Using HiGHS as an LP solver within SCIP

Julian Hall

School of Mathematics University of Edinburgh

jajhall@ed.ac.uk

INFORMS Annual Meeting

Seattle

22 October 2019

HiGHS: A high-performance linear optimizer

HiGHS: Hall, ivet Galabova, Huangfu, Schork (Feldmeier and Fogg)

Past (2011-2014)

- Written in C++ to study parallel simplex
- Dual simplex with standard algorithmic enhancements
- Efficient numerical linear algebra

Present (2016-date)

- Model management
- Interfaces
- Presolve
- Crash
- Interior point method

HiGHS: Dual simplex algorithm

Assume $\widehat{\mathbf{c}}_{\scriptscriptstyle N} \geq \mathbf{0}$ Seek $\widehat{\mathbf{b}} \geq \mathbf{0}$

 $\begin{array}{l} {\rm Scan} \ \widehat{b}_i < 0 \ {\rm for} \ p \ {\rm to} \ {\rm leave} \ {\cal B} \\ {\rm Scan} \ \widehat{c}_j / \widehat{a}_{pj} < 0 \ {\rm for} \ q \ {\rm to} \ {\rm leave} \ {\cal N} \end{array}$

Update: Exchange p and q between \mathcal{B} and \mathcal{N}

$$\begin{array}{ll} \text{Update } \widehat{\mathbf{b}} := \widehat{\mathbf{b}} - \alpha_P \widehat{\mathbf{a}}_q & \alpha_P = \widehat{b}_p / \widehat{a}_{pq} \\ \text{Update } \widehat{\mathbf{c}}_N^T := \widehat{\mathbf{c}}_N^T + \alpha_D \widehat{\mathbf{a}}_p^T & \alpha_D = -\widehat{c}_q / \widehat{a}_{pq} \end{array}$$

Computation

Pivotal row via $B^T \pi_p = \mathbf{e}_p$ BTRANand $\widehat{\mathbf{a}}_p^T = \pi_p^T N$ PRICEPivotal column via $B \, \widehat{\mathbf{a}}_q = \mathbf{a}_q$ FTRANRepresent B^{-1} INVERTUpdate B^{-1} exploiting $\overline{B} = B + (\mathbf{a}_q - B\mathbf{e}_p)\mathbf{e}_p^T$ UPDATE

HiGHS: Multiple iteration parallelism

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form $\pi_{\mathcal{P}} = B^{-T} \mathbf{e}_{\mathcal{P}}$
- Data-parallel PRICE to form $\widehat{\mathbf{a}}_{p}^{T}$ (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014) COAP best paper prize (2015) MPC best paper prize (2018)

HiGHS: Performance

HiGHS: Benchmarks (9 October 2019)

Commercial					Open-source					
• Xpress		• COPT				• Clp (COIN-OR)			• Glpł	(GNU)
• Gurobi		• Matlab				• Glop (Google)			• Lpsc	olve
• Cplex		• QSopt				• Soplex (ZIB)				
• Mosek		• SAS								
Solver	COPT	Clp	SAS	Mosek	HiGH	IS	Glop	Matlab	Soplex	
Time	1	1.4	3.2	3.7	5	.4	7.2	8.1	10	
Solved	40	40	37	38	3	37	35	32	36	

Solver	QSopt	Glpk	Lpsolve		
Time	26	28	108		
Solved	34	31	23		

SCIP: Solving Constraint Integer Programs

Requires: solver for LP sub-problems

$$\begin{array}{ll} \text{minimize} & f = \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} = \mathbf{b} \\ \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \end{array}$$

Existing LP interfaces Commercial • Cplex • Xpress • Gurobi • Mosek Open source • Soplex • Clp • QSopt Writing an interface • What's needed?

• What's hard?

What's needed?

Efficient solution of

minimize $f = \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{I} \le \mathbf{x} \le \mathbf{u}$

when

- c, l or u change
- Rows or columns are added to A
- Rows or columns are removed from A

Other standard utilities

For a solution with basis matrix B

- Form row *i* or column *j* of B^{-1}
- Form row *i* or column *j* of $B^{-1}A$

Advanced utilities

- Existence of rays of primal/dual unboundedness
- Strong branching

"Branch on fractional variables"

After solving

minimize
$$f = \mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{I} \le \mathbf{x} \le \mathbf{u}$

solve child LP with $l_j = u_j$

- \bullet Lose primal feasibility; retain dual feasibility \Rightarrow use dual simplex method
- Dual simplex can continue iterating without having to regain feasibility

"Take child node from stack"

- Start simplex solver from saved optimal basis of parent
- Have to reinvert *B* and recompute $\widehat{\mathbf{b}}$ and $\widehat{\mathbf{c}}_{N}$

