
1

Hyper-sparsity in the revised simplex method and how
to exploit it

Julian Hall

Ken McKinnon

Department of Mathematics and Statistics

University of Edinburgh

25th June 2003



2

Overview

• The revised simplex method

•What is hyper-sparsity and how can it be exploited?

• Results, conclusions and extensions



3

The revised simplex method for LP

minimize f = cTx
subject to Ax = b

x ≥ 0
where x ∈ IRn and b ∈ IRm.

At any stage in the revised simplex method

• the variables are partitioned into index sets

B of m basic variables xB ≥ 0

N of n−m nonbasic variables xN = 0

• the corresponding components of c and columns of A are

the basic costs cB and basis matrix B

the non-basic costs cN and matrix N

• there is a factored inverse B−1 of the basis matrix.



4

Revised simplex method

CHUZC: Scan the reduced costs ĉN for a good candidate q to enter the basis.
FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the

basis. Let α = b̂p/âpq.

Update b̂ := b̂− αâq.
BTRAN: Form πTp = eTpB

−1.

PRICE: Form the pivotal row âTp = πTpN .

Update reduced costs ĉTN := ĉTN − ĉqâTp .
If (growth in factors) then

INVERT: Form a factored representation of B−1.
else

UPDATE: Update the factored representation of B−1 corresponding to the
basis change.

end if



5

Exploiting sparsity in solving Bâq = aq and BTπ = ep

•Maintain an eta file {pk, ηk,ηk}rk=1 so that

B−1 =
r∏

k=1
Ek where Ek =




1
. . . ηk

1
ηk

1
ηk

. . .

1




← row pk

Entries in eta file correspond to columns in LU decomposition of B0 and subse-
quent basis changes.



6

Sparse FTRAN

• Bx = b may be solved by transforming b into x as follows.

do k = 1, r
bpk := bpk/ηk
b := b− bpkηk

end do

• As etas are applied there is fill-in in the RHS.

• According to the problem

◦ fill-in can accumulate rapidly so that x is dense

◦ little fill-in occurs so that x is sparse



7

What is hyper-sparsity?

• Hyper-sparsity exists when the results of matrix-vector operations in the revised
simplex method are sparse.

◦ The pivotal column âq = B−1aq is sparse.

◦ The ‘update π’ πT = eTpB
−1 is sparse.

◦ The pivotal row âTp = πTN is sparse.

• Exploit hyper-sparsity both when forming and using these vectors.



8

What problems (may) exhibit hyper-sparsity?

• Problems with a significant network structure

• Problems with Dantzig-Wolfe (row linked block diagonal) structure

◦Multicommodity flow problems

• Problems with Benders (column linked block diagonal) structure

• Other general LP problems exhibit hyper-sparsity for no obvious reason



9

FTRAN with sparse RHS

• In general, when solving LP problems, Bx = b has a sparse RHS aq.

• Bx = b may be solved by transforming b into x as follows.

do k = 1, r
if (bpk .ne. 0) then

bpk := bpk/ηk
b := b− bpkηk

end if

end do

• In presence of hyper-sparsity, the dominant cost is the test for zero.



10

Hyper-sparse FTRAN

During each INVERT:

• For each row i = 1, . . ., m,

◦ record the index k of the first eta for which pk = i

◦ record the index k of the second eta for which pk = i

During each FTRAN:

Let R be the set of indices of nonzeros in b.

Let E be the set of etas with pivots corresponding to nonzeros in b.

1 Scan E to determine the index k of the next eta to be applied.

If k is undefined then FTRAN is complete.

Apply eta k:

add to R the indices of any RHS entries where nonzeros are created.

add to E etas with pivots where nonzeros are created.

Go to 1.



11

Hyper-sparse CHUZR

Recall: Scan the ratios b̂i/âiq

• Following hyper-sparse FTRAN, the indices of the nonzeros in âiq are known.



12

Hyper-sparse BTRAN with unit RHS

• BTx = b may be solved by transforming b into x as follows.

do k = r, 1, −1
bpk := (bpk + bTηk)/ηk

end do

• No way to exploit hypersparsity properly with ‘column-wise’ eta file.

• Form additional ‘row-wise’ eta file

– After INVERT: Form a ‘row-wise’ copy of the eta file.

– Pass row-wise eta file to hyper-sparse forward solution code.



13

Hyper-sparse PRICE

Recall: âTp = πTN .

• Form âTp as a linear combination of rows of N corresponding to nonzeros in πT .

•Maintain list of indices of nonzeros in âTp .

Requires row-wise representation of N to be maintained.



14

Hyper-sparse CHUZC

Recall: Reduced costs updated according to

ĉTN := ĉTN − ĉqâTp
• ĉTN = cTN − cTBB−1N is typically dense

• âTp is sparse—few reduced costs change

• Initially: full CHUZC to form list of (≤ s) good candidates

• Each iteration:

◦ Form list of (≤ s) good candidates from those with changed reduced cost

◦Merge lists to form new list of (≤ s) good candidates

• Periodically: full CHUZC to pick up good candidates which have never changed



15

Hyper-sparse (Tomlin) INVERT

• The Tomlin INVERT calculates columns of the active submatrix as required

• Column k requires the solution of (
k−1∏

i=1
Li)âk = ak

• Apply techniques for hyper-sparse FTRAN



16

Hyper-sparse (product-form) UPDATE

Recall: B−1 is represented as B−1 = E−1
U B−1

0 , where B−1
0 is obtained by INVERT.

