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The simplest examples where the simplex method cyclesand conditions where expand fails to prevent cycling 1
J.A.J. Hall 2, K.I.M. McKinnon 3Dept. of Mathematics and Statistics, University of Edinburgh EH9 3JZ, UKThis paper introduces a class of linear programming exampleswhich cause the simplex method to cycle inde�nitely and whichare the simplest possible examples which show this behaviour. Thestructure of examples from this class repeats after two iterations.Cycling is shown to occur for both the most negative reduced costand steepest edge column selection criteria. In addition it is shownthat the expand anti-cycling procedure of Gill et al is not guaran-teed to prevent cycling.Key words: Linear programming, simplex method, degeneracy,cycling, expand

1 IntroductionDegeneracy in linear programming is of both theoretical and practical impor-tance. It occurs whenever one or more of the basic variables is at its bound,and when this occurs it is possible that an iteration of the simplex methodfails to improve the objective function. The simple proof of �niteness of thesimplex algorithm relies on a strict improvement in the objective functionat each iteration and the fact that the simplex method visits only basic solu-tions, of which there are a �nite number. However if the problem is degeneratethis proof does not hold: there is the possibility of a consecutive sequence ofiterations occurring with no change in the objective function and with theeventual return to a previously encountered basis. Examples, such as Beale'swell known example [2], have been constructed to show that this can happen,1 Work supported by EPSRC grant GR/J08422 jajhall@maths.ed.ac.uk3 ken@maths.ed.ac.ukPreprint submitted to Elsevier Preprint 29 September 1996



though such examples do seem to be very rare in practice. A more commonpractical situation is where a long but �nite sequence of iterations occurs with-out the objective function improving | a situation called stalling | and thiscan degrade the algorithm's performance.A related issue is the behaviour of the simplex algorithm in the presence ofroundo� error. At a degenerate vertex there is a serious danger of selectingpivots which are small and have a high relative error.A wide range of methods have been suggested to avoid these problems.{ Lexicographic ordering: These methods are guaranteed to terminate in exactarithmetic but are often prohibitively expensive to implement for the revisedsimplex method and do not address the problem of inexact arithmetic.{ Primal-dual alternation methods: These methods were introduced by Balin-ski and Gomory [1] and have recently been developed by Fletcher [3,5,4].Some of these methods both guarantee to terminate in exact arithmetic andexhibit good behaviour with inexact arithmetic.{ Constraint perturbation methods and feasible set enlargement methods:These method attempt to reduce the likelyhood of cycling and also attemptto improve the numerical behaviour and reduce the number of iterations.The Devex and expand procedures described below are of this type. In ad-dition it is claimed that stalling cannot occur with expand. Wolfe's methodis a recursive perturbation method which guarantees termination in exactarithmetic.In [10] Wolfe introduced a perturbation method which is guaranteed to termi-nate in a �nite number of steps in exact arithmetic. In this method whenevera degenerate vertex is encountered, the bounds producing the degeneracy areexpanded in such a way that the current vertex is no longer degenerate. Otherbounds on the basic variables are temporarily ignored. The simplex methodworks on this modi�ed problem until an unbounded direction is found. If thebound expansion is random, it is highly unlikely that further degenerate ver-tices will be encountered before the unbounded direction is found. However ifa further degenerate vertex is discovered, it is guaranteed to have fewer activeconstraints. The perturbation process is repeated and since it is guaranteedthat each successive degenerate vertex has fewer active constraints, after a�nite number of steps a non-degenerate vertex is reached with an unboundeddirection. This direction is then used in the original problem to give an edgeleading out of the degenerate vertex. It is not obvious how to extend thismethod to the case of inexact arithmetic as there is then no obvious criterionfor what constitutes a degenerate vertex.In [9] Harris introduced the Devex row selection method, which allowed smallviolations of the constraints and used this exibility to choose the largest pivot.2



