
High performance numerical linear algebra
for the revised simplex method

Julian Hall

School of Mathematics
University of Edinburgh

jajhall@ed.ac.uk

Workshop on Linear Algebra for PDEs and Optimization, Edinburgh

4 September 2017

Overview

Primal revised simplex method

Solving linear systems (FTRAN and BTRAN) with focus on exploiting hyper-sparsity
Exploiting B̄ = B + (aq − Bep)eT

p (UPDATE-BASIS)

Traditional techniques
Novel techniques

Exploiting parallelism

Background
Data parallelism by exploiting LP structure
Task parallelism for general LP problems

Conclusions

Julian Hall High performance NLA for the revised simplex method 2 / 43

The simplex algorithm: Choosing a column

RHS

ĉq ĉTN

N

B

Primal algorithm: Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0, i ∈ N , for a good candidate q to leave N CHUZC

Scan b̂i/âiq > 0, i ∈ B, for a good candidate p to leave B CHUZR

Julian Hall High performance NLA for the revised simplex method 3 / 43

The simplex algorithm: Choosing a row

RHS

âq

âpq b̂p

b̂

N

B

Primal algorithm: Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0, i ∈ N , for a good candidate q to leave N CHUZC

Scan b̂i/âiq > 0, i ∈ B, for a good candidate p to leave B CHUZR

Julian Hall High performance NLA for the revised simplex method 4 / 43

The simplex algorithm: Update

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq UPDATE-PRIMAL

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq UPDATE-DUAL

Data required

Pivotal row âT
p = eT

p B
−1N

Pivotal column âq = B−1aq

Why does it work?

Objective improves by

∣∣∣∣∣
b̂p × ĉq
âpq

∣∣∣∣∣ each iteration

Julian Hall High performance NLA for the revised simplex method 5 / 43

Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âqâT

p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âT
p = πT

p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Julian Hall High performance NLA for the revised simplex method 6 / 43

Simplex method: Hyper-sparsity

Recall: major computational components

BTRAN: Form πp = B−Tep

PRICE: Form âT
p = πT

p N

FTRAN: Form âq = B−1aq

Phenomenon of hyper-sparsity

Vectors ep and aq are sparse

Results πp, âT
p and âq may be sparse—because B−1 is sparse

In BTRAN, πp is a row of B−1

In PRICE, âT
p is a linear combination of a few rows of N

In FTRAN, âq is a linear combination of a few columns of B−1

Julian Hall High performance NLA for the revised simplex method 7 / 43

Simplex method: Hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b
Random sparse matrix B
m = 356 and density 2.5%

B−1 has density of 99%

Julian Hall High performance NLA for the revised simplex method 8 / 43

Simplex method: Hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b
Optimal B for LP problem stair

m = 356 and density 2.5%
B−1 has density of 58%
B−1b for sparse b is typically dense

Julian Hall High performance NLA for the revised simplex method 9 / 43

Simplex method: Hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b
Optimal B for LP problem pds-02

m = 2953 and density 0.07%
B−1 has density of 0.52%
B−1b for sparse b is typically sparse

Julian Hall High performance NLA for the revised simplex method 10 / 43

Simplex method: Hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b
Random matrix
m = 2953 and density 0.07%

B−1 has density of 100%

Julian Hall High performance NLA for the revised simplex method 11 / 43

Simplex method: Hyper-sparsity

Use solution of Lx = b
To illustrate the phenomenon of hyper-sparsity
To demonstrate how to exploit hyper-sparsity

Apply principles to other triangular solves in the simplex method

Julian Hall High performance NLA for the revised simplex method 12 / 43

Simplex method: Hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

for all i : Lij 6= 0 do
ri = ri − Lij rj

x = r

When b is sparse

Inefficient until r fills in

Julian Hall High performance NLA for the revised simplex method 13 / 43

Simplex method: Hyper-sparsity

Better: Check rj for zero

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

if rj 6= 0 then
for all i : Lij 6= 0 do

ri = ri − Lij rj
x = r

When x is sparse

Few values of rj are nonzero

Check for zero dominates

Requires more efficient identification
of set X of indices j such that rj 6= 0

Gilbert and Peierls (1988)
H and McKinnon (1998–2005)
COAP best paper prize (2005)

