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PARSMI, a parallel revised simplex algorithmincorporating minor iterations and Devex pricingJ. A. J. Hall and K. I. M. McKinnonDepartment of Mathematics and Statistics, University of EdinburghAbstract. When solving linear programming problems using the re-vised simplex method, two common variants are the incorporation ofminor iterations of the standard simplex method applied to a small sub-set of the variables and the use of Devex pricing. Although the extrawork per iteration which is required when updating Devex weights re-moves the advantage of using minor iterations in a serial computation,the extra work parallelises readily. An asynchronous parallel algorithmPARSMI is presented in which computational components of the revisedsimplex method with Devex pricing are either overlapped or parallelismis exploited within them. Minor iterations are used to achieve good loadbalance and tackle problems caused by limited candidate persistence. Ini-tial computational results for a six-processor implementation on a CrayT3D indicate that the algorithm has a signi�cantly higher iteration ratethan an e�cient sequential implementation.1 IntroductionThe revised simplex method for solving linear programming (LP) is one ofthe most widely used numerical methods. Although barrier methods are oftenthe preferred method for solving single large LP problems, the revised simplexmethod is the most e�cient solution procedure when families of related LP prob-lems have to be solved. Despite its importance, relatively little progress has beenreported on parallel methods based on the revised simplex algorithm.Special techniques such as minor iterations or edge weight based pricingstrategies are used by serial implementations of the revised simplex method inorder to achieve faster solution times. The major computational steps in therevised simplex method with minor iterations and the Devex pricing strategyare described in Section 2. These steps are also used in the parallel algorithm,PARSMI, which is described in Section 3. PARSMI exploits parallelism withinthe computational steps which parallelise naturally and overlaps the remainingcomputational steps.Promising computational results obtained using a prototype implementationof PARSMI on six processors of a Cray T3D are given in Section 4. These resultsillustrate the behaviour a major part of the algorithm. The extension of theimplementation to more processors is discussed in Section 5.



1.1 BackgroundA linear programming problem has standard formminimize f = cTxsubject to Ax = b (1)x � 0where x 2 IRn and b 2 IRm:At any stage in the simplex method the indices of the variables are partitionedinto set B of m basic variables and set N of n � m nonbasic variables. Thenonbasic variables are given the value zero and the values of the basic variablesare determined by the equations in (1). The components of c and columns ofA corresponding to the index set B are the basic costs cB and basis matrix B.Those corresponding to the set N are the non-basic costs cN and matrix N .A feasible point x corresponding to such a partition of the indices is a vertexof the feasible region of (1). At this vertex, the simplex method �rst determinesthe direction of an edge of the feasible region along which the objective functiondecreases and then �nds the step to the next vertex of the feasible region alongthis edge. This corresponds to increasing a nonbasic variable from zero until oneof the basic variables is reduced to zero. Repeating this process determines apath along edges of the feasible region which terminates at a vertex for whichthere is no edge along which the objective decreases.The two main variants of the simplex method correspond to di�erent meansof calculating the data required to determine the step to the new vertex. The �rstvariant is the standard simplex method in which the directions of all edges at thecurrent vertex and the gradient of the objective in each of these directions aremaintained in a rectangular tableau. In the revised simplex method, the vector ofgradients and the direction of the chosen edge are determined by solving systemsinvolving the matrix B, using a factored form of its inverse, and forming matrix-vector products using the matrix N . For large sparse problems the standardsimplex method is completely uncompetitive in terms of speed compared withthe revised simplex method. It is also much less stable numerically.A simple parallel implementation of the revised simplex method using asparse LU decomposition is described by Shu and Wu in [7]. However they onlyparallelise the sparse matrix-vector products and, as a result, report little or nospeed-up over their serial implementation for general problems. Bixby and Mar-tin discuss parallelising the CPLEX dual simplex implementation in [2] where,once again, parallelism was only successfully exploited in the sparse matrix-vector products, with minimal speed-up on general problems.Only recently have parallel algorithms been developed which give worthwhilespeed-up relative to an e�cient serial implementation. Hall and McKinnon havedeveloped an algorithm, ParLP, which is described in [5] and achieve a speed-upof up to 5 on general problems. Wunderling described an algorithm in [8] whichis completely parallel for 2 processors. 2