This has the advantage of both avoiding small pivots and reducing the numberof iterations. The disadvantage is that the constraints are violated and somesteps are in the negative direction. The variable leaving the basis does notnormally do so at one of its bounds, but is shifted to that value, resulting ininconsistent values for the basic variables. An attempt is made to correct thisinconsistency at regular intervals (usually after each reinversion) by doing areset, in which the basic variable values are recalculated from the values of thenonbasic variables. This can produce infeasible values for the basic variables(i.e. outside the speci�ed tolerance) so there is no guarantee that progress hasbeen made. However the method seems to be e�ective in practice in reducingthe number of iterations taken, and variants of it are used in some commercialcodes.Gill et al [7] developed the expand method in an attempt to improve on thegood features of the Devex method of Harris and also to incorporate some fea-tures of Wolfe's method which guarantee �nite termination. The performanceof minos was signi�cantly improved by the incorporation of expand. At eachiteration of the expand method the bounds are expanded by a small amount.As in Devex, the largest pivot which does not lead to any constraint violation(beyond the current expanded position) is chosen. If the normal step for thelargest pivot is su�ciently positive, it is taken, otherwise a small positive stepis taken. In all cases the variable values stay within their expanded bounds.Because at every iteration the nonbasic variable is moved a positive amountin the direction which improves the objective function, it can never return toa previous value.In this paper we shall introduce and analyse the simplest possible class ofcycling examples, the 2/6-cycle class. In Section 2 we present an example ofthe class which cycles when using the most negative reduced cost column se-lection criterion. In Section 3 the general form of such examples is derived. InSection 4 a variation of the example is introduced which cycles for the steepestedge column selection rule. In Section 5 the behaviour of the expand proce-dure is analysed and a simple necessary and su�cient condition is derived forinde�nite cycling to occur when using expand.2 Introductory exampleWe shall �rst solve the four variable, two constraint problem (1) by the simplexmethod. The analysis later in the paper will show how to derive examples ofthis form. This problem is unbounded. A bounded example with identicalbehaviour can be obtained by adding the upper bound constraints x1 � 1and x2 � 1, either as implicit upper bounds or with one or more explicitconstraints. The variable to enter the basis will be chosen by the most negative3



reduced cost criterion and, where there is a tie for the variable to leave thebasis, the variable in the row with the largest pivot will be chosen.Max I = 2:3x1 + 2:15x2 � 13:55x3 � 0:4x4;subject to 0:4x1 + 0:2x2 � 1:4x3 � 0:2x4� 0; (1)�7:8x1 � 1:4x2 + 7:8x3 + 0:4x4� 0;xi� 0; i = 1 : : : 4:After introducing slack variables x5 and x6 and writing the equations in de-tached coe�cient form we get tableau T (1). All the variables are initially zeroand will remain zero at every iteration. In the �rst iteration x1 is chosen toenter the basis. There is only one positive entry in the x1 column, so there is aunique pivot choice with x5 leaving the basis. Making this basis change leadsto tableau T (2). In the second iteration x2 is chosen to enter the basis. In thenormal ratio test there is a tie between x6 and x1 to leave the basis. Breakingthe tie by using the larger pivot (as is normal for numerical stability) gives x6to leave the basis, and making this basis change yields tableau T (3).x1 x2 x3 x4 x5 x6 I0.4 0.2 -1.4 -0.2 1.0 = 0-7.8 -1.4 7.8 0.4 1.0 = 0 T (1)-2.3 -2.15 13.55 0.4 1.0 = 01.0 0.5 -3.5 -0.5 2.5 = 02.5 -19.5 -3.5 19.5 1.0 = 0 T (2)-1.0 5.5 -0.75 5.75 1.0 = 01.0 0.4 0.2 -1.4 -0.2 = 01.0 -7.8 -1.4 7.8 0.4 = 0 T (3)-2.3 -2.15 13.55 0.4 1.0 = 0Note that tableau T (3) is the same as tableau T (1) with the x variable columnsshifted cyclically two columns to the right. It follows that this example willreturn to tableau T (1) after a further 4 iterations and therefore will cycleinde�nitely. In this example there are only two sets of coe�cients: T (3) andT (5) are the same as T (1) with the x variable columns shifted cyclically 2 and4 columns to the right, and T (4) and T (6) are the same as T (2) again shiftedcyclically 2 and 4 columns to the right. We shall refer to such examples as 2/6-cycle examples. In this paper we shall restrict attention to 2/6-cycle examplesas they are more elegant and easier to analyse than 6/6-cycle examples, suchas Beale's example, which take 6 iterations to repeat the same coe�cients.All the results here are demonstrated for 2/6-cycle examples, however this4



property is not needed for the results and indeed 6/6-cycle examples can beformed by perturbing the 2/6-cycle examples given in this paper.3 The form of 2/6-cycle examplesThe following analysis was used to construct the above example. Partition the3� 6 matrix M (1) formed from the x columns of T (1) as followsM (1) = 264 A B Ia b 0 375where A, B and I are 2� 2 blocks of the constraint rows and a, b and 0 are1 � 2 blocks of the objective row. To be able to pivot on the (1,1) and (2,2)entries in iterations 1 and 2, we require A to be non-singular. These pivotingoperations yield tableau T (3) whose submatrix formed from the x columns hasthe formM (3) = 264 I A�1B A�10 b� aA�1B �aA�1 375 :For the constraint pattern to repeat after these two iterations we require A =A�1B and B = A�1, which occurs if and only if A3 = I. This implies that theeigenvalues, �, of A satisfy�3 = 1 () (�2 + �+ 1)(�� 1)=0: (2)For a 2� 2 real matrix A there must either be 2 real eigenvalues or a complexconjugate pair.It follows from (2) that if A has real eigenvalues they must both have the value1, in which case the 2�2 matrix polynomialA2+A+I has two real eigenvaluesof 3 and is therefore non-singular. Since (A� I)(A2 +A+ I) = A3� I = 0, itfollows that A = I in this case. It is then easy to show that a = b = 0, whichis of no interest as it corresponds to a zero cost row.The other possibility is that A has a complex conjugate pair of eigenvalues,and it follows from (2) that they must satisfy�2 + �+ 1 = 0: (3)The characteristic equation of a general 2� 2 matrix A is�2 � (A11 + A22)�+ (A11A22 � A21A12) = 0: (4)5



