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Linear programming (LP)

minimize f = cTx
subject to Ax = b x ≥ 0

Background

Fundamental model in optimal
decision-making

Solution techniques

◦ Simplex method (1947)
◦ Interior point methods (1984)

Large problems have

◦ 103–108 variables
◦ 103–108 constraints

Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros
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Simplex method: Computation

RHS

âq
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âpq âT
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Major computational components

πT
p = eT

p B
−1 BTRAN âT

p = πT
p N PRICE

âq = B−1aq FTRAN Invert B INVERT

Don’t form B−1!

If B is sparse then B−1 is generally dense

INVERT: form sparsity-preserving decomposition B = LU to operate with B−1
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Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + . . . + cT

NxN

subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables x i ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete
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Stochastic MIP problems: For Argonne

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Initial experiments carried out using model problem

Number of scenarios increases with refinement of
probability distribution sampling

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S
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Stochastic MIP problems: General

Convenient to permute the LP thus:

minimize cT
1 x1 + cT

2 x2 + . . . + cT
NxN + cT

0 x0

subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0
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Exploiting problem structure: Inverting B

Inversion of the basis matrix B is key to revised simplex efficiency

For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i




T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions
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Exploiting problem structure: Inverting B

Inversion of the basis matrix B is key to revised simplex efficiency

For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so

W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known
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Exploiting problem structure: Inverting B

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination
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Exploiting problem structure: Inverting B

After Gaussian elimination, have invertible representation of

B =




S1 C1

. . .
...

SN CN

R1 . . . RN V


 =




S C

R V




Specifically

LiUi = Si of dimension nB

i

Ĉi = L−1
i Ci

R̂i = RiU
−1
i

LU factors of the Schur complement M = V − RS−1C of dimension nB
0

Julian Hall Parallel simplex for large-scale stochastic LPs 10 / 20



Exploiting problem structure: Solving Bx = b

FTRAN for Bx = b

Solve

[
S C
R V

] [
x•
x0

]
=

[
b•
b0

]
as

1 Liy i = bi , i = 1, . . . ,N

2 z i = R̂iy i , i = 1, . . . ,N

3 z = b0 −
N∑

i=1

z i

4 Mx0 = z
5 Uix i = y i − Ĉix0, i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves Liy i = bi and Uix i = y i − Ĉix0

Products R̂iy i and Ĉix0

Curse of exploiting hyper-sparsity

In simplex, b• is from constraint column

Either




t1q
...

tNq


or, more likely,




0
w iq

0




In latter case, the y i inherit structure

Only one Liy i = w iq

Only one R̂iy i

Less scope for parallelism than anticipated

.
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Exploiting problem structure: Solving BTx = b

BTRAN for BTx = b

Solve

[
ST RT

CT V T

] [
x•
x0

]
=

[
b•
b0

]
as

1 UT
i y i = bi , i = 1, . . . ,N

2 z i = ĈT
i y i , i = 1, . . . ,N

3 z = b0 −
N∑

i=1

z i

4 MTx0 = z
5 LTi x i = y i − R̂T

i x0,
i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves UT
i y i = bi and LTi x i = y i − R̂T

i x0

Products ĈT
i y i and R̂T

i x0

Curse of exploiting hyper-sparsity

In simplex, b = ep

At most one solve UT
i y i = bi

At most one ĈT
i y i

Less scope for parallelism than anticipated

.
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Parallel distributed-memory simplex for large-scale stochastic LP problems

Scope for parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for parallelism in block forward and block backward substitution

Scope for parallelism in PRICE

Implementation

Distribute problem data over processes

Perform data-parallel BTRAN, FTRAN and PRICE over processes

Used MPI

Paper: Lubin, H et al. (2013)

Won COIN-OR INFORMS 2013 Cup

Won COAP best paper prize for 2013
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Results: Stochastic LP test problems

Test 1st Stage 2nd-Stage Scenario Nonzero Elements
Problem n0 m0 ni mi A Wi Ti

Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89
UC12 3,132 0 56,532 59,436 0 163,839 3,132
UC24 6,264 0 113,064 118,872 0 327,939 6,264

Storm and SSN are publicly available

UC12 and UC24 are stochastic unit commitment problems developed at Argonne

Aim to choose optimal on/off schedules for generators on the power grid of the state
of Illinois over a 12-hour and 24-hour horizon
In practice each scenario corresponds to a weather simulation
Model problem generates scenarios by normal perturbations

Zavala (2011)

Julian Hall Parallel simplex for large-scale stochastic LPs 14 / 20



Results: Baseline serial performance for large instances

Serial performance of PIPS-S and clp

Problem Dimensions Solver Iterations Time (s) Iter/sec

Storm n =10,313,849 PIPS-S 6,353,593 385,825 16.5
8,192 scen. m = 4, 325, 561 clp 6,706,401 133,047 50.4

SSN n = 5, 783, 651 PIPS-S 1,025,279 58,425 17.5
8,192 scen. m = 1, 433, 601 clp 1,175,282 12,619 93.1

UC12 n = 1, 812, 156 PIPS-S 1,968,400 236,219 8.3
32 scen. m = 1, 901, 952 clp 2,474,175 39,722 62.3

UC24 n = 1, 815, 288 PIPS-S 2,142,962 543,272 3.9
16 scen. m = 1, 901, 952 clp 2,441,374 41,708 58.5
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Results: On Fusion cluster

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24

1 1.0 1.0 1.0 1.0
4 3.6 3.5 2.7 3.0
8 7.3 7.5 6.1 5.3

16 13.6 15.1 8.5 8.9
32 24.6 30.3 14.5

clp 8.5 6.5 2.4 0.7
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Results: On Fusion cluster - larger instances

Storm SSN UC12 UC24

Scenarios 32,768 32,768 512 256
Variables 41,255,033 23,134,297 28,947,516 28,950,648

Constraints 17,301,689 5,734,401 30,431,232 30,431,232
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Results: On Fusion cluster - larger instances, from an advanced basis

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24

1 1 1 1 1
8 15 19 7 6

16 52 45 14 12
32 117 103 26 22
64 152 181 44 41

128 202 289 60 64
256 285 383 70 80

clp 299 45 67 68
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Results: On Blue Gene supercomputer - very large instance

Instance of UC12

8,192 scenarios
463,113,276 variables
486,899,712 constraints

Requires 1 TB of RAM
≥ 1024 Blue Gene cores

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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High performance simplex solvers: Conclusions

Developed a distributed dual revised simplex solver for column linked BALP

Demonstrated scalable parallel performance

For highly specialised problems
On highly specialised machines

Solved problems which would be intractable using commercial serial solvers

Slides: http://www.maths.ed.ac.uk/hall/ICMS16/

Paper: M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu
Parallel distributed-memory simplex for large-scale stochastic LP problems
Computational Optimization and Applications, 55(3):571–596, 2013
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