2 The serial revised simplex methodIt is possilbe incorporate good features of the standard into the revised simplexmethod by using minor iterations. Within minor iterations the standard simplexmethod is applied to the LP sub-problem corresponding to a small subset of thevariables. This is a central feature of PARSMI. There are various strategies forweighting each reduced cost. They aim to predict the likely cost reduction in aniteration and so reduce the number of iterations . Devex pricing described byHarris in [6] is such a strategy and is used in PARSMI. It is commonly the defaultin e�cient sequential implementations. The major computational steps of therevised simplex method with minor iterations and Devex pricing are illustratedin Figure 1.CHUZC: Scan ĉN for a set Q of good candidates to enter the basis.FTRAN: Form âj = B�1aj, 8 j 2 Q, where aj is column j of A.Loop fminor iterationsgCHUZC_MI: Scan ĉQ for a good candidate q to enter the basis.CHUZR: Scan the ratios b̂i=âiq for the row p of a good candidate toleave the basis, where b̂ = B�1b (ratio test). Let � = b̂p=âpq.UPDATE_MI: Update Q := Qnfqg.Update b̂ := b̂� �âq.Update the columns âQ and reduced costs ĉQ .Update the Devex weights for the candidates in Q.End loop fminor iterationsgFor feach basis changeg doBTRAN: Form �T = eTpB�1.PRICE: Form pivotal row âTp = �TN .Update reduced costs ĉN := ĉN � ĉqâTp and Devex weights.If fgrowth in factorsg then INVERT: Form factored inverse of B.else UPDATE: Update the inverse of B corresponding to the basis change.End doFig. 1. The revised simplex method with minor iterations and Devex pricingWhen a single nonbasic variable xj increases by unit amount, the basic vari-ables must change by �B�1aj so as to maintain equation Ax = b. (Here aj iscolumn j of A.) Thus the corresponding change in the objective function valueis the reduced cost ĉj = cj � cTBB�1aj. The traditional `Dantzig' criterion fordetermining the quality of nonbasic variables is just the size of the reduced cost.However, if the vector âj = B�1aj is large relative to ĉj it is likely that only asmall increase in xj will be possible before one of the basic variables is reducedto zero. Thus edge weight based pricing strategies, such as Devex, weight the re-duced cost by dividing it by (a measure of) the length of âj . The Devex strategy3



maintains weights sj � 1+ kâjk2R, where k:kR is the 2-norm taken over a set R.This set R is initially empty, with corresponding unit initial weights. Followingeach subsequent basis change, one index is either added to or removed from theset R and periodically R is reset to be empty. The details of this are describedby Harris in [6] and the computation required in order to update the weights isoutlined below.2.1 The revised simplex method with minor iterations and DevexpricingAt the beginning of a major iteration in Figure 1, it is assumed that the vectorof reduced costs ĉTN = cTN � cTBB�1N and the vector b̂ = B�1b of current valuesof the basic variables are known and that a factored inverse of the basis matrixB is available. The �rst operation is CHUZC which scans the weighted reducedcosts to determine a set Q of good candidates to enter the basis. The inner loopthen applies the standard simplex method to the LP problem correspondingto the candidates in Q so requires the corresponding columns âj = B�1aj ofthe standard simplex tableau. These columns are formed by passing forwardsthrough the factors of B�1, an operation known as FTRAN. The matrix formedby the columns âj , j 2 Q and the corresponding vector of reduced costs for thecandidates j 2 Q are conveniently denoted by âQ and ĉQ.In each minor iteration, CHUZC MI scans the weighted reduced costs of thecandidates inQ and selects one, q say, to enter the basis. The variable to leave thebasis is determined by CHUZR which scans the ratios b̂i=âiq. In the discussionbelow, p is used to denote the index of the row in which the leaving variableoccurred and p0 denotes the index of the leaving variable. The value � = b̂p=âpqis the new value of xq. The vector of new values of the basic variables is givenby b̂ := b̂� �âq (2)and clearly has a zero value in component p. Once the indices q and p0 have beeninterchanged between the sets B and N , a basis change is said to have occurred.The standard simplex tableau