Equations (3) and (4) hold for the two distinct values of �, so it follows that fora suitable 2/6-cycle example we require A11+A22 = �1 and A11A22�A21A12 =1. From these it follows that�A21A12 = 1 + A11 + A211: (5)Conversely any 2�2 matrix such that A11+A22 = �1 and (5) holds has char-acteristic equation (3). Since a matrix satis�es its own characteristic equation,A2 + A+ I = 0, from which it follows that A3 = I.The objective function will repeat after 2 iterations if and only if b�aA�1B = aand b = �aA�1. This occurs if and only if a(A2 + A + I) = 0, and this holdsfor all a since A2+A+ I = 0. There is therefore no restriction on a. Since thescaling of the objective row is arbitrary we shall take a to have the forma = [�1; �];where there is no restriction on the value of �. It follows that there is a threeparameter family of 2/6-cycle examples: the parameters can be chosen as �,A11 and A12.For arbitrary a, the vector b must satisfyb = �aA�1: (6)Since A is real and A3 = I, det(A) = 1 soB = A�1 = 264 �(A11 + 1) �A12�A21 A11 375 ;and b = [�(A11 + 1) + �A21;�A12 � �A11];and it follows that the general form of M (1) and M (2) for the 2/6-cycle exam-ples with the pivot sequence �xed is as in Table 1.Proposition 1 summarises these results.Proposition 1 Assume the cost row is nonzero and the 2/6-cycle pattern ofpivots is selected, then the necessary and su�cient conditions for the coe�cientpattern to repeat after two iterations are that the coe�cients have the formgiven in tableau M (1) of Table 1, and that A11, A21 and A12 satisfy (5).We shall now deduce the inequality relations which must be satis�ed for thesimplex method to select (1,1) and (2,2) as pivot elements. In order for (1,1)to be a pivot in tableau M (1) we require6



Table 1Coe�cient values over two iterations for 2/6-cycle examplesx1 x2 x3 x4 x5 x6A11 A12 �(A11 + 1) �A12 1M(1) = A21 �(A11 + 1) �A21 A11 1-1 � �(A11 + 1) + �A21 �A12 � �A111 A12A11 �(1 + 1A11 ) �A12A11 1A11M(2) = 1A11 A21A11 �(1 + 1A11 ) �A21A11 1�+ A12A11 �A21 � (2 +A11 + 1A11 ) �A12(1 + 1A11 ) � �A11 1A11A11 > 0: (7)From (5) and (7) it follows that A21 and A12 are nonzero and have oppositesigns. If A21 is positive, A12 and hence A12A11 are negative, so entry M (2)12 isnegative and M (2)22 is positive, which is just the situation in the numericalexample shifted cyclically one column to the right and with rows 1 and 2interchanged. Hence without loss of generality we can takeA21< 0; (8)A12> 0: (9)It follows that the �rst row has the only positive entry in column 1 ofM (1) andboth constraint row entries in column 2 ofM (2) are positive. Hence row 1 is theunique pivot candidate in iteration 1. There are two possible choices of pivotin column 2 of iteration 2. We shall use the largest pivot rule which breaks atie by choosing the largest possible pivot, which would normally be the choicefrom the point of view of numerical stability. To simplify the presentation weshall assume that if there still remains a tie after applying this rule, then thepivot in row 1 is chosen. This second tie break rule therefore breaks the 2/6-cycle pattern if the pivot size criterion does not determine the pivot row. Itfollows that row 2 is the pivot choice in column 2 of iteration 2 if and only if1A11 > A12A11 () A12 < 1: (10)We have therefore proved the following proposition.Proposition 2 If the conditions of Proposition 1 are met and row selectionties are resolved by choosing the largest pivot and the columns are selected inthe 2/6-cycle order, then the necessary and su�cient conditions for row 1 tobe selected in odd iterations and row 2 in even iterations are 0 < A11 and0 < A12 < 1. 7



