HiGHS: a high-performance linear optimizer

Julian Hall

School of Mathematics, University of Edinburgh

2nd IMA and OR Society Conference on Mathematics of Operational Research

University of Aston, Birmingham

26 April 2019

HiGHS: High performance linear optimization

- Linear optimization
 - Linear programming (LP)

minimize $c^T x$ subject to Ax = b $x \ge 0$

• Convex quadratic programming (QP)

minimize
$$\frac{1}{2} \boldsymbol{x}^T Q \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A \boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

 ${\boldsymbol{Q}}$ positive semi-definite

- High performance
 - Serial techniques exploiting sparsity in A
 - Parallel techniques exploiting multicore architectures

HiGHS: The team

What's in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

- Julian Hall: Reader (1990-date)
- Ivet Galabova
 - PhD (2016-date)
 - Google (2018)
- Qi Huangfu
 - PhD (2009-2013)
 - FICO Xpress (2013-2018)
 - MSc (2018-date)
- Lukas Schork: PhD (2015-2018)
- Michael Feldmeier: PhD (2018-date)

Overview

- Written in C++ to study parallel simplex
- Dual simplex with standard algorithmic enhancements
- Efficient numerical linear algebra
- No interface or utilities

Concept

- High performance serial solver (hsol)
- Exploit limited task and data parallelism in standard dual RSM iterations (sip)
- Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H

HiGHS: Dual simplex algorithm

Assume $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$

 $\begin{array}{l} {\rm Scan} \ \widehat{b}_i < 0 \ {\rm for} \ p \ {\rm to} \ {\rm leave} \ {\cal B} \\ {\rm Scan} \ \widehat{c}_j / \widehat{a}_{pj} < 0 \ {\rm for} \ q \ {\rm to} \ {\rm leave} \ {\cal N} \end{array}$

Update: Exchange p and q between \mathcal{B} and \mathcal{N}

Update
$$\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$$
 $\alpha_P = \hat{b}_p / \hat{a}_{pq}$
Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{c}_q / \hat{a}_{pq}$

Data required

• Pivotal row
$$\widehat{\boldsymbol{a}}_p^T = \boldsymbol{e}_p^T B^{-1} N$$

• Pivotal column
$$\widehat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q$$

HiGHS: Dual simplex algorithm

Assume $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$

 $\begin{array}{l} \text{Scan } \widehat{b}_i < 0 \text{ for } p \text{ to leave } \mathcal{B} \\ \text{Scan } \widehat{c}_j / \widehat{a}_{pj} < 0 \text{ for } q \text{ to leave } \mathcal{N} \end{array}$

Update: Exchange p and q between \mathcal{B} and \mathcal{N}

Update
$$\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$$
 $\alpha_P = \hat{b}_p / \hat{a}_{pq}$
Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{c}_q / \hat{a}_{pq}$

Computation

Pivotal row via $B^T \pi_p = e_p$ BTRANand $\widehat{a}_p^T = \pi_p^T N$ PRICEPivotal column via $B \ \widehat{a}_q = a_q$ FTRANRepresent B^{-1} INVERTUpdate B^{-1} exploiting $\overline{B} = B + (a_q - Be_p)e_p^T$ UPDATE

HiGHS: Multiple iteration parallelism with pami option

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}\left(|\mathcal{P}|\ll m
 ight)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form $m{\pi}_{\mathcal{P}} = B^{- op}m{e}_{\mathcal{P}}$
- Data-parallel PRICE to form \widehat{a}_p^T (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014) MPC best paper prize (2018)

HiGHS: Performance and reliability

Extended testing using 159 test problems

- 98 Netlib
- 16 Kennington
- 4 Industrial
- 41 Mittelmann

Exclude 7 which are "hard"

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

- Dual simplex
- No presolve
- No crash

Ignore results for 82 LPs with minimum solution time below 0.1s

HiGHS: Performance

HiGHS: Reliability

HiGHS: Present (2016-date)

Developments

• Model management: Load/add/delete/modify problem data

Feldmeier, Galabova, H

Interfaces

Presolve

Crash

• Interior point method

Feldmeier, Galabova, Vigerske

Galabova

H and Galabova

Schork

Source

- Open source (MIT license)
- GitHub: ERGO-Code/HiGHS
- COIN-OR: Replacement for Clp?

Interfaces

- Existing
 - C++ HiGHS class
 - Load from .mps
 - Load from .lp
 - OSI (almost!)
 - SCIP (almost!)

