Parallel distributed-memory simplex for large-scale stochastic LP problems

Miles Lubin¹ Julian Hall² Cosmin Petra³ Mihai Anitescu³

 1 MIT

²School of Mathematics, University of Edinburgh

³Argonne National Lab

5th International Congress on Mathematical Software

12 July 2016

Linear programming (LP)

minimize
$$f = c^T x$$

subject to $Ax = b$ $x \ge 0$

Background

- Fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point methods (1984)
- Large problems have
 - \circ 10³–10⁸ variables
 - \circ 10³–10⁸ constraints
- Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Simplex method: Computation

Major computational components

$$\pi_p^T = \boldsymbol{e}_p^T B^{-1} \quad \text{BTRAN} \qquad \widehat{\boldsymbol{a}}_p^T = \pi_p^T N \quad \text{PRICE}$$
$$\widehat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q \quad \text{FTRAN} \qquad \text{Invert } B \quad \text{INVERT}$$

Don't form $B^{-1}!$

- If B is sparse then B^{-1} is generally dense
- INVERT: form sparsity-preserving decomposition B = LU to operate with B^{-1}

Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

- Variables $x_0 \in \mathbb{R}^{n_0}$ are first stage decisions
- Variables $\mathbf{x}_i \in \mathbb{R}^{n_i}$ for i = 1, ..., N are second stage decisions Each corresponds to a scenario which occurs with modelled probability
- The objective is the expected cost of the decisions
- In stochastic MIP problems, some/all decisions are discrete

Stochastic MIP problems: For Argonne

- Power systems optimization project at Argonne
- Integer second-stage decisions
- Stochasticity from wind generation
- Initial experiments carried out using model problem
- Number of scenarios increases with refinement of probability distribution sampling
- Solution via branch-and-bound
 - Solve root using parallel IPM solver PIPS
 - Lubin, Petra *et al.* (2011)
 - Solve nodes using parallel dual simplex solver PIPS-S

Convenient to permute the LP thus:

Exploiting problem structure: Inverting B

- Inversion of the basis matrix B is key to revised simplex efficiency
- For column-linked BALP problems

$$B = egin{bmatrix} W_1^{\scriptscriptstyle B} & & T_1^{\scriptscriptstyle B} \ & \ddots & & dots \ & & W_N^{\scriptscriptstyle B} & T_N^{\scriptscriptstyle B} \ & & & A^{\scriptscriptstyle B} \end{bmatrix}$$

۲

• W_i^B are columns corresponding to n_i^B basic variables in scenario i

$$\begin{bmatrix} T_1^B \\ \vdots \\ T_N^B \\ A^B \end{bmatrix}$$
 are columns corresponding to n_0^B basic first stage decisions

Exploiting problem structure: Inverting B

- Inversion of the basis matrix B is key to revised simplex efficiency
- For column-linked BALP problems

$$B = egin{bmatrix} W_1^B & & T_1^B \ & \ddots & & dots \ & & W_N^B & T_N^B \ & & & A^B \end{bmatrix}$$

- B is nonsingular so
 - $W_i^{\scriptscriptstyle B}$ are "tall": full column rank
 - $\begin{bmatrix} W_i^B & T_i^B \end{bmatrix}$ are "wide": full row rank
 - \overline{A}^{B} is "wide": full row rank
- Scope for parallel inversion is immediate and well known

• Eliminate sub-diagonal entries in each $W_i^{\scriptscriptstyle B}$ (independently)

• Apply elimination operations to each T_i^B (independently)

• Accumulate non-pivoted rows from the $W_i^{\scriptscriptstyle B}$ with $A^{\scriptscriptstyle B}$ and complete elimination

 W_1^E

 T_1^B

Exploiting problem structure: Inverting B

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

- Specifically
 - $L_i U_i = S_i$ of dimension $n_i^{\scriptscriptstyle B}$
 - $\widehat{C}_i = L_i^{-1}C_i$
 - $\widehat{R}_i = R_i U_i^{-1}$
 - LU factors of the Schur complement $M = V RS^{-1}C$ of dimension $n_0^{\scriptscriptstyle B}$

Exploiting problem structure: Solving Bx = b

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **1** $L_i \mathbf{v}_i = \mathbf{b}_i, i = 1, ..., N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{v}_i, i = 1, \dots, N$ $z = b_0 - \sum^N z_i$ $M \boldsymbol{x}_0 = \boldsymbol{z}$ $U_i \mathbf{x}_i = \mathbf{v}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, \boldsymbol{b}_{\bullet} is from constraint column Either $\begin{bmatrix} \boldsymbol{t}_{1q} \\ \vdots \\ \boldsymbol{t}_{Nq} \end{bmatrix}$ or, more likely, $\begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{w}_{iq} \\ \boldsymbol{0} \end{bmatrix}$
 - In latter case, the y_i inherit structure
 - Only one $L_i \boldsymbol{y}_i = \boldsymbol{w}_{iq}$
 - Only one $\widehat{R}_i \boldsymbol{y}_i$
- Less scope for parallelism than anticipated