The conditions which guarantee that column 1 is chosen in M (1) by the mostnegative reduced cost rule rather than column 2 or 3 are�1<�; (11)�1<�(A11 + 1) + �A21 () � < A11A21 : (12)It follows from (7) and (8) that � is negative. Column 1 is guaranteed to bechosen rather than column 4 if and only if�1 < �A12 � �A11 () � < 1� A12A11 ;which is always true as this bound is positive by (7) and (10).InM (2) column 5 has a positive cost entry so is not a candidate. The necessaryand su�cient conditions for column 2 to be a candidate and be guaranteed tobe chosen rather that columns 3 or 4 are�<�A12A11 ; (13)�<�(2 + A11 + 1A11 + A12A11 )1� A21 ; (14)�<�A12(1 + 2A11 )A11 + 1 : (15)Comparing (13) and (15) we see that (13) is redundant if�A12(1 + 2A11 )A11 + 1 <�A12A11() �A12A11 � 2A12<�A11A12 � A12 () �A12 < 0;which is true by (9). Comparing (14) and (15), then using (8) and then (5),we see that (14) is redundant if�A12(1 + 2A11 )A11 + 1 < �(2 + A11 + 1A11 + A12A11 )1� A21() A12(A11 + 2)(1� A21) > (A11 + 1)(2A11 + A211 + 1 + A12)() A12(A11 + 2� A21(A11 + 2)� A11 � 1) > (A11 + 1)3() �A12A21(A11 + 2) + A12 > (A11 + 1)3() (1 + A11 + A211)(A11 + 2) + A12 > (A11 + 1)3() (A11 + 1)3 + 1 + A12 > (A11 + 1)3 () 1 + A12 > 0;which (9) shows is true. Comparing (12) and (13), then using (8) and then(5), we see that (12) is redundant if 8



�A12A11 < A11A21 () �A12A21 > A211 () A211 + A11 + 1 > A211;which (7) shows is true.We have now shown that (12), (13) and (14) are redundant so (15) is alwaysthe tightest upper bound. From this and (11) it follows that � must lie in therange�1 < � < �A12(A11 + 2)A11(A11 + 1) ; (16)and there is a positive gap between these bounds if and only if�1 < �A12(A11 + 2)A11(A11 + 1) () A12 < A11 �A11 + 1A11 + 2� : (17)If the left hand inequality in (16) is reversed, then column 2 will be chosenrather than column 1 inM (1), and if the right hand inequality is reversed, thencolumn 4 will be chosen instead of column 2 in M (2). In either case the 2=6-cycle pattern will be broken. If either inequality in (16) holds as an equality,then the most negative reduced cost rule does not uniquely determine thecolumn to enter the basis. To simplify presentation we will assume that whenthis occurs a choice is made which breaks the 2=6-cycle pattern.We have now shownProposition 3 Assume that the the most negative reduced cost column selec-tion rule and the largest pivot row degeneracy tie breaking rule are used, then a4 variable 2 constraint degenerate LP problem will have the 2/6-cycle patternand cycle inde�nitely if and only if the conditions of Propositions 1 and 2 holdand in addition (16) holds (which implies (17)).The unshaded area in Figure 1 (ignoring the dashed constraint) shows theregion where the problem cycles inde�nitely. Taking A11 = 0:4, A12 = 0:2and � = �2:15=2:3 and then scaling the objective row by 2:3, produces theexample given in Section 2.A similar analysis to that leading to Proposition 1 for the case of a 2=4-cycleexample shows that the cost row must be zero, so such examples cannot cycle.It is also straightforward to show that there can be no cycling examples withall pivots in the same constraint row, so there can be no problems with asingle constraint. In the 2=6-cycle examples A12 and A21 must have di�erentsigns, so it follows from Table 1 that the even and odd iterations cannot bethe same. It therefore follows that the 2=6-cycle examples are the simplestpossible cycling examples. 9
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Fig. 1. Cycling region is unshaded. (Also cycles for expand if A11 � 12)4 A cycling steepest edge exampleIn the previous sections the column was selected using the original Dantzigcriterion of most negative reduced cost. In the steepest edge method [8] thecolumn is selected on the basis of the most negative ratio of the reduced costto the length of the vector corresponding to a unit change in the nonbasicvariable. This normally leads to a signi�cant reduction in the number of itera-tions. When steepest edge column selection is used on the example in Section2, column 2 is chosen in T (1) instead of column 1 and in the following iterationthe problem is shown to be unbounded so the simplex method terminates in2 iterations. However by adding an extra row, which a�ects the steepest edgeweights but not the choice of pivot row, a steepest edge cycling example canbe constructed.To preserve the 2/6-cycle pattern of the example, any extra constraints mustbehave like the objective row in that they must satisfy (6). We shall nowconstruct an example which has a single candidate column in column 2 ofT (2). We do this by selecting � so that the x4 objective coe�cient in T (2) iszero. It follows from Table 1 that the required value of � is � = �1:75, andthis results in the tableaux shown in Table 2, omitting the third rows. Notethat column 1 would not now be selected in T (1) either by the most negativereduced cost criterion or by the steepest edge criterion. We now introducea constraint which will leave the steepest edge weight of column 1 of T (1)unaltered but increase the weight of column 2. If the entries in this constraint10