Eta file for E−1
U requires packed form of η =




â1q
...

âp−1 q

−1/âpq
âp+1 q

...
ânq




This is formed at almost no cost during hyper-sparse CHUZR.



17

Speedup of EMSOL for problems exhibiting
hyper-sparsity

speedup in total solution time and computational components
Problem Solution CHUZC I-FTRAN CHUZR I-BTRAN U-BTRAN PRICE INVERT

80BAU3B 3.34 3.05 5.13 1.93 3.51 6.72 6.06 1.34
FIT2P 1.75 18.91 1.30 0.93 12.22 3.59 13.47 0.87
GREENBEA 2.71 1.33 1.30 1.13 3.60 19.87 3.45 2.83
GREENBEB 2.44 1.39 1.35 1.21 3.69 21.88 3.44 2.78
STOCFOR3 1.85 4.47 1.14 0.96 7.26 56.99 7.61 3.16
WOODW 3.40 1.82 1.70 1.30 4.17 11.72 5.14 1.53
DCP1 3.25 1.58 2.36 1.19 3.87 6.25 6.71 1.70
DCP2 5.32 1.60 8.24 2.51 6.21 13.99 6.20 8.63
CRE-A 3.05 2.54 4.00 1.72 3.64 6.50 4.48 1.14
CRE-C 2.89 2.88 4.67 1.97 3.58 6.53 4.97 1.08
KEN-11 22.84 19.36 98.04 13.93 27.22 9.90 66.36 1.02
KEN-13 12.12 6.31 104.09 7.31 12.87 9.19 17.60 0.94
KEN-18 15.27 6.63 263.94 15.27 13.91 13.07 19.92 1.01
PDS-06 17.48 15.25 24.07 3.57 21.58 35.76 28.18 1.02
PDS-10 10.36 10.67 11.24 1.85 16.60 49.99 17.55 0.96
PDS-20 10.35 8.58 5.96 1.68 14.33 189.19 15.40 1.44

Mean 5.21 4.38 7.03 2.28 7.64 15.44 9.71 1.55



18

Comparison of EMSOL with CPLEX and SOPLEX

EMSOL CPLEX 6.5 (Devex) SOPLEX 1.2 (Devex)
Solution Solution EMSOL EMSOL Solution EMSOL EMSOL
time time solution iteration time solution iteration

Problem CPU (s) CPU (s) speedup speedup CPU (s) speedup speedup

80BAU3B 9.43 14.39 1.53 1.37 20.50 2.17 1.78
FIT2P 67.34 42.08 0.62 0.47 1058.79 15.72 1.30
GREENBEA 24.63 21.18 0.86 1.00 150.53 6.11 1.38
GREENBEB 19.55 18.31 0.94 1.20 76.36 3.91 1.56
STOCFOR3 201.21 41.15 0.20 0.25 154.11 0.77 0.64
WOODW 3.09 3.99 1.29 1.50 21.41 6.93 2.58
DCP1 14.64 16.30 1.11 1.22 330.35 22.56 1.69
DCP2 483.64 1412.89 2.92 1.40 1507.40 3.12 1.24
CRE-A 4.49 6.29 1.40 1.45 5.07 1.13 1.09
CRE-C 3.50 5.91 1.69 1.66 3.39 0.97 1.06
KEN-11 9.19 13.57 1.48 1.24 46.99 5.11 2.20
KEN-13 100.77 91.41 0.91 0.79 417.26 4.14 2.05
KEN-18 1421.50 786.08 0.55 0.48 5167.60 3.64 1.91
PDS-06 8.20 5.49 0.67 0.90 44.22 5.39 3.37
PDS-10 83.83 26.92 0.32 0.65 158.79 1.89 2.37
PDS-20 1059.19 238.48 0.23 0.53 1754.17 1.66 2.73

Mean 0.84 0.90 3.47 1.67



19

How much of all this is new?

Very little is published on the (detailed) computational techniques which make
commercial codes run fast.

• Storing row-wise copy of L to speed up BTRAN suggested by Reid.

• Forrest-Tomlin INVERT precludes one-off processing of B−1
0 .

• CPLEX (≥ 6.5) exploits hyper-sparsity using Gilbert-Peierls algorithm.



20

Conclusions and extensions

• Considerable improvement in efficiency for a significant class of problems.

• Speedup is limited by computational cost of the relatively small number iterations
where hypersparsity is not exhibited.

◦ Can this number of iterations be reduced by modified column and row selection
strategies?

• Heuristic approach to hyper-sparse FTRAN and BTRAN may be inefficient for
very large problems.

◦May need Gilbert-Peierls.

• ‘Partial’ PRICE and other algorithmic refinements used by CPLEX and SO-
PLEX but not EMSOL.