corresponding to the new basis is obtained byupdating the previous tableau in an operation known as UPDATE MI. The valuesof the basic variables are updated according to (2). The matrix âQ and reducedcosts ĉQ are updated by a Gauss-Jordan elimination step and the Devex weightsare updated using row p of the updated tableau.Since the variable to enter the basis is removed from the set Q, the numberof minor iterations which are performed is limited by the initial cardinality ofQ. However, due to the changes in the reduced costs, Q may consist of purelyunattractive candidates before it becomes empty. In this case the work done informing and updating the corresponding standard simplex columns is wasted.The number of minor iterations which are actually performed depends on theextent to which candidates remain attractive. This is an example of the propertyof candidate persistence which is highly problem-dependent and has a majorinuence on the e�ectiveness of the parallel algorithms described by Hall andMcKinnon in [5] and Wunderling in [8].4



Before the next major iteration can be performed it is necessary to updatethe reduced costs and Devex weights and obtain a factored inverse of the newbasis. Updating the reduced costs and Devex weights following each basis changerequires the corresponding pivotal row âTp = eTp B�1N of the (full) standardsimplex tableau. This is obtained in two steps. First the vector �T = eTp B�1 isformed by passing backwards through the factors of B�1, an operation known asBTRAN, and then the vector âTp = �TN of values in the pivotal row is formed.This sparse matrix-vector product with N is referred to as PRICE. Once thereduced costs and Devex weights have been updated, the factored inverse of thenew basis is obtained by updating the current factored inverse (the UPDATEoperation). Note that, eventually it will be either more e�cient, or necessary fornumerical stability, to �nd a new factored inverse using the INVERT operation.2.2 FTRAN and BTRANIn order to describe the parallel algorithm PARSMI, it is necessary to considerthe FTRAN and BTRAN operations in further detail. Let the basis matrix whoseinverse is factored by INVERT be denoted by B0 and the basis matrix after afurther U basis changes be denoted by BU = B0EU so BU = E�1U B�10 . Let Pbe the set of rows in which basis changes have occurred. Note that for largeLP problems P = jPj � m. The most convenient representation of the matrixE�1U is as a product of Gauss-Jordan elimination matrices. In FTRAN the vectorâj = B�1U aj is formed by the operations ~aq = B�10 aq and âq = E�1U ~aq. InBTRAN the vector �T = eTpB�1U is formed by the operations ~�T = eTpE�1U and�T = ~�TB�10 . Note that forming ~� only requires rows i 2 P of the eliminationmatrices.3 PARSMI, a parallel revised simplex algorithmThe concept of PARSMI is to dedicate some processors to performing minoriterations in parallel, while simultaneously using other processors to select andform the vectors ~aq0 for new good candidates to be added to Q. Other processorsare used to form the � vectors and perform the PRICE operations required tobring the reduced costs and Devex weights up-to-date.One processor, referred to as the MI CT processor, is dedicated to controllingthe minor iterations and performing the computation which uses the data in rowsi 2 P of the elimination matrices which represent E�1U . When it the vector ~aq0has been formed for a good candidate, q0 is added to Q and its current reducedcost is calculated (and subsequently updated) using just the data in rows i 2 Pof the elimination matrices. Only when a candidate is actually chosen as thevariable xq to enter the basis is the full vector âq = E�1U ~aq actually computedwith the consequent advantage that the cost of forming âj for candidates whichare discarded without entering the basis is avoided. This operation, togetherwith CHUZR and operation (2), called update RHS , can be distributed by rowson the minor iteration (MI) processors.5
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Fig. 2. Six-processor implementation of PARSMIOnce a basis change has been determined, the vector ~�T = eTpE�1U is formedon the MI CT processor and one of several BTRAN processors completes thecalculation of �T = ~�TB�10 . The subsequent calculation of �TN , update of thereduced costs and Devex weights and the CHUZC operation are distributed overa number of PRICE processors and yields new good candidates for which vectors~aq0 are formed on the FTRAN processors. One or more INVERT processors arededicated to keeping the basis B0 as up-to-date as possible in order to reducethe operations required to form âq from ~aq.3.1 ImplementationThe algorithm could be implemented on a shared memory multiprocessor or adistributed memory machine with high ratio of communication speed to com-putation speed. The minimum number of processors required to implement thealgorithm is six, and such an implementation is currently being developed onthe Edinburgh Cray T3D. The implementation shares its fundamental compu-tational components with a highly e�cient sequential implementation of therevised simplex method. This is competitive with commercial simplex solversand is used to assess the performance of the parallel implementation. Most mes-sage passing, in particular all short messages, is done via the Cray-speci�c sharedmemory SHMEM [1] subroutine library, with the remaining message-passing be-ing done via the Parallel Virtual Machine (PVM) subroutine library [4].6