Table 2Cycling example with steepest edge column selectionx1 x2 x3 x4 x5 x6 x7 I0.4 0.2 -1.4 -0.2 1.0 = 0-7.8 -1.4 7.8 0.4 1.0 = 0 T (1)0.0 -20.0 156.0 8.0 1.0 = 1-1.0 -1.75 12.25 0.5 1.0 = 01.0 0.5 -3.5 -0.5 2.5 = 02.5 -19.5 -3.5 19.5 1.0 = 0 T (2)-20.0 156.0 8.0 0.0 1.0 = 1-1.25 8.75 0.0 2.5 1.0 = 01.0 0.4 0.2 -1.4 -0.2 = 01.0 -7.8 -1.4 7.8 0.4 = 0 T (3)0.0 -20.0 156.0 8.0 1.0 = 1-1.0 -1.75 12.25 0.5 1.0 = 0are scaled up su�ciently, we can make steepest edge choose column 1. Usinga = [0;�20:0] and applying (6) we get the third row of tableau T (1). We setthe right hand side of this constraint to 1 and this ensures that this constraintis not involved in any of the pivot choices even when the matrix coe�cientsare perturbed by a small amount. With this extra row added the steepest edgereduced costs for columns 1 and 2 of T (1) are -0.127 and -0.087, which leadsto the selection of column 1 as required.5 Analysis of the expand procedureThe analysis given by Gill et al [7] of their expand procedure proves that theobjective function can never return to a value it had at a previous iteration.The expand procedure however relaxes the constraints at each iteration, sothe fact that the objective function continually improves does not prove thatthe method will not return to a previous basic solution. If this could occurthe method might cycle. In section 5.1 we describe the expand procedure andin section 5.2 derive the necessary and su�cient condition for cycling still tooccur with the 2/6-cycle examples when using expand. We do this by derivingan expression for the values of every variable at every iteration, a task that ismade tractable by the special structure of the 2=6-cycle examples.11



5.1 The expand ratio testThe expand approach to resolving degeneracy is described by Gill et al in [7]for the general bounded LP problem. The examples in this paper have singlesided bounds and are of the formminimize cTxsubject to Mx = bx � 0:so for simplicity, expand is discussed here for this problem Assuming thatall the variables are feasible (x � 0), the standard ratio test for the simplexmethod determines the maximum step � in the direction p corresponding tothe pivotal column such that the variables remain feasible, that is x��p � 0.For each i, the step which zeroes xi is �i = xi=pi if pi > 0, otherwise �i =1.The maximum feasible step is therefore � = �r = mini �i and the variable toleave the basis is xr.expand is based on the use of an increasing primal feasibility tolerance �.During a particular `current' simplex iteration, this tolerance has the value� = ~�+� , where ~� was the value of � in the previous iteration. At the beginningof the current iteration each variable satis�es its expanded bound xi � �~�.Since �� < �~�, it is always possible to ensure that � > 0 so there is a strictdecrease in the objective function.The expand ratio test makes two passes through the entries in the pivotalcolumn p.{ The �rst pass determines the maximum acceptable step �max > 0 so thateach basic variable satis�es its new expanded bound xi � ��.{ The second pass determines a variable xr to leave the basis. xr is the variablewith the largest acceptable pivot and is de�ned byr = argmaxi pi such that �i � �max where �i = � xi=pi pi > 0�i =1 otherwise.De�ne �full = �r. This is the step necessary to zero xr. Note that if xr < 0and pr > 0 then �full will be negative.{ A minimum acceptable step�min = �pris calculated. If xr = �~� then this is the maximum step which can be takenwhilst maintaining feasibility with respect to the new expanded bounds.{ The actual step returned by the expand ratio test is12



� = max(�min; �full):We shall refer to these two alternative step sizes as the min and the fullstep.The initial values of the nonbasic variables are zero. In the 2/6-cycle examplesthe initial values of the basic variables are also zero. The initial value of theexpanding feasibility tolerance will be denoted by �u, where u � 0, and thetolerance during iteration n will be denoted by �un. It follows that un = u+n.5.2 Conditions under which cycling occurs with the expand ratio testWe shall now analyse the behaviour of the 2=6-cycle problems when usingthe expand ratio test and derive necessary and su�cient conditions for the2=6-cycle problems to cycle inde�nitely.The action of the expand ratio test depends on whether the iteration numberis even or odd, so we shall consider separately the behaviour in iterations n =2k+1 and n = 2k+2 for k � 0. We shall now assume that the pivot columnsare selected in the 2/6-cycle order and derive the necessary and su�cientconditions for expand to select a pivot in the �rst row in odd iterations andhave a unique pivot in the second row in even iterations. We shall also showthat the min step is taken when the pivot is in row 1 and the full step is takenwhen the pivot is in row 2.Let xni denote the value of xi at the start of iteration n. The subscripts of xwill be calculated modulo 6.For iteration 2k + 1 the pivotal column is [A11 A21 ]T and the values of thebasic variables at the start of the iteration are respectively x2k+12k�1 and x2k+12k .Since A21 < 0 and A11 > 0, only x2k�1 moves towards its bound so it is thesole candidate to leave the basis. The second pass of the expand ratio testreturns�full = x2k+12k�1A11 ;and ifx2k+12k�1 � �; (18)the min step will be taken so� = �A11 : 13



