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Linear programming (LP)

minimize f=c¢'x

subjectto Ax=b x>0

Backgroun:

@ Fundamental model in optimal L
decision-making N .

@ Solution techniques

o Simplex method (1947) g“\—%f .
o Interior point methods (1984) AN R:—i“
@ Large problems have BN -
o 103-108 variables ““H\:\T:m;gg
o 103-108 constraints =

- AL

@ Matrix A is (usually) sparse
STAIR: 356 rows, 467 columns and 3856 nonzeros
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Simplex method: Computation

N RHS|

B

| <
Major computational components
T_ ,Tp-1 ~T_ T
T, =¢€, B BTRAN a,=m, N PRICE

a, =B la, FTRAN Invert B INVERT

o If B is sparse then B~! is generally dense

o INVERT: form sparsity-preserving decomposition B = LU to operate with B~!
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Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

minimize ¢/xo + ¢/x1 + €lxo + ... + cxn
subject to Axg = by
Tixo + Wix, = b
T2X0 + W2X2 = b2
TNXO + WNXN = bN

x0>0 x1 >0 x>0 xy >0

@ Variables xg € R™ are first stage decisions

@ Variables x; € R" for i =1,..., N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

@ The objective is the expected cost of the decisions

@ In stochastic MIP problems, some/all decisions are discrete
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Stochastic MIP problems: For Argonne

Power systems optimization project at Argonne
Integer second-stage decisions
Stochasticity from wind generation

Initial experiments carried out using model problem

Number of scenarios increases with refinement of
probability distribution sampling
@ Solution via branch-and-bound

e Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)
e Solve nodes using parallel dual simplex solver PIPS-S
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Stochastic MIP problems: General

Convenient to permute the LP thus:

minimize ¢{x1 + €Jx2 + ... + ¢cixn + €fxo
subject to  Wix; + Tixg = by
W2X2 + T2X0 = b2
Wyxy + Tuxo = by
AXO = bo

x1 >0 x>0 xy >0 x0>0
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Exploiting problem structure: Inverting B

@ Inversion of the basis matrix B is key to revised simplex efficiency

@ For column-linked BALP problems
Wy Th
AB

@ WP are columns corresponding to n? basic variables in scenario i

° :B are columns corresponding to ng basic first stage decisions
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Exploiting problem structure: Inverting B

@ Inversion of the basis matrix B is key to revised simplex efficiency

@ For column-linked BALP problems

B B

Wl Tl 1% e

B = 5 :B WP i
WN TN

AF wp | 2

AB

@ B is nonsingular so
o WP are “tall": full column rank

° [Wf’ T,B] are “wide": full row rank

o AP is "wide": full row rank
@ Scope for parallel inversion is immediate and well known
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Exploiting problem structure: Inverting B

e Eliminate sub-diagonal entries in each W# (independently)

wg | 1

A

@ Apply elimination operations to each T/ (independently)

@ Accumulate non-pivoted rows from the W? with A® and
complete elimination
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Exploiting problem structure: Inverting B

@ After Gaussian elimination, have invertible representation of

S G
B_ : _ S C
Sv | Cn
Ri ... Ry ‘ % R ‘ Vv
@ Specifically
o LiU; = S; of dimension n?
o G=L7'C
° /3,- = /'-\’,'U,-_1

LU factors of the Schur complement M = V — RS~1C of dimension n§
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Exploiting problem structure: Solving Bx = b

FTRAN for Bx = b @ Appears to be dominated by parallelizable
i a'Xo

o Solves Liy; = bj and Uix; = y

Solve [5 C] [X'} - [b'] as e Products Ry, and Cixo
RV _XO bo @ Curse of exploiting hyper-sparsity
Q Liy; :Abiv i=1...,N o In simplex, b, is from constraint column
inzR,-y,-,izl,...,N tig 0
N Either | : |or, more likely, |wiq
0z=h-) = o
= o In latter case, the y; inherit structure
Q Mxy=2z @ Only one LA,-y,- = Wijq
Q@ Uxi=y,— Cxo, i=1,...,N ® Only one Riy;

@ Less scope for parallelism than anticipated
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Exploiting problem structure: Solving B'x = b