After solving

minimize
$$f = \mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{I} \le \mathbf{x} \le \mathbf{u}$

When modifying **c**

- Retain primal feasibility; lose dual feasibility \Rightarrow use primal simplex?
- Primal simplex can iterate using representation of B^{-1} from dual simplex
- Lose dual simplex "edge weights" so maybe continue with "Phase 1" dual simplex

When modifying \mathbf{I} and/or \mathbf{u}

- Lose primal feasibility; can lose dual feasibility
- Continue with (Phase 1) dual simplex

10/15

SCIP + HiGHS restart after adding or removing rows or columns

After adding a row

- Slack of new row is basic (primal infeasible)
- Basis matrix $B' = \begin{bmatrix} B & \mathbf{0} \\ \mathbf{b}^T & 1 \end{bmatrix}$ has $B'^{-1} = \begin{bmatrix} B^{-1} & \mathbf{0} \\ -\mathbf{b}^T B^{-1} & 1 \end{bmatrix}$
- Can operate with B'^{-1} by operating with B^{-1} and exploiting structure of B'
- Dual steepest edge weight w'_i for row *i* is

$$w'_{i} = \|\mathbf{e}_{i}^{T}B'^{-1}\|_{2} = \begin{cases} w_{i} & i < m' \\ \left\| \begin{bmatrix} \mathbf{b}^{T}B^{-1} & 1 \end{bmatrix} \right\|_{2} & i = m' \end{cases}$$

- Slacks of new columns are nonbasic (primal feasible dual infeasible), so basis matrix unchanged
- When removing rows or columns, can maintain a basis and update an invertible representation of *B*, but harder

SCIP + HiGHS dual steepest edge weights

- Too expensive to save parent's weights
- Forming $w_i = \|B^{-1}\mathbf{e}_i\|_2$ requires solution of $B^T \widehat{\pi}_i = \mathbf{e}_i$
 - Not expensive if B is triangular and many iterations are performed (Crash)
 - Possible trick (Davis)
 - Observe

$$w_i^2 = \|\widehat{\pi_i}\|_2^2 = (B^{-1}\mathbf{e}_i)^T (B^{-1}\mathbf{e}_i) = \mathbf{e}_i^T B^{-T} B^{-1} \mathbf{e}_i$$

• Form
$$LL^T = B^T B$$
, then

$$w_i^2 = \mathbf{e}_i^T (L^{-T} L^{-1} \mathbf{e}_i)$$

• Solving for just one component of $L^{-T}L^{-1}\mathbf{e}_i$ is very fast with codes like Cholmod

- May still be expensive!
- Approximate weights obtained using incomplete Cholesky may be a fair compromise
- Could just use dual Devex!

SCIP + HiGHS interface development

- On 12 August: Initial set-up of HiGHS in SCIP
 - Immediate segfault when HiGHS compiled with debug
 - No fix found by Miltenberger + Galabova
- To 18 October: Work-around used SCIP (debug) + HiGHS (release)
 - No immediate segfault
 - Ran non-deterministically!
 - Still flagged up bugs allowing interface to be developed
 - Late effort fixed bug!
 - One week from Feldmeier
 - Few hours from Vigerske
- From 18 October: SCIP (debug) + HiGHS (debug) run deterministically!

13/15

	SCIP	+ Sople	x	SCIP	HiGHS		
Model	Objective	Nodes	Time	Objective	Nodes	Time	Speedup
flugpl	1201500	0	0.05	Correct	Same	0.02	2.50
p0548	8691	1	0.20	Correct	Same	0.16	1.25
rgn	82.2	1	0.18	Correct	Same	0.16	1.13
gt2	21166	1	0.03	Correct	98	0.17	0.18
blend2	7.6	868	2.88	7.7	1126	1.59	
egout	568	1	0.02	581	1	0.05	
enigma	0	809	0.86	1E+020	2665	1.19	
lseu	1120	149	0.91	1214	303	0.27	

Geomean speedup:

- 1.5 on the 3 problems solved correctly with the same node count
- 0.9 on the 4 problems solved correctly

HIGHS

- SCIP: High performance open source MIP solver
- HiGHS: High performance open source LP solver
- Should will! be a great match-up!

Slides: http://www.maths.ed.ac.uk/hall/INFORMS-SCIP19

SCIP: https://scip.zib.de/ HiGHS: http://www.highs.dev/

Q. Huangfu and J. A. J. Hall.

Novel update techniques for the revised simplex method.

Computational Optimization and Applications, 60(4):587–608, 2015.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. Mathematical Programming Computation, 10(1):119–142, 2018.