
Exploiting hyper-sparsity in the
revised simplex method

J.A.J. Hall K.I.M. McKinnon

December 1999

MS 99-014

Presented at 18th Biennial Conference on Numerical Analysis
Dundee, 1st July 1999

Department of Mathematics and Statistics
University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ

Tel. (33) 131 650 5075 E-Mail : jajhall@maths.ed.ac.uk, ken@maths.ed.ac.uk

Exploiting hyper-sparsity in the revised

simplex method

J. A. J. Hall K. I. M. McKinnon

29
th

December 1999

Abstract

The revised simplex method is often the method of choice when solving
large scale sparse linear programming problems, particularly when a
family of closely-related problems is to be solved. In each iteration of
the method, three matrix-vector products are formed and, even for many
sparse problems, the result is typically dense. However it is demonstrated
in this paper that for a significant number of practical problems, the result
of one or more of these three operations is usually sparse. In this paper,
this property of a problem is referred to as hyper-sparsity. Analysis of
the commonly-used computational techniques for each of the components
of the revised simplex method shows them to be inefficient when applied
to problems which exhibit hyper-sparsity and techniques which exploit
hyper-sparsity are developed. For such problems, the performance of the
revised simplex method when using these techniques is demonstrated to be
many times faster than a commercial implementation of both the revised
simplex method and barrier method. When applied to network problems,
the revised simplex method using these techniques is demonstrated to be
comparable in speed to an efficient implementation of the network simplex
method.

1 Introduction

Linear programming (LP) is a widely applicable technique both in its own right
and as a sub-problem in the solution of other optimization problems. The
revised simplex method and the barrier method are the two efficient methods
for solving general large sparse LP problems. In a context where families of
related LP problems have to be solved, such as in integer programming and
decomposition methods, the revised simplex method is usually the more efficient
method.

The computational components of the revised simplex method are identified
in the remainder of this section and the property of hyper-sparsity is introduced.
LP problems which exhibit hyper-sparsity when solved by the revised simplex
method are identified by analysing an appropriate collection of test problems
drawn from the standard Netlib set [6] and larger problems from the Kennington
test set [2] and the authors’ personal collection.

Analysis in Section 2 of the commonly-used computational techniques for
each of the components of the revised simplex method shows them to be

1

inefficient when applied to problems which exhibit hyper-sparsity and techniques
which exploit hyper-sparsity are developed. For such problems, when these
techniques are implemented in the authors’ revised simplex solver, EMSOL, the
resulting performance of is demonstrated to be many times faster than both the
revised simplex and barrier solvers in IBM’s Optimization Subroutine Library,
OSL [8] .

A significant class of LP problems which are well known to maintain
sparsity are those with a near or complete network structure. Results given in
Section 3 compare the performance of EMSOL and OSL with that of NETFLO
(Kennington’s efficient implementation of the network simplex method [9]) when
applied to the NETGEN set of network LP problems [10]. The performance of
EMSOL is seen to approach that of NETFLO whilst being up to an order of
magnitude better than that of OSL. Conclusions and areas for future work are
discussed in Section 4.

1.1 The revised simplex method

The simplex method and its computational requirements are most conveniently
discussed in the context of LP problems in standard form

minimize f = cTx
subject to Ax = b x ≥ 0

where x ∈ IRn and b ∈ IRm.
(1)

However, an efficient implementation of the revised simplex method should be
able to solve general bounded LP problems of the form

minimize f = cTx
subject to Ax− y = 0 lx ≤ x ≤ ux ly ≤ y ≤ uy,

(2)

where some or all of the entries of lx, ux, ly and uy may be finite and
nonzero, without explicitly adding artificial variables and constraints to convert
the problem to standard form. For this reason, implementations of the
revised simplex method generally assume that the whole of the identity matrix
appears (implicitly) as part of the constraint matrix in (1). However, when
operations corresponding to the matrix entries of these ‘logical’—as opposed
to ‘structural’—variables are encountered computationally, an efficient solver
should exploit their structure properly. Although the modifications to the
simplex method which are required in order to treat general bounded variables
do not change the general nature of the method, their consequences are identified
below.

In the simplex method, the variables are partitioned into index sets B of
m basic variables and N of n − m nonbasic variables such that the basis
matrix B formed from the columns of A corresponding to the basic variables,
is nonsingular. The set B itself is conventionally referred to as the basis. The
columns of A corresponding to the nonbasic variables form the matrix N and the
components of c corresponding to the basic and nonbasic variables are referred to
as, respectively, the basic costs cB and non-basic costs cN . When the nonbasic
variables are set to zero the values b̂ = B−1b of the basic variables, if non-
negative, correspond to a vertex of the feasible region. It is readily shown that
an optimal solution occurs at a vertex and the simplex method proceeds by

2

stepping from one vertex to another with lower objective value until an optimal
vertex is determined.