Julian Hall High performance NLA for the revised simplex method 14 / 43

Simplex method: UPDATE-BASIS

Each iteration:
Solve BTπp = ep

Solve B âq = aq

Column p of B replaced by aq to give B̄ = B + (aq − Bep)eT
p

Sparsity-exploiting decomposition: PBQ = LU

Challenge: Solve systems involving B̄ at minimal cost

Julian Hall High performance NLA for the revised simplex method 15 / 43

Simplex method: Product form update (PFI) for B

Given
B̄ = B + (aq − Bep)eT

p

Take B out as a factor on the left

B̄ = B[I + (B−1aq − ep)eT
p] = BE

where E = I + (âq − ep)eT
p =




1 η1
. . .

...
µ
...

. . .
ηm 1




µ = âpq is the pivot; remaining entries in âq form the eta vector η

Can solve B̄x = r as Bx = r then x := E−1x as

xp := xp/µ then x := x − xpη

Dantzig and Orchard-Hays (1954)

Julian Hall High performance NLA for the revised simplex method 16 / 43

Simplex method: Forrest-Tomlin update (FT) for B

Given
B̄ = B + (aq − Bep)eT

p where (wlog) B = LU

Multiply B̄ by L−1 to give

L−1B̄ = U + (L−1aq − Uep)eT
p = U + (ãq − up)eT

p = U ′ (a)

Eliminate entries in row p to give R−1U ′ = Ū (b)

p

p

(a) Spiked upper: U ′

p

p

(b) After elimination: Ū

Yields B̄ = LRŪ

Compute ãq when forming âq

Represent R like E

FT more efficient than PFI with
respect to sparsity

Forrest and Tomlin (1972)

Julian Hall High performance NLA for the revised simplex method 17 / 43

Simplex method: Multiple updates

Suppose B0 = L0U0 and k updates are performed to obtain Bk

Pivot in rows {pi}ki=1

Introduce columns {aqi}ki=1

PFI generalizes as
Bk = B0E1E2 . . .Ek

FT generalizes as
Bk = L0R1R2 . . .RkUk

Eventually more computationally efficient or numerically prudent to reinvert some Bk

Julian Hall High performance NLA for the revised simplex method 18 / 43

Novel update techniques for the revised simplex method: 1

Alternative product form update (APF)

Recall: Column p of B is replaced by aq to give B̄ = B + (aq − Bep)eT
p

Traditional PFI takes B out as a factor on the left so B̄ = BE

Idea: Why not take it out on the right!

B̄ = [I + (aq − Bep)eT
p B
−1]B = TB

where T = I + (aq − ap′)êT
p

T is formed of known data and readily invertible (like E for PFI)
Naturally compute êp when solving BTπp = ep

But: Is this useful?

Julian Hall High performance NLA for the revised simplex method 19 / 43

Novel update techniques for the revised simplex method: 2

Middle product form update (MPF)

Recall: Column p of B is replaced by aq to give B̄ = B + (aq − Bep)eT
p

Idea: Substitute B = LU and take factors L on the left and U on the right!

B̄ = LU + (aq − Bep)eT
p

= LU + LL−1(aq − Bep)eT
p U
−1U

= L[I + (ãq − Uep)ẽT
p]U

= LMU where M = I + (ãq − up)ẽT
p

M is formed of known data and readily invertible (like E for PFI)
Naturally compute ãq when solving B âq = aq and ẽp when solving BTπp = ep

But: Is this useful?

