58
FOME13 48568 97840 285056 100 98
KEN-18 105127 154699 358171 100 100
L30 2701 15380 51169 10 8
LINF_520C 93326 69004 566193 10 11
LP22 2958 13434 65560 13 22
MAROS-R7 3136 9408 144848 5 13
MOD2 35664 31728 198250 46 68
NS1688926 32768 16587 1712128 72 100
NUG12 3192 8856 38304 1 20
pPDS-40 66844 212859 462128 100 98
PDS-80 129181 426278 919524 100 99
pPDS-100 156243 505360 1086785 100 99
PILOT87 2030 4883 73152 10 19
QAP12 3192 8856 38304 2 15
SELF 960 7364 1148845 0 2
SGPF5Y6 246077 308634 828070 100 100
STAT96V4 3174 62212 490473 73 31
STORMG2-125 66185 157496 418321 100 100
STORMG2-1000 528185 1259121 3341696 100 100
STP3D 159488 204880 662128 95 70
TRUSS 1000 8806 27836 37 2
WATSON_1 201155 383927 1052028 100 100
WATSON_2 352013 671861 1841028 100 100
WORLD 35510 32734 198793 41 61

latter measures the impact of suboptimization on serial performance. A high degree
of parallel efficiency would be of little value if it came at the cost of severe serial
inefficiency. The solution times for hsol and pami running in serial, together with
pami running in parallel with 8 cores, are listed in columns headed hsol, pamil
and pami 8 respectively in Table 4. These results are also illustrated via a performance
profile in Fig. 3 which, to put the results in a broader context, also includes C1p 1.15 [2],
the world’s leading open-source solver. Note that since hsol and pami have no
preprocessing or crash facility, these are not used in the runs with C1p.

The number of iterations required to solve a given LP problem can vary signifi-
cantly depending on the solver used and/or the algorithmic variant used. Thus, using
solution times as the sole measure of computational efficiency is misleading if there
is a significant difference in iteration counts for algorithmic reasons. However, this is
not the case for hsol and pami. Observing that pami identifies the same sequence
of basis changes whether it is run in serial or parallel, relative to hso1, the number of
iterations required by pami is similar, with the mean relative iteration count of 0.96
being marginally in favour of pami. Individual relative iteration counts lie in [0.85,
1.15] with the exception of those for QAP12, STP3D and DANO3MIP_LP which, being
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Table 5 Speedup of pami and sip with hyper-sparsity measures

Speedup Hyper-sparsity
MODEL pl/hsol p8/pl p8/hsol sip/hsol | FTRAN  BTRAN
CRE-B 1.21 1.61 1.95 1.22 100 83
DANO3MIP_LP 0.68 3.20 2.19 1.67 1 6
DBIC1 0.47 2.83 1.34 1.18 100 83
DCP2 0.84 1.84 1.54 1.20 100 97
DFLO01 0.66 2.82 1.86 1.39 34 57
FOME12 0.61 2.77 1.70 1.27 45 58
FOME13 0.69 2.40 1.64 1.26 100 98
KEN-18 0.83 1.45 1.20 0.80 100 100
L30 0.45 2.80 1.27 1.31 10 8
LINF_520C 0.36 2.55 0.93 1.37 10 11
LP22 0.59 2.75 1.63 1.43 13 22
MAROS-R7 0.29 1.71 0.49 1.22 5 13
MOD2 0.53 2.47 1.31 1.20 46 68
NS1688926 0.63 2.77 1.75 1.37 72 100
NUG12 0.62 2.84 1.77 1.15 1 20
PDS-40 0.65 2.08 1.36 1.13 100 98
PDS-80 0.54 2.16 1.18 1.03 100 99
PDS-100 0.63 2.04 1.28 1.08 100 99
PILOTRT7 0.62 2.41 1.50 1.32 10 19
QAP12 0.90 2.85 2.58 0.83 2 15
SELF 0.59 2.12 1.25 1.72 0 2
SGPF5Y6 0.73 2.89 2.10 0.64 100 100
STAT96V4 0.63 3.66 2.29 1.98 73 31
STORMG2-125 0.78 1.60 1.26 0.70 100 100
STORMG2-1000 0.73 2.15 1.57 0.82 100 100
STP3D 0.80 2.91 2.33 1.16 95 70
TRUSS 0.72 2.45 1.76 1.57 37 2
WATSON_1 0.81 1.70 1.38 0.75 100 100
WATSON_2 0.86 1.64 1.41 0.75 100 100
WORLD 0.55 2.52 1.40 1.24 41 61
MEAN 0.64 2.34 1.51 1.15

