Linear Programming and Numerical Analysis MATH08037 Lecture 3 Ratio constraints, multidimensional LP problems and vertex enumeration

Julian Hall

January 18th 2011

Ratio constraints

- Original blending problem had fixed blending proportions
- In general, suppose product P is a blend of material X and material Y
 - Let x be the amount of material X used
 - Let y be the amount of material Y used
 - Amount of P made is x + y
 - Proportion of X in the amount of P made is

x

x + y

- In practice, there would be tolerances on this proportion
 - A lower bound *l*
 - An upper bound *u*
- Hence *x* and *y* must satisfy the **nonlinear constraints**

$$l \le \frac{x}{x+y} \le u$$

Transforming the nonlinear constraints

• x and y must satisfy

$$l \leq rac{x}{x+y}$$
 and $rac{x}{x+y} \leq u$

• Multiply both inequalities by (the positive quantity) x + y to give

 $l(x+y) \leq x$ and $x \leq u(x+y)$

• yielding the **linear constraints**

$$(l-1)x + ly \le 0$$
 and $(1-u)x - uy \le 0$

Adding ratio constraints to the blending problem

- A petroleum company blends two oil fractions F_1 and F_2 to produce two products P_1 and P_2
 - P_1 is a blend of F_1 and F_2 and sells for $\pounds 8/tonne$
 - \circ P_2 is a blend of F_1 and F_2 and sells for $\pm 10/$ tonne
- The company has 120 tonnes of F_1 and 210 tonnes of F_2
 - The proportion of F_1 in P_1 must be between 0.25 and 0.35
 - The proportion of F_2 in P_1 must be between 0.60 and 0.80
 - The proportion of F_1 in P_2 must be between 0.45 and 0.55
 - The proportion of F_2 in P_2 must be between 0.40 and 0.60
- How much of F_1 and F_2 should be used to make P_1 and P_2 in order to maximize revenue?

Let x_1 be the amount of F_1 used to make P_1 (tonnes) Let x_2 be the amount of F_2 used to make P_1 (tonnes) Let x_3 be the amount of F_1 used to make P_2 (tonnes) Let x_4 be the amount of F_2 used to make P_2 (tonnes)

Blending problem with ratio constraints: objective and availability constraints

- Total amount of P_1 made is $x_1 + x_2$
- Total amount of P_2 made is $x_3 + x_4$
- Objective is to maximize total revenue

$$f = 8(x_1 + x_2) + 10(x_3 + x_4)$$

• Total amount of F_1 used is $x_1 + x_3$ and must not exceed availability

 $x_1 + x_3 \le 120$

• Total amount of F_2 used is $x_2 + x_4$ and must not exceed availability

 $x_2 + x_4 \le 210$

Blending problem: ratio constraints

- The proportion of F_1 in P_1 must be between 0.25 and 0.35
- Recall:
 - The amount of F_1 used to make P_1 is x_1
 - The amount of P_1 made is $x_1 + x_2$
- Hence

$$0.25 \le \frac{x_1}{x_1 + x_2} \le 0.35$$

SO

$$0.25(x_1 + x_2) \le x_1 \qquad \Rightarrow \qquad -0.75x_1 + 0.25x_2 \le 0$$

and

$$x_1 \le 0.35(x_1 + x_2) \implies 0.65x_1 - 0.35x_2 \le 0$$

• Six more constraints derived similarly

Blending problem with ratio constraints: the complete LP

- 4 variables and 10 constraints
- Problem is larger and has **structure**

A 3-dimensional LP problem

General LP problems

A general LP problem is in the form

- There are *n* variables and *m* constraints
- The feasible region is a convex **polyhedron**
- At each vertex there are *n* constraints/bounds satisfied exactly

Solving general LP problems

- The graphical method of solution cannot be applied to problems with more than 3 variables
- For all the problems solved graphically there is an optimal solution at a vertex
 - For an LP in 2 variables, a vertex is the intersection of two constraint/bound lines
 - For a general LP (with n variables) a vertex is the intersection of n constraint/bound (hyper-)planes
- Observation 1

If an LP problem has an optimal solution then there is an optimal solution at a vertex

- This can be proved... but we won't
- Observation 2

If all the vertices are known then the one with the best objective value is optimal

• This yields the solution method known as vertex enumeration

Slack variables

- Vertices are identified systematically by introducing slack variables
- A slack variable transforms an inequality into
 - an equation
 - a bound on the slack variable
- For example

 $x_1 + 2x_2 \le 3$

is equivalent to

 $x_1 + 2x_2 + s = 3 \quad \text{and} \quad s \ge 0$

• For an LP problem with n (original) variables, the slack variables are x_{n+1} , x_{n+2} , \ldots

Geometric view of slack variables

Slack variables for the blending problem

• For the blending problem

• Introduce slack variables x_3 and x_4 to transform the problem into standard form

Graphical interpretation of slack variables χ_2 420 240 X_3 X_4 $400 X_1$ 300

Slack variables measure how far a point is from the constraint line