Julian Hall High performance NLA for the revised simplex method 20 / 43

Novel update techniques for the revised simplex method: 3

Forrest-Tomlin update

Recall: Column p of B is replaced by aq to give B̄ = B + (aq − Bep)eT
p

Idea: Substitute B = LU and take factor L on the left

B̄ = L[U + (L−1aq − Uep)eT
p] = LU ′

where U ′ = U + (ãq − up)eT
p is “spiked” upper triangular and then eliminate

Collective Forrest-Tomlin (CFT) update

Update Forrest-Tomlin representation of B after multiple basis changes

Don’t have data to perform a sequence of standard FT updates

Have to perform elimination corresponding to multiple spikes

But: Is this useful?

Huangfu and H (2013)
Julian Hall High performance NLA for the revised simplex method 21 / 43

Novel update techniques for the revised simplex method: Multiple updates

Suppose B0 = L0U0 and k updates are performed to obtain Bk

Recall: PFI generalizes as Bk = B0E1E2 . . .Ek

Recall: FT generalizes as Bk = L0R1R2 . . .RkUk

APF generalizes as
Bk = Tk . . .T2T1B

MPF generalizes as
Bk = L0M1M2 . . .MkU0

Julian Hall High performance NLA for the revised simplex method 22 / 43

Novel update techniques for the revised simplex method: Results

Test environment

30 representative LP problems from standard test sets
Same sequence of basis changes for all update techniques

Geometric mean time for operations to form and use update data

Update PFI FT APF MPF CFT

Mean 1.00 0.30 0.95 0.45 0.29
Conclusions:

FT much better than PFI

APF little better than PFI

MPF closer to FT than PFI

CFT as good as FT

Julian Hall High performance NLA for the revised simplex method 23 / 43

Parallelising the revised simplex method

Parallelising the simplex method

History

SSM: Good parallel efficiency of N̂ := N̂ − 1

âpq
âqâT

p was achieved

Many! (1988–date)

Only parallel revised simplex is worthwhile: goal of H and McKinnon in 1992!

Parallel primal revised simplex method

Overlap computational components for different iterations
Wunderling (1996), H and McKinnon (1995-2005)

Modest speed-up was achieved on general sparse LP problems

Parallel dual revised simplex method

Only immediate parallelism is in forming πT
p N

When n� m significant speed-up was achieved Bixby and Martin (2000)

Julian Hall High performance NLA for the revised simplex method 25 / 43

Parallelising the simplex method: Matrix-vector product πT
p N (PRICE)

In theory:
Partition N =

[
N1 N2 . . . NP

]
, where P is the number of processes

Compute πT
p Nj on process j for j = 1, 2, . . .P

Execution time is reduced by a factor P: linear speed-up

In practice
On a distributed memory machine with Nj on processor j
Linear speed-up achieved
On a shared memory machine

If Nj fits into cache for process j
Linear speed-up achieved
Otherwise, computation is limited by speed of reading data from memory
Speed-up limited to number of memory channels

Julian Hall High performance NLA for the revised simplex method 26 / 43

Data parallelism by exploiting LP structure

PIPS-S (2011–date)

Overview

Written in C++ to solve stochastic MIP relaxations in parallel

Dual simplex

Based on NLA routines in clp

Product form update

Concept

Exploit data parallelism due to block structure of LPs

Distribute problem over processes

Paper: Lubin, H, Petra and Anitescu (2013)

COIN-OR INFORMS 2013 Cup

COAP best paper prize (2013)

Julian Hall High performance NLA for the revised simplex method 28 / 43

PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + . . . + cT

NxN

subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables x i ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete

Julian Hall High performance NLA for the revised simplex method 29 / 43

PIPS-S: Stochastic MIP problems

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S

Julian Hall High performance NLA for the revised simplex method 30 / 43

PIPS-S: Stochastic MIP problems

Convenient to permute the LP thus:

minimize cT
1 x1 + cT

2 x2 + . . . + cT
NxN + cT

0 x0

subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0

Julian Hall High performance NLA for the revised simplex method 31 / 43

PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency
For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i



T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions

.

Julian Hall High performance NLA for the revised simplex method 32 / 43

PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency
For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known

.