On a distributed memory machine there is an additional bene�t of splittingthe FTRAN and the BTRAN operations since the data required to form âq from~aq is already available on the processor on which it is used.The major computation and communication requirements of the six-processorimplementation of PARSMI are illustrated in Figure 2. An alternative view ofthe algorithm is provided by the Gantt chart in Figure 3. Each box representsthe time spent performing a particular operation on a given processor, withSI corresponding to sending a new factored inverse, C being CHUZC, F beingFTRAN and R being CHUZR. The unlabelled box following CHUZR correspondsto updating the RHS.
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INVERT Fig. 3. Gantt chart of processor activity for 25FV474 Computational resultsThe results presented in this section are for the six processor implementationon the Edinburgh Cray T3D. They demonstrate the e�ectiveness of a key partof the algorithm and motivate the discussion of implementations using a largernumber of processors in Section 5. The current implementation is only for fea-sible starting bases and only permits a few tens of iterations to be performed.However this is long enough to get a good assessment of the steady state time periteration when started from a feasible basis. Thus the decrease in the time periteration of the six-processor implementation over that for a comparable serialimplementation may be determined. The e�ect on the total number of iterationsdue to using out-of-date reduced costs cannot yet be assessed.A number of experiments were performed using the classic Netlib [3] testproblem 25FV47 for which the serial revised simplex implementation obtains7
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Fig. 4. Time per iteration for 25FV47feasibility after 1500 iterations. Every hundredth basis from this point was storedand the time per iteration (averaged over 5 iterations) at each of these bases wasrecorded. This is represented by the solid line on the graph illustrated in Figure 4and is approximately 16ms from the point at which feasibility is obtained. Thesix-processor implementation of PARSMI was started from each of the storedfeasible bases and run until a steady state average time per iteration was reached.This time per iteration is represented by the dotted line in Figure 4 and isapproximately 5ms, corresponding to a speed-up of about 3. Given that sixprocessors are being used the e�ciency is about 50%. Analysis of the Ganttchart in Figure 3 shows that the bottleneck in the parallel implementation is thetime taken to complete FTRAN and then perform CHUZR and update RHS. Forthe serial implementation these have average computation times of 1.8ms, 1.0msand 0.3ms respectively, a total of 3.1ms, an iteration speed which, if achieved bythe parallel implementation would correspond to a best possible speed-up of 5.With the parallel implementation the average time taken to complete FTRAN is2.7ms so the total time for the bottleneck operations is 4.0ms, an iteration speedwhich would correspond to a speed-up of 4. There remains scope for improvement8



in the e�ciency of the current parallel implementation which will allow the bestpossible speed-up to be approached.The reason for the greater average time taken to complete FTRAN withinthe parallel implementation is readily explained. The serial implementation rein-verts the basis every 25 iterations leading to an average number of 12 updateswhich must be applied. Within the parallel implementation approximately 12basis changes occur during INVERT thus the number of updates which must beapplied when completing FTRAN ranges between 12 and 24: the average of 18corresponds to the 50% increase in the average time.5 ConclusionsThe computational results given in the previous section for the six-processor im-plementation of PARSMI demonstrate the e�ectiveness of part of the algorithm:the increase in the iteration speed approaches the best that can be achieved.The bottleneck in the parallel implementation which limits the decrease in thetime per iteration is the computation required to complete FTRAN and