0.67, 0.75 and 0.79 respectively, are significantly in favour of pami. Thus, with the
candidate quality control scheme discussed in Sect. 3.3, suboptimization is seen not
compromise the number of iterations required to solve LP problems. Relative to C1p,
hsol typically takes fewer iterations, with the mean relative iteration count being
0.70 and extreme values of 0.07 for NS1688926 and 0.11 for DBICI.

It is immediately clear from the performance profile in Fig. 3 that, when using 8
cores, pami is superior to hsol which, in turn, is generally superior to C1p. Observe
that the superior performance of pami on 8 cores relative to hsol comes despite
pami in serial being inferior to hsol. Specifically, using the mean relative solution
times in Table 5, pami on 8 cores is 1.51 times faster than hsol, which is 2.29 times
faster than C1lp. Even when taking into account that hsol requires 0.70 times the
iterations of Clp, the iteration speed of hsol is seen to be 1.60 times faster than
Clp: hsol is a high quality dual revised simplex solver.

Since hsol and pami require very similar numbers of iterations, the mean value
of 0.64 for the inferiority of pami relative to hsol in terms of solution time reflects
the the lower iteration speed of pami due to wasted computation. For more than
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pami e pami8

— Clp hsol

Fig. 3 Performance profile of C1p, hsol, pami and pami8 without preprocessing or crash

65% of the reference set pami is twice as fast in parallel, with a mean speedup of
2.34. However, relative to hsol, some of this efficiency is lost due to overcoming the
wasted computation, lowering the mean relative solution time to 1.51.

For individual problems, there is considerable variance in the speedup of pami
over hsol, reflecting the variety of factors which affect performance and the wide
range of test problems. For the two problems where pami performs best in parallel,
it is flattered by requiring significantly fewer iterations than hsol. However, even if
the speedups of 2.58 for QAP12 and 2.33 for STP3D are scaled by the relative iteration
counts, the resulting relative iteration speedups are still 1.74 and 1.75 respectively.
However, for other problems where pami performs well, this is achieved with an
iteration count which is similar to that of hsol. Thus the greater solution efficiency
due to exploiting parallelism is genuine. Parallel pami is not advantageous for all
problems. Indeed, for MAROS- R7 and LINF_520C, pami is slower in parallel than
hsol. For these two problems, serial pami is slower than hsol by factors of 3.48
and 2.75 respectively. In addition, as can be seen in Table 6, a significant proportion
of the computation time for hsol is accounted for by INVERT, which runs in serial on
one processor with no work overlapped.

Interestingly, there is no real relation between the performance of pami and
problem hyper-sparsity: it shows almost same range of good, fair and modest per-
formance across both classes of problems, although the more extreme performances
are for dense problems. Amongst hyper-sparse problems, the three where pami
performs best are CRE- B, SGPF5Y6 and STP3D. This is due to the large percent-
age of the solution time for hsol accounted for by SPMV (42.9% for CRE-B and
19.2% for STP3D) and FTRAN-DSE (80.7% for SGPESY6 and 27% for STP3D). In
pami, the SPMV and FTRAN-DSE components can be performed efficiently as task
parallel and data parallel computations respectively, and therefore the larger percent-
age of solution time accounted for by these components yields a natural source of
speedup.

5.3 Performance of sip

For sip, the iteration counts are generally very similar to those of hsol, with the
relative values lying in [0.98, 1.06] except for the two, highly degenerate problems
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NUG12 and QAP12 where sip requires 1.09 and 1.60 times as many iterations respec-
tively. [Note that these two problems are essentially identical, differing only by row
and column permutations.] It is clear from Table 5 that the overall performance and
mean speedup (1.15) of sip is inferior to that of pami. This is because sip exploits
only limited parallelism.