It follows that if (18) holds the changes in variable values are as given in row1 of Table 3.For iteration 2k + 2 the pivotal column is [A12=A11 1=A11 ]T and the valuesof the basic variables at the start of the iteration are respectively x2k+22k+1 andx2k+22k . Since A11 > 0 and A12 > 0, both variables move towards their bound.The �rst pass of the expand ratio test returns�max = min x2k+22k+1 + �u2k+2A12=A11 ; x2k+22k + �u2k+21=A11 ! :A su�cient condition for the pivot to be in row 2 is that A12 < 1 and thatthe pivot is acceptable. It is acceptable if and only ifx2k+22k1=A11 � �max() A11x2k+22k � A11min x2k+22k+1 + �u2k+2A12 ; x2k+22k + �u2k+2!:Clearly x2k+22k < x2k+12k + �u2k+2 so the pivot in row 2 is acceptable if and onlyif A12x2k+22k � x2k+22k+1 + �u2k+2: (19)Also provided thatx2k+22k � � (20)then �full = A11x2k+22k � �min = A11� , so the full step, �full, is taken and theexpand ratio test returns� = A11x2k+22k :Hence if (19) and (20) hold, then the changes in values are as given in row 2of Table 3.Using the changes in the values of variables given in Table 3, the expressions inTable 4 for the values of each variable over any two iterations are established byinduction. To simplify notation we introduce the quantities sk and Sk de�nedby sk = kXi=0Ai11; Sk = kXi=0(k + 1� i)Ai11; for all k � 0;sk = 0; Sk = 0; for all k < 0:Note that since A11 > 0, sk and Sk are nonnegative. Also14



Table 3. Changes in values of variables over two iterationsn Entering Leaving Remaining Step2k + 1 x2k+22k+1 = x2k+12k+1 + �A11 x2k+22k�1 = x2k+12k�1 � � x2k+22k = x2k+12k � � A21A11 Pivot row 1. Min step2k + 2 x2k+32k+2 = x2k+22k A11 x2k+32k = 0 x2k+32k+1 = x2k+22k+1 � x2k+22k A12 Pivot row 2. Full step

Table 4. Expressions for the values of each variable over any two iterations. sk = kXi=0Ai11, Sk = kXi=0(k + 1� i)Ai11.n xn2k+1 xn2k+2 xn2k+3 xn2k+4 xn2k+5 xn2k+6 Expanded Normal��Sk�2 0 ��Sk�1 0 �(1� Sk) ��A21sk�12k + 1 A11 A12 �(A11 + 1) �A12 1 0 �(1� Sk + u2k+1) 1A11 �(1� Sk) 1A11A21 �(A11 + 1) �A21 A11 0 1 1 1"�( 1A11 � Sk�2) 0 ��Sk�1 0 ��Sk �� A21A11 sk2k + 2 1 A12A11 �(1 + 1A11 ) �A12A11 1A11 0 �( 1A11 � Sk�2 + u2k+2)A11A12 �( 1A11 � Sk�2)A11A120 1A11 A21A11 �(1 + 1A11 ) �A21A11 1 �(�A21A11 sk + u2k+2)A11 ��A21sk"�(1 � Sk+1) ��A21sk ��Sk�1 0 ��Sk 0
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Sk � Sk�1 = sk; for all k;sk = 1 + A11sk�1; for all k � 0: (21)The expressions in Table 4 allow condition (19) to be expressed as Gk � 0,where Gk for k � 0 is de�ned byGk= A12A21A11 sk + 1A11 � Sk�2 + u2k+2:A necessary and su�cient condition on A11 for Gk � 0 is established byconsidering�Gk�Gk+1 �Gk= A12A21A11 (sk+1 � sk)� (Sk�1 � Sk�2) + u2k+4 � u2k+2=�1 + A11 + A211A11 Ak+111 � sk�1 + 2=�(sk�1 + Ak11 + Ak+111 + Ak+211 ) + 2=�sk+2 + 2:It follows that �Gk � 0 () sk+2 � 2. If 0 < A11 � 12 , then sk+2 increasesto a limit s1, where s1 � 2. In this case �Gk � 0 for all k so Gk+1 � Gk forall k, and also G0 � u+ 12 > 0, so Gk > 0 for all k � 0. If A11 > 12 , then thereexists an � and K such that sk+2 > 2 + � for all k � K. It follows that forsuitably large k, Gk < 0. Hence for positive A11 the necessary and su�cientconditions for Gk to be nonnegative for all k is that A11 � 12 .Proposition 4 Assume that the conditions of Proposition 1 are met and theexpand row selection method is used and the columns are selected in the 2/6-cycle order. Then necessary and su�cient conditions for cycling to occur arethat 0 < A11 � 12 and 0 < A12 < 1.Proof:Su�cient conditions:We shall show by induction that the values of the variables at the start of odditerations are as given in Table 4 and that these values lead to the correctchoice of pivot row for the 2/6-cycle pattern.Initially all the variables have the value zero so x1i = 0. Hence the values inTable 4 are correct for n = 1. Assume now that for some k the values in Table4 are correct at the start of iteration 2k + 1.In iteration 2k + 1, since sk is non-negative, x2k2k�1 � � , so (18) holds and itfollows that the changes in the values of variables are as given by row 1 ofTable 1. From this and (21) we get 16