- Prototypes
 - Python
 - FORTRAN
 - GAMS
 - Julia

Planned

- C
- AMPL
- MATLAB
- R

- No more excuses!
- Use the 40 Mittelmann test LP problems
 - Some familiar some not
 - Some easy some not

	Rows	Cols	Nonzeros	<u>Rows</u> Cols	$\frac{Nonzeros}{Rows\timesCols}$	Nonzeros max(Rows,Cols)
Min	960	1560	38304	1/255	0.0005%	2.2
Geomean	41074	60663	541193	0.6771	0.02%	5.1
Max	986069	1259121	11279748	85	16%	156.0

• Compete with other solvers in "vanilla" state

HiGHS: Presolve

Aim: eliminate rows, columns and nonzeros

Wide range of techniques

- Simple: interpret singleton rows as bounds on variables
- Complex: LP folding

Product of

- Relative number of rows
- Relative number of columns
- Relative number of nonzeros

Presolve measure relative to Clp

- Presolve valuable for 26/40 LPs
- $\bullet\,$ Within a factor 0.9 for 9/26 LPs
- \bullet Within a factor 0.5 for 19/26 LPs

HiGHS: Crash

Aim: Identify basis more likely to be feasible

- Start with "all-slack" basis so B = I
- Perform basis changes
 - Aim to remove fixed slack
 - Replace with free/bounded/boxed structural
 - Maintain triangular B
- More aggressive crash also aims to
 - Replace boxed slack with free/bounded structural
 - Replace bounded slack with free structural
- Value is problem-dependent
- Designed for primal simplex method
- Can it be valuable for dual simplex method?

Bixby (1992)

Maros and Mitra (1998)

HiGHS: Crash

- Bixby crash improved performance by 15%: best is a factor of 4.1
- Maros crash improved performance by 21%: best is a factor of 19.

Commerc	ial				Ope	en-source	e			
• Xpress • Mosek			• Clp (COIN-OR)			• Soplex (ZIB)				
• Gurc	bi	i o SAS			• HiGHS			• Glpk (GNU)		
• Cplex		• Matlab			• Glop (Google)			• Lpsolve		
Solver	Clp	Mosek	SAS	Hi	GHS	Glop	Matlab	Soplex	Glpk	Lpsolve
Time	1	2.8	3.2		5.3	6.4	6.6	10.1	26	112
	Mittelmann (17 Mar 2019)									

Why is the HiGHS score so bad?

- HiGHS presolve not used
- HiGHS triangular crash not used
- HiGHS parallel code not used

- Clp has the Idiot crash
- Clp has a primal simplex solver

Test set	Clp	HiGHS
Mittelmann (17 March 2019)	1	5.3
All 40 LPs (23 April 2019)	1	3.1
Less 7 LPs where Idiot crash aids Clp significantly	1	2.0
Less 14 LPs where C1p uses primal simplex	1	1.4
Remaining 19 LPs with HiGHS presolve	1.004	1

What's still to come with HiGHS?

- Resurrect pami
- Resurrect triangular crash
- Study 20 new test problems
- Improve presolve

- Add Idiot crash
- Add crossover
- Add primal simplex solver

HiGHS: The future is quadratic!

minimize
$$\frac{1}{2} \mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}$$
 subject to $A \mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

In particular

• $Q = A^T A$ and no equations

Idiot crash for fast approximate solution of (some) LP problems (Galabova and H)

Regularization terms in novel techniques for fast approximate solution of LP problems

• Q as Hessian of the Lagrangian? SQP methods for NLP

Solve efficiently (direct and/or iterative methods) for objective

$$f(\mathbf{x}) = \frac{\rho}{2} \mathbf{x}^T Q \mathbf{x} + \frac{\mu}{2} ||A\mathbf{x} - \mathbf{b}||_2^2 + \frac{\nu}{2} ||\mathbf{x} - \mathbf{x}_0||_2^2 + \mathbf{c}^T \mathbf{x}$$

Feldmeier (2018–date)

Highs

- High performance LP solver: simplex and interior point
- Interfaces: OSI, SCIP, GAMS
- Languages: Python, FORTRAN, Julia
- Research
- Consultancy

Slides:

http://www.maths.ed.ac.uk/hall/IMA-ORS19

Code:

https://github.com/ERGO-Code/HiGHS

I. L. Galabova and J. A. J. Hall.

The "idiot" crash quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems. *Optimization Methods and Software*, April 2019. Published online. Q. Huangfu and J. A. J. Hall. Novel update techniques for the revised simplex method.

Computational Optimization and Applications, 60(4):587–608, 2015.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. Mathematical Programming Computation, 10(1):119–142, 2018.

1

L. Schork and J. Gondzio.

Implementation of an interior point method with basis preconditioning.

Technical Report ERGO-18-014, School of Mathematics, University of Edinburgh, 2018.