The worst cases when using sip are associated with the hyper-sparse LP prob-
lems where sip typically results in a slowdown. Such an example is SGPF5YO,
where the proportion of FTRAN-DSE is more than 80% and the total proportion of
SPMV, CHUZC, FTRAN and UPDATE-DUAL is less than 5%. Therefore, when perform-
ing FTRAN-DSE and the rest as task parallel operations, the overall performance is
not only limited by FTRAN-DSE, but the competition for memory access by the other
components and the cost of setting up the parallel environment will also slow down
FTRAN-DSE.

However, when applied to dense LP problems, the performance of sip is moderate
and relatively stable. This is especially so for those instances where pami exhibits a
slowdown: for LINF_520C, MAROS-R7, applying sip achieves speedups of 1.31 and
1.12 respectively.

In summary, sip, is a straightforward approach to parallelisation which exploits
purely single iteration parallelism and achieves relatively poor speedup for general LP
problems compared to pami. However, sip is frequently complementary to pami
in achieving speedup when pami results in slowdown.

5.4 Performance relative to Cplex and influence on Xpress

Since commercial LP solvers are now highly developed it is, perhaps, unreason-
able to compare their performance with a research code. However, this is done in
Fig. 4, which illustrates the performance of Cplex 12.4 [17] relative to pami8 and
sip8. Again, Cplex is run without preprocessing or crash. Figure 4 also traces the
performance of the better of pami8 and sip8, clearly illustrating that sip and
pami are frequently complementary in terms of achieving speedup. Indeed, the per-
formance of the better of sip and pami is comparable with that of Cplex for

—— Cplex pami8

sip8 e min(pami8, sip8)

Fig. 4 Performance profile of Cplex, pami8 and sip8 without preprocessing or crash
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Fig. 5 Performance profile of Cplex, Xpress and Xpress8 with preprocessing and crash

the majority of the test problems. For a research code this is a significant achieve-
ment.

Since developing and implementing the techniques described in this paper, Huangfu
has implemented them within the FICO Xpress simplex solver [15]. The performance
profile in Fig. 5 demonstrates that when it is advantageous to run Xpress in parallel
it enables FICO’s solver to match the serial performance of Cplex (which has no
parallel simplex facility). Note that for the results in in Fig. 5, Xpress and Cplex
were run with both preprocessing and crash. The newly-competitive performance of
parallel Xpress relative to Cplex is also reflected in Mittelmann’s independent
benchmarking [19].

6 Conclusions

This report has introduced the design and development of two novel parallel imple-
mentations of the dual revised simplex method.

One relatively complicated parallel scheme (pami ) is based on a less-known pivot-
ing rule called suboptimization. Although it provided the scope for parallelism across
multiple iterations, as a pivoting rule suboptimization is generally inferior to the reg-
ular dual steepest-edge algorithm. Thus, to control the quality of the pivots, which
often declines during pami, a cutoff factor is necessary. A suitable cutoff factor of
0.95, has been found via series of experiments. For the reference set, pami provides
a mean speedup of 1.51 which enables it to out-perform Clp, the best open-source
simplex solver.

The other scheme (sip) exploits purely single iteration parallelism. Although its
mean speedup of 1.15 is worse than that of pami, it is frequently complementary to
pami in achieving speedup when pami results in slowdown.

Although the results in this paper are far from the linear speedup which is the
hallmark of many quality parallel implementations of algorithms, to expect such results
for an efficient implementation of the revised simplex method applied to general
large sparse LP problems is unreasonable. The commercial value of efficient simplex
implementations is such that if such linear speedup were possible then it would have
been achieved years ago. A measure of the quality of the pami and sip schemes
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discussed in this paper is that they have formed the basis of refinements made by
Huangfu to the Xpress solver which have been considered noteworthy enough to be
reported by FICO. With the techniques described in this paper, Huangfu has raised the
performance of the Xpress parallel revised simplex solver to that of the worlds best
commercial simplex solvers. In developing the first parallel revised simplex solver
of general utility, this work represents a significant achievement in computational
optimization.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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