Julian Hall High performance NLA for the revised simplex method 33 / 43

PIPS-S: Exploiting problem structure

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination

Julian Hall High performance NLA for the revised simplex method 34 / 43

PIPS-S: Overview

Scope for parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for parallelism in block forward and block backward substitution

Scope for parallelism in PRICE

Implementation

Distribute problem data over processes

Perform data-parallel BTRAN, FTRAN and PRICE over processes

Used MPI

Julian Hall High performance NLA for the revised simplex method 35 / 43

PIPS-S: Results

On Fusion cluster: Performance relative to clp

Dimension Cores Storm SSN UC12 UC24

m + n = O(106)
1 0.34 0.22 0.17 0.08

32 8.5 6.5 2.4 0.7

m + n = O(107) 256 299 45 67 68

On Blue Gene

Instance of UC12

m + n = O(108)

Requires 1 TB of RAM

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14

Julian Hall High performance NLA for the revised simplex method 36 / 43

Task parallelism for general LP problems

h2gmp (2011–date)

Overview

Written in C++ to study parallel simplex

Dual simplex with steepest edge and BFRT

Forrest-Tomlin update

complex and inherently serial
efficient and numerically stable

Concept

Exploit limited task and data parallelism in standard dual RSM iterations (sip)

Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Test-bed for research

Work-horse for consultancy
Huangfu, H and Galabova (2011–date)

Julian Hall High performance NLA for the revised simplex method 38 / 43

h2gmp: Multiple iteration parallelism with pami option

Perform standard dual simplex minor iterations for rows in set P (|P| � m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−1eP
Data-parallel PRICE to form âT

p (as required)

Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014)
COAP best paper prize (2015)

Julian Hall High performance NLA for the revised simplex method 39 / 43

Novel update procedures: are they useful?

Update 1: Alternative product form update (APF)

Recall: B̄ = TB with T easily invertible

Used to get πP = B̄−TeP from B−TeP in pami

Used to compute multiple B−1aF efficiently after multiple BFRT in pami

Update 2: Middle product form update (MPF)

Recall: B̄ = LMU with M easily invertible

Not used by pami!

Used by Google in glop

Update 3: Multiple Forrest-Tomlin update

Used to perform multiple Forrest-Tomlin updates after minor iterations in pami

Julian Hall High performance NLA for the revised simplex method 40 / 43

h2gmp: Performance and reliability

Extended testing using 159 test problems

98 Netlib

16 Kennington

4 Industrial

41 Mittelmann

Exclude 7 which are “hard”

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

Dual simplex

No presolve

No crash

Ignore results for 82 LPs with minimum solution time below 0.1s

Julian Hall High performance NLA for the revised simplex method 41 / 43

http://plato.asu.edu/ftp/lpsimp.html

h2gmp: Performance

1 2 3 4 5
0

20

40

60

80

100

clp hsol pami8 cplex

Julian Hall High performance NLA for the revised simplex method 42 / 43

Conclusions

High performance NLA is essential for the revised simplex method

Hyper-sparsity: advance in serial simplex

Stochastic LP: large scale data-parallelism for special problems

Novel updates: underpin open-source parallel simplex solver

J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to exploit it.
Computational Optimization and Applications, 32(3):259–283, December 2005.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method.
Technical Report ERGO-14-011, School of Mathematics, University of Edinburgh, 2014.
Accepted for publication in Mathematical Programming Computation.

Q. Huangfu and J. A. J. Hall.

Novel update techniques for the revised simplex method.
Computational Optimization and Applications, 60(4):587–608, 2015.

M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.

Parallel distributed-memory simplex for large-scale stochastic LP problems.
Computational Optimization and Applications, 55(3):571–596, 2013.

Slides: http://www.maths.ed.ac.uk/hall/NLAPDEO17/
Julian Hall High performance NLA for the revised simplex method 43 / 43

http://www.maths.ed.ac.uk/hall/ERGO_16.11.30/

