PARSMI, a parallel revised simplex algorithm
incorporating minor iterations and Devex pricing

J.A.J.Hall, K.I.M.McKinnon

September 1996

MS 96-012

Supported by EPSRC research grant GR/J0842

Presented at PARA96 Copenhagen 21st August 1996: Workshop on
Applied Parallel Computing in Industrial Problems and Optimization

Department of Mathematics and Statistics
University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ
Tel. (33) 131 650 5075 E-Mail : jajhall@maths.ed.ac.uk, ken@maths.ed.ac.uk

PARSMI, a parallel revised simplex algorithm
incorporating minor iterations and Devex pricing

J. A.J. Hall and K.I. M. McKinnon

Department of Mathematics and Statistics, University of Edinburgh

Abstract. When solving linear programming problems using the re-
vised simplex method, two common variants are the incorporation of
minor iterations of the standard simplex method applied to a small sub-
set of the variables and the use of Devex pricing. Although the extra
work per iteration which is required when updating Devex weights re-
moves the advantage of using minor iterations in a serial computation,
the extra work parallelises readily. An asynchronous parallel algorithm
PARSMI is presented in which computational components of the revised
simplex method with Devex pricing are either overlapped or parallelism
is exploited within them. Minor iterations are used to achieve good load
balance and tackle problems caused by limited candidate persistence. Ini-
tial computational results for a six-processor implementation on a Cray
T3D indicate that the algorithm has a significantly higher iteration rate
than an efficient sequential implementation.

1 Introduction

The revised simplex method for solving linear programming (LP) is one of
the most widely used numerical methods. Although barrier methods are often
the preferred method for solving single large LP problems, the revised simplex
method is the most efficient solution procedure when families of related LP prob-
lems have to be solved. Despite its importance, relatively little progress has been
reported on parallel methods based on the revised simplex algorithm.

Special techniques such as minor iterations or edge weight based pricing
strategies are used by serial implementations of the revised simplex method in
order to achieve faster solution times. The major computational steps in the
revised simplex method with minor iterations and the Devex pricing strategy
are described in Section 2. These steps are also used in the parallel algorithm,
PARSMI, which 1s described in Section 3. PARSMI exploits parallelism within
the computational steps which parallelise naturally and overlaps the remaining
computational steps.

Promising computational results obtained using a prototype implementation
of PARSMI on six processors of a Cray T3D are given in Section 4. These results
illustrate the behaviour a major part of the algorithm. The extension of the
implementation to more processors is discussed in Section 5.

1.1 Background

A linear programming problem has standard form
minimize f=c¢’a
subject to Az =b (1)
x>0
where & € R" and be R™.

At any stage in the simplex method the indices of the variables are partitioned
into set B of m basic variables and set A’ of n — m nonbasic variables. The
nonbasic variables are given the value zero and the values of the basic variables
are determined by the equations in (1). The components of ¢ and columns of
A corresponding to the index set B are the basic costs ¢z and basis matrix B.
Those corresponding to the set A are the non-basic costs ey and matrix N.

A feasible point @ corresponding to such a partition of the indices is a vertex
of the feasible region of (1). At this vertex, the simplex method first determines
the direction of an edge of the feasible region along which the objective function
decreases and then finds the step to the next vertex of the feasible region along
this edge. This corresponds to increasing a nonbasic variable from zero until one
of the basic variables is reduced to zero. Repeating this process determines a
path along edges of the feasible region which terminates at a vertex for which
there is no edge along which the objective decreases.

The two main variants of the simplex method correspond to different means
of calculating the data required to determine the step to the new vertex. The first
variant is the standard simplex method in which the directions of all edges at the
current vertex and the gradient of the objective in each of these directions are
maintained in a rectangular tableau. In the revised simplex method, the vector of
gradients and the direction of the chosen edge are determined by solving systems
involving the matrix B, using a factored form of its inverse, and forming matrix-
vector products using the matrix N. For large sparse problems the standard
simplex method is completely uncompetitive in terms of speed compared with
the revised simplex method. It is also much less stable numerically.

A simple parallel implementation of the revised simplex method using a
sparse LU decomposition is described by Shu and Wu in [7]. However they only
parallelise the sparse matrix-vector products and, as a result, report little or no
speed-up over their serial implementation for general problems. Bixby and Mar-
tin discuss parallelising the CPLEX dual simplex implementation in [2] where,
once again, parallelism was only successfully exploited in the sparse matrix-
vector products, with minimal speed-up on general problems.