BTRAN for BTx — @ Appears to be dominated by paraIIellzaAbIe

o Solves U y; = b;and LT x; = y; — R x¢

ST T 4 ~
Solve |7+ RT o Products C/'y; and R xo
C % iy .
@ Curse of exploiting hyper-sparsity
o UT_Y, = b:, =1,. o In simplex, b=e,
Q z — CTy =1,...,N o At most one solve Uy; = b;
: o At most one C/ly;
Q@ z=by— Zz,- @ Less scope for parallelism than anticipated
O MTxy==z
o L,'Txi =Yi— R,'TXO.
i=1,...,N
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Parallel distributed-memory simplex for large-scale stochastic LP problems

Scope for parallelism

@ Parallel Gaussian elimination yields block LU decomposition of B
@ Scope for parallelism in block forward and block backward substitution

@ Scope for parallelism in PRICE

Implementation

@ Distribute problem data over processes
@ Perform data-parallel BTRAN, FTRAN and PRICE over processes
@ Used MPI

Paper: Lubin, H et al. (2013)
@ Won COIN-OR INFORMS 2013 Cup
@ Won COAP best paper prize for 2013
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Results: Stochastic LP test problems

Test 1st Stage  2nd-Stage Scenario Nonzero Elements

Problem ng mg n; m; A W; T;
Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89

UC12 3,132 0 56,532 59,436 0 163,839 3,132
uc24 6,264 0 113,064 118,872 0 327,939 6,264

@ Storm and SSN are publicly available
@ UC12 and UC24 are stochastic unit commitment problems developed at Argonne

e Aim to choose optimal on/off schedules for generators on the power grid of the state
of lllinois over a 12-hour and 24-hour horizon

e In practice each scenario corresponds to a weather simulation
Model problem generates scenarios by normal perturbations

Zavala (2011)
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Results: Baseline serial performance for large instances

Serial performance of PIPS-S and clp

Problem Dimensions  Solver Iterations Time (s) lter/sec
Storm n =10,313,849 PIPS-S 6,353,593 385,825 16.5
8,192 scen. m = 4,325,561 clp 6,706,401 133,047 50.4
SSN n=>5,783,651 PIPS-S 1,025,279 58,425 17.5
8,192 scen. m =1,433,601 clp 1,175,282 12,619 93.1
Uc12 n=1,812,156 PIPS-S 1,968,400 236,219 8.3
32 scen.  m=1,901,952 clp 2474175 39,722 623
uc24 n=1,815,288 PIPS-S 2,142,962 543,272 3.9
16 scen.  m = 1,901,952 clp 2441374 41,708 58.5
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Results: On Fusion cluster

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN TUC12 TUC24

1 1.0 1.0 1.0 1.0

4 36 35 2.7 3.0

8 73 75 6.1 53
16 13.6 15.1 8.5 8.9
32 246 303 145

clp 85 6.5 2.4 0.7
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Results: On Fusion cluster - larger instances

Storm SSN UC12 UcC24

Scenarios 32,768 32,768 512 256
Variables 41,255,033 23,134,297 28,947,516 28,950,648
Constraints 17,301,689 5,734,401 30,431,232 30,431,232
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Results: On Fusion cluster - larger instances, from an advanced basis

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24
1 1 1 1 1

8 15 19 7 6

16 52 45 14 12

32 117 103 26 22
64 152 181 44 41
128 202 289 60 64
256 285 383 70 80
clp 209 45 67 68
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Results: On Blue Gene supercomputer - very large instance

@ Instance of UC12

_ Cores lterations Time (h) Iter/sec
e 8,192 scenarios

o 463,113,276 variables 1024 Exceeded execution time limit

o 486,899,712 constraints 2048 82,638 6.14 3.74

@ Requires 1 TB of RAM 4096 75,732 5.03 4.18
> 1024 Blue Gene cores 8192 86,439 4.67 5.14

@ Runs from an advanced basis
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High performance simplex solvers: Conclusions

@ Developed a distributed dual revised simplex solver for column linked BALP
@ Demonstrated scalable parallel performance

e For highly specialised problems
e On highly specialised machines

@ Solved problems which would be intractable using commercial serial solvers

Slides: http://www.maths.ed.ac.uk/hall/ICMS16/
Paper: M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu w

Parallel distributed-memory simplex for large-scale stochastic LP problems \\
Computational Optimization and Applications, 55(3):571-596, 2013
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