x2k+22k+6=��A21sk�1 � � A21A11 (22)=�� A21A11 (A11sk�1 + 1)=�� A21A11 sk:All the other values are straightforward so we have deduced the values givenin Table 4 at the start of iteration 2k + 2.Substituting these values into (19) we see that the pivot in row 2 is acceptableif and only if�A12A21A11 sk � 1A11 � Sk�2 + u2k+2;which is true provided A11 � 12 . Alsox2k+22k = �� A21A11 kXi=0Ai11 � �� A21A11 = �� 1 + A11 + A211A12 > �;since A11 > 0 (7) and A12 < 1. Hence (20) holds, so the changes in the valuesof variables are as given in row 2 of Table 3. The new value for x2k+1 is givenby x2k+32k+1= � � 1A11 � Sk�2 + A12A21A11 sk�= � � 1A11 � Sk�2 � 1A11 sk � sk � A11sk�= � � 1A11 � Sk�2 � ( 1A11 + sk�1)� sk � (sk+1 � 1)�= �(1� Sk+1);which is the value given in Table 4. All the other values at the start of iteration2k+ 3 follow straightforwardly and are as shown in Table 4. These values arethe values in Table 4 for k, with the k replaced by k + 1. This completes theinduction and shows that the 2/6-cycle pattern continues inde�nitely.Necessary conditions:As discussed in Section 3, A11 > 0 and we can choose A12 > 0, in which caseA21 < 0. Since x15 = 0, the �rst iteration takes the min step and so x21 = �=A11.The pivot in row 1 in iteration 2 is acceptable if�A11 A11A12 � �max 17



() �A12 � ��A21A11 + �(u+ 2)() 1 � 1A11 + 1 + A11 + u+ 2; (23)which is true. Hence if A12 > 1, the pivot will be in row 1 in iteration 2 andthe 2/6-cycle pattern will be broken. If A11 > 12 , then the argument prior toProposition 4 shows there is a �rst value of k, K̂ say, such that GK̂ < 0.As shown above for all k < K̂ the 2/6-cycle pattern is maintained and thevariable values are as in Table 4. In iteration 2K̂ therefore the pivot in row2 is not acceptable so the pivot must be in row 1. This breaks the 2/6-cyclepattern. 2The conditions derived in Section 3 for the minimum reduced cost criterion tochoose pivot columns in the 2/6-cycle pattern relied on the conditions A11 > 0and 0 < A12 < 1. These conditions have been established in Proposition 4 forthe case of expand row selection, so it follows that (16) and (17) still hold.From (17) and the fact that A11 � 12 it follows that A12 < 310 , which is tighterthat A12 < 1, which is therefore redundant. We have now shown the followingpropositionProposition 5 A 4 variable 2 constraint degenerate LP problem will have the2/6-cycle pattern and cycle inde�nitely when using the most negative reducedcost column selection rule and the expand row selection rule if and only ifthe conditions of Proposition 1 hold and in addition 0 < A11 � 12 , 0 < A12and (16) holds (which implies relation (17)).The shaded area in Figure 1 now including the A11 � 12 constraint is now theregion where cycling occurs when using expand. Note that now the constraintA12 < 1 is redundant. Also note that in the example (1), A11 = 0:4 < 0:5, sothat example also cycles when using expand.Finally note that the only way that expand can escape from the 2=6-cyclepattern is for it to select the �rst row as pivot row in an even iteration, and ifthis occurs the resulting tableau has the formx1 x2 x3 x4 x5 x6A12A11 1 �A12A11 � 1A12 �1 1A12 0� 1A12 0 A21A11 + 1A12 + 1A11A12 �1 �A21A11 � 1A11A12 1�1� �A11A12 0 � � � �A12 0The constraint entries in the third and fourth columns are all negative andthe objective function coe�cients in all except these columns are nonnegative.18