When the equations are used to express xB = b̂ − B−1NxN , the basic
variables may be eliminated from the objective to give reduced costs ĉT

N
= cT

N
−

cTBB
−1N for the nonbasic variables. Since the reduced costs are the Lagrange

multipliers for the nonbasic variables, a sufficient condition for the vertex to be
optimal is that the reduced costs are non-negative. If the vertex is not optimal,
choosing to move along the edge of the feasible region corresponding to the most
negative reduced cost will result in the most rapid reduction in the objective for
a unit increase in the nonbasic variable. Since the change in the values of the
basic variables corresponding to an increase in nonbasic variable xq is given by
xB = b̂ − xqâq, the value of xq corresponding to a step to the adjacent vertex
of the feasible region is given by the ratio test

α =
b̂p
âpq

where p = argmax
âiq>0

b̂i
âiq

.

At the new vertex, the variable xq enters the basis and the variable xp becomes
nonbasic.

However, if 1 + ‖âq‖2 is large relative to the corresponding measure for
another nonbasic variable with similar reduced cost, it is likely that the
corresponding step α will be smaller, resulting in a smaller reduction in the
objective. For this reason, it is generally preferable to weight the squared
reduced costs according to (an approximation to) 1 + ‖âq‖2 for some (semi-
)norm. A popular technique used in commercial implementations of the the
simplex method is the Devex strategy described by Harris in [7]. This technique
maintains an approximation sj to 1+‖âj‖2P for all j ∈ N , where ‖.‖P is a semi-
norm corresponding to the 2-norm taken over an index set P . The weights sj
are updated following each simplex iteration using the vector âTp = eTpB

−1N .
It is readily shown that this vector may also be used to update the reduced
costs according to the relation ĉT

N
:= ĉT

N
− ĉqâTp . Note that the vectors âq and

âTp required in each iteration of the simplex method are the pivotal column and
pivotal row of the standard simplex tableau, and that references in this paper
to the pivotal column and pivotal row refer to these vectors.

Assuming the existence of a set of reduced costs, vector b̂ of current values
of the basic variables and invertible representation of the basis matrix, the
computational components of a typical iteration of the revised simplex method,
as illustrated in Figure 1, are well-defined.

There are two particular situations when this typical form of a simplex
iteration is modified. One occurs in ‘phase I’ when, as is generally done, a
(piecewise linear) objective which penalises bound violations is used in order to
determine a feasible point. If the step results in one or more non-pivotal basic
cost changes, the corresponding linear combination of tableau rows must be
computed in order to update the reduced costs. This is achieved by a BTRAN

δ̂
T

= δTB−1 and PRICE operation âTδ = δ̂
T
N , where the nonzeros in δ are

the changes in the basic costs. Note that, when using Devex, the original
‘unit’ BTRAN and PRICE are still required so the ‘multiple’ BTRAN and PRICE

constitute additional computation.
The other modification to the typical iteration occurs when xq has distinct,

finite, lower and upper bounds, and the ratio test identifies that the step should

3

CHUZC: Scan ĉ
N

for a good candidate q to enter the basis.
FTRAN: Form âq = B−1aq, where aq is column q of A.
CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the

basis, where b̂ = B−1b (ratio test). Let α = b̂p/âpq.
Update b̂ := b̂− αâq.

BTRAN: Form πT = eTpB
−1.

PRICE: Form pivotal row âTp = πTN .
Update reduced costs ĉTN := ĉTN − ĉqâTp and Devex weights.

If {growth in factors} then
INVERT: Form factored inverse of B.

else
UPDATE: Update the inverse of B corresponding to the basis change.

end if

Figure 1: Operations in an iteration of the revised simplex method with Devex
pricing

correspond to a ‘bound swap’ for that variable. The basis does not change
and so, unless there are basic cost changes as identified above in phase I, the
reduced costs do not change and the iteration terminates following CHUZR.
However, such iterations are readily exploited and it is convenient to assume in
the discussion below that each simplex iteration results in a change of basis.