Only recently have parallel algorithms been developed which give worthwhile
speed-up relative to an efficient serial implementation. Hall and McKinnon have
developed an algorithm, ParLP, which is described in [5] and achieve a speed-up
of up to 5 on general problems. Wunderling described an algorithm in [8] which
is completely parallel for 2 processors.

2 The serial revised simplex method

It is possilbe incorporate good features of the standard into the revised simplex
method by using minor iterations. Within minor iterations the standard simplex
method is applied to the LP sub-problem corresponding to a small subset of the
variables. This is a central feature of PARSMI. There are various strategies for
weighting each reduced cost. They aim to predict the likely cost reduction in an
iteration and so reduce the number of iterations . Devex pricing described by
Harris in [6] is such a strategy and is used in PARSMI. Tt is commonly the default
in efficient sequential implementations. The major computational steps of the
revised simplex method with minor iterations and Devex pricing are illustrated
in Figure 1.

CHUZC: Scan ¢, for a set Q of good candidates to enter the basis.
FTRAN: Form a; = B='a;, Vj € Q, where a; is column j of A.
Loop {minor iterations}
CHUZC_MI: Scan ¢, for a good candidate ¢ to enter the basis.
CHUZR: Scan the ratios I;i/diq for the row p of a good candidate to
leave the basis, where b= B~'b (ratio test). Let o = by, /dp,.
UPDATE_MI: Update Q := Q\{q¢}.
Update b:=b— ady.
Update the columns a, and reduced costs ¢, .
Update the Devex weights for the candidates in Q.
End loop {minor iterations}
For {each basis change} do
BTRAN: Form n7 = egB_l.

PRICE: Form pivotal row d; =xTN.

Update reduced costs ¢y := ¢y — éng and Devex weights.
If {growth in factors} then INVERT: Form factored inverse of B.
else UPDATE: Update the inverse of B corresponding to the basis change.
End do

Fig. 1. The revised simplex method with minor iterations and Devex pricing

When a single nonbasic variable x; increases by unit amount, the basic vari-
ables must change by —B~'a; so as to maintain equation Az = b. (Here a; is
column j of A.) Thus the corresponding change in the objective function value
is the reduced cost ¢; = ¢; — ¢L B~1a;. The traditional ‘Dantzig’ criterion for
determining the quality of nonbasic variables is just the size of the reduced cost.
However, if the vector a; = B~'a; is large relative to ¢; it is likely that only a
small increase in x; will be possible before one of the basic variables is reduced
to zero. Thus edge weight based pricing strategies, such as Devex, weight the re-
duced cost by dividing it by (a measure of) the length of a;. The Devex strategy

maintains weights s; & 1+ ||a;||%, where ||.||g is the 2-norm taken over a set R.
This set R is initially empty, with corresponding unit initial weights. Following
each subsequent basis change, one index is either added to or removed from the
set R and periodically R is reset to be empty. The details of this are described
by Harris in [6] and the computation required in order to update the weights is
outlined below.

2.1 The revised simplex method with minor iterations and Devex
pricing

At the beginning of a major iteration in Figure 1, it is assumed that the vector
of reduced costs ég =cl — L BN and the vector b = B~1b of current values
of the basic variables are known and that a factored inverse of the basis matrix
B is available. The first operation 1s CHUZC which scans the weighted reduced
costs to determine a set Q of good candidates to enter the basis. The inner loop
then applies the standard simplex method to the LP problem corresponding
to the candidates in Q so requires the corresponding columns a; = B~'a; of
the standard simplex tableau. These columns are formed by passing forwards
through the factors of B~', an operation known as FTRAN. The matrix formed
by the columns a;, j € Q and the corresponding vector of reduced costs for the
candidates j € Q@ are conveniently denoted by a, and ¢q.

In each minor iteration, CHUZC_MI scans the weighted reduced costs of the
candidates in @ and selects one, ¢ say, to enter the basis. The variable to leave the
basis is determined by CHUZR which scans the ratios l;i/diq. In the discussion
below, p 1s used to denote the index of the row in which the leaving variable
occurred and p’ denotes the index of the leaving variable. The value o« = I;p/dpq
is the new value of z,. The vector of new values of the basic variables is given
by o

b:=b- «a, (2)
and clearly has a zero value in component p. Once the indices ¢ and p’ have been
interchanged between the sets B and A, a basis change is said to have occurred.
The standard simplex tableau corresponding to the new basis is obtained by
updating the previous tableau in an operation known as UPDATE_MI. The values
of the basic variables are updated according to (2). The matrix a, and reduced
costs ¢, are updated by a Gauss-Jordan elimination step and the Devex weights
are updated using row p of the updated tableau.