Exploiting problem structure: Solving $B^T x = b$

BTRAN for $B^T \mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S^T & R^T \\ C^T & V^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_0 \end{bmatrix}$ as $U_i^T \boldsymbol{y}_i = \boldsymbol{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{C}_i^T \mathbf{v}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^{N} \mathbf{z}_i$ $M^T \boldsymbol{x}_0 = \boldsymbol{z}$ $L_i^T \boldsymbol{x}_i = \boldsymbol{y}_i - \widehat{R}_i^T \boldsymbol{x}_0,$ $i = 1, \ldots, N$

- Appears to be dominated by parallelizable
 - Solves $U_i^T \mathbf{y}_i = \mathbf{b}_i$ and $L_i^T \mathbf{x}_i = \mathbf{y}_i \widehat{R}_i^T \mathbf{x}_0$
 - Products $\widehat{C}_i^T \boldsymbol{y}_i$ and $\widehat{R}_i^T \boldsymbol{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, $\boldsymbol{b} = \boldsymbol{e}_{p}$
 - At most one solve $U_i^T \boldsymbol{y}_i = \boldsymbol{b}_i$
 - At most one $\widehat{C}_i^T \mathbf{y}_i$
- Less scope for parallelism than anticipated

Parallel distributed-memory simplex for large-scale stochastic LP problems

Scope for parallelism

- Parallel Gaussian elimination yields block LU decomposition of B
- Scope for parallelism in block forward and block backward substitution
- Scope for parallelism in PRICE

Implementation

- Distribute problem data over processes
- Perform data-parallel BTRAN, FTRAN and PRICE over processes
- Used MPI

Paper: Lubin, H et al. (2013)

- Won COIN-OR INFORMS 2013 Cup
- Won COAP best paper prize for 2013

Results: Stochastic LP test problems

Test	1st St	tage	2nd-Stage	e Scenario	No	nzero Elem	nents
Problem	<i>n</i> 0	m_0	ni	mi	A	Wi	T_i
Storm	121	185	1,259	528	696	3,220	121
SSN	89	1	706	175	89	2,284	89
UC12	3,132	0	56,532	59,436	0	163,839	3,132
UC24	6,264	0	113,064	118,872	0	327,939	6,264

- Storm and SSN are publicly available
- UC12 and UC24 are stochastic unit commitment problems developed at Argonne
 - Aim to choose optimal on/off schedules for generators on the power grid of the state of Illinois over a 12-hour and 24-hour horizon
 - In practice each scenario corresponds to a weather simulation Model problem generates scenarios by normal perturbations

Zavala (2011)

Results: Baseline serial performance for large instances

-

Serial performance of PIPS-S and clp

Problem	Dimensions	Solver	Iterations	Time (s)	Iter/sec
Storm	n = 10,313,849	PIPS-S	6,353,593	385,825	16.5
8,192 scen.	m = 4,325,561	clp	6,706,401	133,047	50.4
SSN	n = 5,783,651	PIPS-S	1,025,279	58,425	17.5
8,192 scen.	m = 1,433,601	clp	1,175,282	12,619	93.1
UC12	n = 1,812,156	PIPS-S	1,968,400	236,219	8.3
32 scen.	m = 1,901,952	clp	2,474,175	39,722	62.3
UC24	n = 1,815,288	PIPS-S	2,142,962	543,272	3.9
16 scen.	m = 1,901,952	clp	2,441,374	41,708	58.5

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores	Storm	SSN	UC12	UC24
1	1.0	1.0	1.0	1.0
4	3.6	3.5	2.7	3.0
8	7.3	7.5	6.1	5.3
16	13.6	15.1	8.5	8.9
32	24.6	30.3	14.5	
clp	8.5	6.5	2.4	0.7

	Storm	SSN	UC12	UC24
Scenarios	32,768	32,768	512	256
Variables	41,255,033	23,134,297	28,947,516	28,950,648
Constraints	17,301,689	5,734,401	30,431,232	30,431,232

Speed-up of PIPS-S relative to 1	l-core PIPS-S :	and 1-core clp
----------------------------------	-----------------	----------------

Cores	Storm	SSN	UC12	UC24
1	1	1	1	1
8	15	19	7	6
16	52	45	14	12
32	117	103	26	22
64	152	181	44	41
128	202	289	60	64
256	285	383	70	80
clp	299	45	67	68

- Instance of UC12
 - 8,192 scenarios
 - 463,113,276 variables
 - 486,899,712 constraints
- Requires 1 TB of RAM \geq 1024 Blue Gene cores
- Runs from an advanced basis

Cores	Iterations	Time (h)	Iter/sec
1024	Exceeded	execution	time limit
2048	82,638	6.14	3.74
4096	75,732	5.03	4.18
8192	86,439	4.67	5.14

High performance simplex solvers: Conclusions

- Developed a distributed dual revised simplex solver for column linked BALP
- Demonstrated scalable parallel performance
 - For highly specialised problems
 - On highly specialised machines
- Solved problems which would be intractable using commercial serial solvers

Slides: http://www.maths.ed.ac.uk/hall/ICMS16/

Paper: M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu Parallel distributed-memory simplex for large-scale stochastic LP problems *Computational Optimization and Applications*, 55(3):571–596, 2013