1.2 The representation of B−1

In each iteration of the simplex method it is necessary to solve two systems, one
involving the current basis matrixB and the other its transpose. This is achieved
by passing forwards and backwards through the data structure corresponding
to a representation of B−1. When using product form or Schur complement
UPDATE, B−1 is represented as

B−1 = E−1
U
B−1

0 , (3)

where B−1
0 is obtained by INVERT, and EU corresponds to the subsequent

basis changes with its representation determined by UPDATE. Thus FTRAN

is performed as
ãq = B−1

0 aq (4)

followed by
âq = E−1

U ãq. (5)

Conversely, BTRAN is performed as

π̃T = eTpE
−1
U (6)

followed by
πT = π̃TB−1

0 . (7)

In a typical implementation of the revised simplex method for large sparse
LP problems, B−1

0 is not formed explicitly but represented as a product of

4

elementary matrices derived from the LU decomposition of (a row and column
permutation of) B0. This invertible representation allows B−1

0 to be expressed
algebraically as B0 =

∏r
k=1 Ek, where

Ek =

1
. . . ηk

1
ηk

1

ηk
. . .

1

← row pk (8)

has its non-unit entries in column pk. The value ηk is referred to as the pivot
and operations with E−1

k or its transpose may be performed using just ηk, the
eta vector ηk and knowledge of the index pk. Such an operation is conveniently
referred to as ‘applying the eta’. Within an implementation, the nonzeros in the
vector ηk are stored as value-index pairs and the data structure {pk, ηk,ηk}rk=1

is known as the eta file.
The simplest form of eta file corresponds directly to the LU decomposition:

there are 2m eta vectors and, for k = 1, . . ., m (k = m+ 1, . . ., 2m), ηk consists
of the entries below (above) the diagonal of column k (2m − k + 1) of L (U),
ηk is the corresponding diagonal entry and pk is k (2m − k + 1). However,
in more general invertible representations, and when the product form update
procedure is used to represent B−1 (see below), so-called Gauss-Jordan eta
vectors may have nonzero entries both above and below the diagonal, and the
number of eta vectors is denoted by r. In a particular LU decomposition, there
will usually be trivial columns of L: those for which there are only zero entries
below the diagonal. Since these trivial columns, in particular, those columns
of L corresponding to logical variables, would correspond to Ek = I, they are
omitted from the eta file. Less obviously, columns of U where the corresponding
row has only zero entries to the right of the diagonal, may be amalgamated
with the corresponding L-eta: any nonzero entries above the diagonal and the
pivot are combined with the entries below the diagonal in the column of L to
form a Gauss-Jordan eta. Eliminating trivial L-etas and amalgamating U -etas
with the corresponding L-eta, when possible, can yield an eta file for B−1

0 with
significantly fewer than 2m etas.

The eta file is determined by the INVERT operation as a result of performing
Gaussian elimination, the operations of which usually result in nonzero entries
being created in the active submatrix, an occurrence known as ’fill-in’.
Consequently, INVERT procedures select pivots with the aim of limiting fill-
in whilst achieving an acceptable degree of numerical stability. It is typical
for the number of nonzero values in the eta file to be no greater than twice the
number of nonzeros in B0 despite the fact that its explicit inverse may be almost
full.

An important property of the matrixB0 when exploiting sparsity in INVERT,
and when discussing hyper-sparsity, is the nature of the optimal block triangular
ordering of the matrix which may be obtained by row and column permutations.
This reordered matrix is optimal in that each diagonal block is irreducible.
Such an ordering may be obtained by using the algorithm of Duff [4] to
determine a row permutation P such that PB0 has a transversal, and then using

5

Tarjan’s algorithm [13], to identify a permutation Q such that QTPB0Q is in
optimal block triangular form. Each diagonal block corresponds to a strong
component in the representation of PB0 as a graph. This block triangular
form, or an approximation to it, is determined either explicitly or implicitly
by practical INVERT procedures. Elimination operations, and hence fill-in, are
then restricted to the factors of any non-unit diagonal blocks. For certain LP
problems, model characteristics mean that there is typically a strong component
of dimension comparable to that of B0. Other problems have diagonal blocks of
very low dimension. In particular, the basis matrices for network LP problems
can be re-ordered into strictly triangular form and so a representation for B−1

0

may be obtained structurally. If there are only a few small (non-unit) diagonal
blocks, the number of etas in the corresponding eta file will be approximately
equal to the number of structural variables in the basis, and have approximately
the same number of nonzero entries as B0.

Note that if the optimal block triangular form has a large strong component
and if, as is likely, the initial RHS for FTRAN or BTRAN has a nonzero in a
row corresponding to that component then its dimension is a lower bound on
the number of nonzeros in the solution (if no zeros are created as a result of
cancellation). A consequence of this observation is that if the result of FTRAN

or BTRAN is typically sparse, it follows that the diagonal blocks in the optimal
block triangular ordering of the matrix are small.