Since the variable to enter the basis 1s removed from the set @, the number
of minor iterations which are performed is limited by the initial cardinality of
Q. However, due to the changes in the reduced costs, @ may consist of purely
unattractive candidates before it becomes empty. In this case the work done in
forming and updating the corresponding standard simplex columns is wasted.
The number of minor iterations which are actually performed depends on the
extent to which candidates remain attractive. This is an example of the property
of candidate persistence which is highly problem-dependent and has a major
influence on the effectiveness of the parallel algorithms described by Hall and
McKinnon in [5] and Wunderling in [8].

Before the next major iteration can be performed it is necessary to update
the reduced costs and Devex weights and obtain a factored inverse of the new
basis. Updating the reduced costs and Devex weights following each basis change
requires the corresponding pivotal row d; = egB_lN of the (full) standard
simplex tableau. This is obtained in two steps. First the vector 7 = egB_1 18
formed by passing backwards through the factors of B~!, an operation known as
BTRAN, and then the vector d; = 7T N of values in the pivotal row is formed.
This sparse matrix-vector product with N is referred to as PRICE. Once the
reduced costs and Devex weights have been updated, the factored inverse of the
new basis is obtained by updating the current factored inverse (the UPDATE
operation). Note that, eventually it will be either more efficient, or necessary for
numerical stability, to find a new factored inverse using the INVERT operation.

2.2 FTRAN and BTRAN

In order to describe the parallel algorithm PARSMI, it is necessary to consider
the FTRAN and BTRAN operations in further detail. Let the basis matrix whose
inverse is factored by INVERT be denoted by By and the basis matrix after a
further U basis changes be denoted by B, = BgEy, so B, = E;lBo_l. Let P
be the set of rows in which basis changes have occurred. Note that for large
LP problems P = |P| < m. The most convenient representation of the matrix
E;1is as a product of Gauss-Jordan elimination matrices. In FTRAN the vector
a; = Bjl'a; is formed by the operations a, = Bo_laq and dqg = Ejla,. In
BTRAN the vector w7 = engl is formed by the operations ©#* = e?E;l and

7l = ~TBO_l. Note that forming 7 only requires rows ¢ € P of the elimination

matrices.

3 PARSMI, a parallel revised simplex algorithm

The concept of PARSMI is to dedicate some processors to performing minor
iterations in parallel, while simultaneously using other processors to select and
form the vectors a, for new good candidates to be added to Q. Other processors
are used to form the & vectors and perform the PRICE operations required to
bring the reduced costs and Devex weights up-to-date.

One processor, referred to as the MI_CT processor, is dedicated to controlling
the minor iterations and performing the computation which uses the data in rows
i € P of the elimination matrices which represent F;'. When it the vector a,
has been formed for a good candidate, ¢’ is added to @ and its current reduced
cost is calculated (and subsequently updated) using just the data in rows ¢ € P
of the elimination matrices. Only when a candidate is actually chosen as the
variable z, to enter the basis is the full vector a, = E'a, actually computed
with the consequent advantage that the cost of forming a; for candidates which
are discarded without entering the basis is avoided. This operation, together
with CHUZR and operation (2), called update RHS, can be distributed by rows
on the minor iteration (MI) processors.

Fig. 2. Six-processor implementation of PARSMI

Once a basis change has been determined, the vector &7 = e?E;l is formed
on the MI_CT processor and one of several BTRAN processors completes the
calculation of ®7 = ~TBO_l. The subsequent calculation of #7 N, update of the
reduced costs and Devex weights and the CHUZC operation are distributed over
a number of PRICE processors and yields new good candidates for which vectors
a, are formed on the FTRAN processors. One or more INVERT processors are
dedicated to keeping the basis By as up-to-date as possible in order to reduce
the operations required to form a, from a,.