thenperform CHUZR and update RHS. The computation required by each of theseoperations could be distributed over two or more processors, without signi�cantduplication of work, allowing the best possible time per iteration to be reducedby a corresponding factor. Note that as the time per iteration decreases, thereis a consequent increase in the number of basis changes by which the factoredinverse is out-of-date when INVERT is completed, and hence the number of up-dates which must be applied also increases. Thus the time per iteration cannotbe scaled down inde�nitely without additional processors being employed toincrease the frequency with which fresh factored inverses are available.However, a more critical limitation of the iteration speed once the minoriterations are parallelised is likely to be the rate at which the pivotal columnsof candidates to enter the basis can be generated. The average time taken toperform FTRAN (with B�10 ) is 1.8ms so, even if all candidates were attractive,this would represent a limit on the time per iteration unless more than oneprocessor were devoted to FTRAN.If the BTRAN and PRICE operations are not performed with su�cient fre-quency, candidates will be chosen with respect to increasingly out-of-date re-duced costs. As a result, a decreasing proportion of these will still be attractivewhen their reduced cost is brought up-to-date. This will not only decrease thefrequency of basis changes but is likely to lead to a signi�cant increase in thenumber of iterations required to solve the problem since the candidate whichactually enters the basis may be far from being the best with respect to the De-vex criterion. Progress may even temporarily stall even though the current basisis not optimal because the most up-to-date reduced cost available indicate nocandidates remain. Parallelising PRICE and overlapping more than one BTRANwould therefore be attractive.For a given time per iteration t, the number of basis changes by which thereduced cost of a candidate is out-of-date when it enters the basis is at least T=t,9



where T is the total time required to perform a BTRAN, PRICE and start FTRAN(form ~aq = B�10 aq). The sequence of arrows in Figure 3 show the communicationand computation which is required between a basis change being determinedand a candidate, chosen with respect to the reduced costs for that basis, beingready to enter a future basis. In this example the reduced cost is three basischanges out-of-date. Even if parallelism is fully exploited within a single PRICEoperation, T is at least the serial time to perform BTRAN and start FTRAN,unless parallelism is exploited within BTRAN and FTRAN a task which is beyondthe scope of this project.With a larger number of processors available, the optimal distribution of theprocessors to activities will vary both during the solution procedure (as PRICEbecomes relatively cheaper than FTRAN and BTRAN) and from one LP problemto another. LPs with a large ratio of columns to rows will bene�t from a relativelymore PRICE processors. Problems with proportionally more rows, and those forwhich the vectors âj are relatively dense, will bene�t from relatively more pro-cessors being used to perform minor iterations. If strategies can be developed toprevent the number of iteration required to solve a problem increasing signi�-cantly, the potential fast iteration speed and adaptability of the algorithm to thefull range of LP problems can be expected to lead to a parallel implementationwhich gives a signi�cantly improvement over the sequential implementation ofthe revised simplex method.References1. R. Barriuso and A. Knies. SHMEM User's guide for Fortran. Cray Research inc.2. R. E. Bixby and A. Martin. Parallelizing the dual simplex method. Technical Re-port SC-95-45, Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin, 1995.3. D. M. Gay. Electronic mail distribution of linear programming test problems. Math-ematical Programming Society COAL Newsletter, 13:10{12, 1985.4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM: Parallel Virtual Machine - A User's Guide and Tutorial for Networked Par-allel Computing. MIT Press.5. J. A. J. Hall and K. I. M. McKinnon. An asynchronous parallel revised simplexmethod algorithm. Technical Report MS 95-50, Department of Mathematics andStatistics, University of Edinburgh, 1995.6. P. M. J. Harris. Pivot selection methods of the Devex LP code. Math. Prog., 5:1{28,1973.7. W. Shu and M. Wu. Sparse implementation of revised simplex algorithms on par-allel computers. In Proceedings of 6th SIAM Conference on Parallel Processing forScienti�c Computing, pages 501{509, 1993.8. R. Wunderling. Parallelizing the simplex algorithm. ILAY Workshop on LinearAlgebra in Optimzation, Albi, April 1996.This article was processed using the LATEX macro package with LLNCS style10