Hence since the problem is unbounded we cannot be at the optimal so oneof these columns must be chosen with the result that the next iteration willproduce an unbounded step and the method will terminate.The above results are independent of the expand parameters u and � . In [7]it is suggested that the initial tolerance �u is taken to be half of the feasibilitytolerance �f to which the problem is to be solved. The value of � is chosen sothat after a large number of iterations (typically K = 10000) the expandedtolerance approaches �f , at which stage � is reset to its original value �i. If thisis done with the 2/6-cycle examples after an even iteration, then the problemreturns to its initial state. If it is done after an odd iteration then it returnsto the even iteration case but with the values all zero. It can be shown that inthis case too the problem cycles, so that in neither case does resetting breakthe cycle pattern.6 ConclusionsWe have derived a three parameter class of linear programming exampleswhich cause the simplex method to cycle inde�nitely. When written in stan-dard form, these examples have two constraints and 6 variables and the co-e�cient pattern repeats every two iterations. These are the simplest possibleexamples for which the simplex algorithm cycles. We have derived 4 inequal-ities between the parameters and shown that these are the necessary andsu�cient conditions for members of this class to cycle with Dantzig's form ofthe simplex. We have shown how to extend the examples so that they alsocycle when the steepest edge column selection criterion is used. By addingthe single bound, A11 � 12 , we were able to characterise the examples whichalso cycle using the expand row selection mechanism This shows that despitethe fact that in the expand method the objective function is guaranteed toimprove each iteration, the method is not guaranteed to prevent cycling. Thecycling behaviour is independent of the expand tolerance parameters. Thebound A11 � 12 is the only extra condition that had to be applied to ensurethat an example which would cycle under the usual Dantzig rule with largestpivot as the tie-breaker, would also cycle using expand. This extra bounddoes reduce somewhat the number of cases which cycle but does not elimi-nate the problem. This improvement has also to be set against the fact thatexpand can cycle when the degeneracy is not exact.All the coe�cients in the examples (not just the 3 parameters) may be per-turbed simultaneously by any small amount without destroying the cyclingbehaviour. The 2/6-cycle examples are therefore just points in a full dimen-sional set of counter-examples, so there is a positive probability of encounteringcycling in randomly generated degenerate examples. In practice therefore the19



expand procedure cannot be relied upon to prevent cycling. Provided westay within the class of the degenerate problems (i.e. keep the right hand side0) it is possible to vary the other coe�cients by a signi�cant amount. Indeedwe have constructed examples where the values are totally di�erent every 2iterations and yet inde�nite cycling still occurs with expand.The examples have been tested on our own implementation of expand andusing minos5.4, which was written by the authors of expand. In both casesif no preprocessing is done the examples cycle inde�nitely. minos periodicallydoes a reset operation (by default after 10000 iterations). This returns theproblem to its initial state so cycling is still inde�nite.osl [6] uses some techniques from expand. In the examples in this paperosl 2.1 without scaling or preprocessing cycles for 30 iterations, before in-troducing a large perturbation, which resolves the degeneracy. cplex 4.0.7without scaling or preprocessing cycles for 400 iterations before resolving thedegeneracy by introducing a large perturbation. xpressmp 7.14 without scal-ing and with an even invert frequency cycles inde�nitely. However the robustbqpd code of Fletcher [4] detects degeneracy at the start of the �rst iteration,changes to the dual, then does one pivot in the dual after which it �nds thatthe dual is infeasible. This gives an improving direction in the primal, whichresolves the degeneracy. Finally bqpd detect unboundedness in this directionand terminates having done one pivot in total.References[1] M. L. Balinski and R. E. Gomory. A mutual primal-dual simplex method.In R. L. Graves and P. Wolfe, editors, Recent Advances in Mathematicalprogramming. McGraw-Hill, New York, 1963.[2] E. M. L. Beale. Cycling in the dual simplex algorithm. Naval Research LogisticsQuarterly, 2:269{75, 1955.[3] R. Fletcher. Degeneracy in the presence of roundo� errors. Linear Algebra andits Applications, 106:149{183, 1988.[4] R. Fletcher. Resolving degeneracy in quadratic programming. Annals ofOperations Research: degeneracy in optimization problem, 46/47:x, 1993.[5] R. Fletcher and J. A. J. Hall. Towards reliable linear programming. In G. A.Watson and D. F. Gri�ths, editors, Pitman Research Notes in MathematicsSeries 228, pages 89{104. Longman Scienti�c and Technical, 1990.[6] J. J. H. Forrest and J. A. Tomlin. Implementing the simplex method for theoptimization subroutine library. IBM Systems Journal, 31(1):11{25, 1995.20
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