3.1 Implementation

The algorithm could be implemented on a shared memory multiprocessor or a
distributed memory machine with high ratio of communication speed to com-
putation speed. The minimum number of processors required to implement the
algorithm is six, and such an implementation is currently being developed on
the Edinburgh Cray T3D. The implementation shares its fundamental compu-
tational components with a highly efficient sequential implementation of the
revised simplex method. This is competitive with commercial simplex solvers
and 1s used to assess the performance of the parallel implementation. Most mes-
sage passing, in particular all short messages, 1s done via the Cray-specific shared
memory SHMEM [1] subroutine library, with the remaining message-passing be-
ing done via the Parallel Virtual Machine (PVM) subroutine library [4].

On a distributed memory machine there is an additional benefit of splitting
the FTRAN and the BTRAN operations since the data required to form a, from
a, is already available on the processor on which it is used.

The major computation and communication requirements of the six-processor
implementation of PARSMI are illustrated in Figure 2. An alternative view of
the algorithm is provided by the Gantt chart in Figure 3. Each box represents
the time spent performing a particular operation on a given processor, with
SI corresponding to sending a new factored inverse, C being CHUZC, F being
FTRAN and R being CHUZR. The unlabelled box following CHUZR corresponds
to updating the RHS.

M HRJ] |_Frean [[R][] [Frran [[RI[] [Frran [[R][] [Frran_ [[R][]

MI_CT \@HH I H \HH\I/U IHHAH H il
FALFE e el [dele]
Price | [PricE] [c| \K | [Price | |[Price] [cfllc] [rice |

BTRAN | [BTRAN ﬁ‘ Upk INVERT | BTRAN | [[BTRAN]]| [BTRAN]|

INVERT | INVERT | S| INVERT

FTRAN | F | F [F][upkiNVERT |

=

—
-

T T T T T T
3.58400 3.58900 3.59400 3.59900 3.60400 3.60900

Fig. 3. Gantt chart of processor activity for 25FV47

4 Computational results

The results presented in this section are for the six processor implementation
on the Edinburgh Cray T3D. They demonstrate the effectiveness of a key part
of the algorithm and motivate the discussion of implementations using a larger
number of processors in Section 5. The current implementation is only for fea-
sible starting bases and only permits a few tens of iterations to be performed.
However this 1s long enough to get a good assessment of the steady state time per
iteration when started from a feasible basis. Thus the decrease in the time per
iteration of the six-processor implementation over that for a comparable serial
implementation may be determined. The effect on the total number of iterations
due to using out-of-date reduced costs cannot yet be assessed.

A number of experiments were performed using the classic Netlib [3] test
problem 25FV47 for which the serial revised simplex implementation obtains

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Fig.4. Time per iteration for 25FV47

feasibility after 1500 iterations. Every hundredth basis from this point was stored
and the time per iteration (averaged over 5 iterations) at each of these bases was
recorded. This is represented by the solid line on the graph illustrated in Figure 4
and is approximately 16ms from the point at which feasibility is obtained. The
six-processor implementation of PARSMI was started from each of the stored
feasible bases and run until a steady state average time per iteration was reached.
This time per iteration is represented by the dotted line in Figure 4 and is
approximately bms, corresponding to a speed-up of about 3. Given that six
processors are being used the efficiency is about 50%. Analysis of the Gantt
chart in Figure 3 shows that the bottleneck in the parallel implementation is the
time taken to complete FTRAN and then perform CHUZR and update RHS. For
the serial implementation these have average computation times of 1.8ms, 1.0ms
and 0.3ms respectively, a total of 3.1ms, an iteration speed which, if achieved by
the parallel implementation would correspond to a best possible speed-up of 5.
With the parallel implementation the average time taken to complete FTRAN is
2.7ms so the total time for the bottleneck operations is 4.0ms, an iteration speed
which would correspond to a speed-up of 4. There remains scope for improvement

in the efficiency of the current parallel implementation which will allow the best
possible speed-up to be approached.

The reason for the greater average time taken to complete FTRAN within
the parallel implementation is readily explained. The serial implementation rein-
verts the basis every 25 iterations leading to an average number of 12 updates
which must be applied. Within the parallel implementation approximately 12
basis changes occur during INVERT thus the number of updates which must be
applied when completing FTRAN ranges between 12 and 24: the average of 18
corresponds to the 50% increase in the average time.

5 Conclusions

The computational results given in the previous section for the six-processor im-
plementation of PARSMI demonstrate the effectiveness of part of the algorithm:
the increase in the iteration speed approaches the best that can be achieved.
The bottleneck in the parallel implementation which limits the decrease in the
time per iteration is the computation required to complete FTRAN and then
perform CHUZR and update RHS. The computation required by each of these
operations could be distributed over two or more processors, without significant
duplication of work, allowing the best possible time per iteration to be reduced
by a corresponding factor. Note that as the time per iteration decreases, there
is a consequent increase in the number of basis changes by which the factored
inverse 1s out-of-date when INVERT is completed, and hence the number of up-
dates which must be applied also increases. Thus the time per iteration cannot
be scaled down indefinitely without additional processors being employed to
increase the frequency with which fresh factored inverses are available.

However, a more critical limitation of the iteration speed once the minor
iterations are parallelised is likely to be the rate at which the pivotal columns
of candidates to enter the basis can be generated. The average time taken to
perform FTRAN (with Bo_l) i1s 1.8ms so, even if all candidates were attractive,
this would represent a limit on the time per iteration unless more than one
processor were devoted to FTRAN.

If the BTRAN and PRICE operations are not performed with sufficient fre-
quency, candidates will be chosen with respect to increasingly out-of-date re-
duced costs. As a result, a decreasing proportion of these will still be attractive
when their reduced cost is brought up-to-date. This will not only decrease the
frequency of basis changes but 1s likely to lead to a significant increase in the
number of iterations required to solve the problem since the candidate which
actually enters the basis may be far from being the best with respect to the De-
vex criterion. Progress may even temporarily stall even though the current basis
1s not optimal because the most up-to-date reduced cost available indicate no
candidates remain. Parallelising PRICE and overlapping more than one BTRAN
would therefore be attractive.

For a given time per iteration ¢, the number of basis changes by which the
reduced cost of a candidate is out-of-date when it enters the basis is at least T'/t,

where T 1s the total time required to perform a BTRAN, PRICE and start FTRAN
(form a, = Bo_laq). The sequence of arrows in Figure 3 show the communication
and computation which is required between a basis change being determined
and a candidate, chosen with respect to the reduced costs for that basis, being
ready to enter a future basis. In this example the reduced cost is three basis
changes out-of-date. Even if parallelism is fully exploited within a single PRICE
operation, 7' is at least the serial time to perform BTRAN and start FTRAN,
unless parallelism is exploited within BTRAN and FTRAN a task which is beyond
the scope of this project.

With a larger number of processors available, the optimal distribution of the
processors to activities will vary both during the solution procedure (as PRICE
becomes relatively cheaper than FTRAN and BTRAN) and from one LP problem
to another. LPs with a large ratio of columns to rows will benefit from a relatively
more PRICE processors. Problems with proportionally more rows, and those for
which the vectors a; are relatively dense, will benefit from relatively more pro-
cessors being used to perform minor iterations. If strategies can be developed to
prevent the number of iteration required to solve a problem increasing signifi-
cantly, the potential fast iteration speed and adaptability of the algorithm to the
full range of LP problems can be expected to lead to a parallel implementation
which gives a significantly improvement over the sequential implementation of
the revised simplex method.

References

1. R. Barriuso and A. Knies. SHMEM User’s guitde for Fortran. Cray Research inc.

2. R. E. Bixby and A. Martin. Parallelizing the dual simplex method. Technical Re-
port SC-95-45, Konrad-Zuse-Zentrum fir Informationstechnik Berlin, 1995.

3. D. M. Gay. Electronic mail distribution of linear programming test problems. Math-
ematical Programming Society COAL Newsletter, 13:10-12, 1985.

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Par-
allel Computing. MIT Press.

5. J. A. J. Hall and K. I. M. McKinnon. An asynchronous parallel revised simplex
method algorithm. Technical Report MS 95-50, Department of Mathematics and
Statistics, University of Edinburgh, 1995.

6. P. M. J. Harris. Pivot selection methods of the Devex LP code. Math. Prog., 5:1-28,
1973.

7. W. Shu and M. Wu. Sparse implementation of revised simplex algorithms on par-
allel computers. In Proceedings of 6'% SIAM Conference on Parallel Processing for
Scientific Computing, pages 501-509, 1993.

8. R. Wunderling. Parallelizing the simplex algorithm. ILAY Workshop on Linear
Algebra in Optimzation, Albi, April 1996.

This article was processed using the ETEX macro package with LLNCS style

10