1.3 The product form and other update procedures

The product form update of Dantzig and Orchard-Hays [3] is the original and
simplest form of update procedure. It represents E−1

U as a product of elementary
matrices of the form (8). The representation of each UPDATE operation is
obtained directly from the pivotal column and is given by ηk = âq − âpqep and
ηk = −1/âpq. In many solvers based on the product form, the representation of
the UPDATE operations are appended to the eta file following INVERT, resulting
in a single homogeneous data structure. The techniques developed in this paper
are implemented within the authors’ solver EMSOL which uses the product
form update.

The product form update is commonly criticised for its lack of numerical
stability and inefficiency with regard to sparsity. Other procedures include the
Schur complement update [1] which retains the eta file for B−1

0 and represents
UPDATE operations as a rectangular matrix of vectors resulting from (4) and
a matrix decomposition of a square Schur complement. The column dimension
of both of these matrices is equal to the number of columns in B0 which are
not in B. Clearly this figure is bounded by the number of updates which have
been performed since INVERT, and it may be significantly less. The entries in
the rectangular matrix are analogous to the eta vectors in the product form
update but come from ãq (4) rather than âq (5). For these reasons, the Schur
complement update procedure is more efficient with regard to sparsity and it
can also be shown to have better numerical stability.

Other update procedures such as that due to Forrest and Tomlin [5] modify
the representation of B−1

0 with respect to subsequent UPDATEs in order to gain
still further efficiency with regard to sparsity, whilst having similar numerical
stability properties to the Schur complement update.

6

1.4 Standard FTRAN and BTRAN

When the product form update is used, the FTRAN operation forms the pivotal
column âq = B−1aq by first scattering the vector aq from its packed form in the
constraint matrix into a zeroed workspace vector b, and then transforming this
into âq according to the algorithm represented as pseudo-code in Figure 2(a).
Note that b is referred to as the RHS throughout this transformation process,

do k = 1, r
if (bpk 6= 0) then
bpk := bpk/ηk
b := b− bpkηk

end if
end do

(a) FTRAN

do k = r, 1, −1
bpk := (bpk + bTηk)/ηk

end do

(b) BTRAN

Figure 2: Standard FTRAN and BTRAN

with the cases b = aq and b = âq distinguished by being referred to as the
initial RHS and solution respectively.

In general when solving LP problems, the initial RHS is sparse and so bp1

may be expected to be zero. In this case the multiple bpk/ηk of ηk which is
added in to b is zero. Eventually, some bpk is usually nonzero, resulting in
‘fill-in’ in the b. However, since testing bpk for zero is cheap relative to the
floating point operations which would be otherwise performed, this is usually
incorporated into an implementation of the revised simplex method.

When the BTRAN operation is used to form the ‘unit’ π vector required to
form the pivotal row, the eta file is used to form πT = eTpB

−1. This is achieved
by setting to unity the appropriate component of a zeroed workspace vector
b and then transforming it into π according to the algorithm represented as
pseudo-code in Figure 2(b). Unlike FTRAN, there is no simple and immediate
way to exploit sparsity in the RHS.

1.5 What is hyper-sparsity?

As identified above, the results of three matrix-vector products must be
computed in each iteration of the revised simplex. These are the pivotal column
âq = B−1aq formed by FTRAN, the ‘update π’ πT = eTpB

−1 formed by BTRAN

and the pivotal row âTp = πTN formed by PRICE. In this paper, an LP problem
is said to exhibit hyper-sparsity if, for at least one of these three operations, a
clear majority of the results is sparse. A vector is considered to be sparse if no
more than 10% of its entries are nonzero and a clear majority is take to be at
least 60%.

The extent to which hyper-sparsity exists in LP problems was investigated
for a subset of the standard Netlib test set [6] and larger problems from the
Kennington test set [2] and the authors’ personal collection. The problems
excluded from the Netlib set were those whose solution requires less than one
second of CPU, together with FIT1D and FIT2D for which, since they have
only 25 and 26 rows respectively, the techniques developed in this paper are

7

inappropriate. Although the small Netlib problem SHELL is solved by EMSOL
in less than a second, it is included for academic interest since it is well known
to have a near network structure. Note that a standard simple scaling algorithm
is applied to each of the problems for reasons of numerical stability.

When started from a basis of logical variables, the initial basis matrix is
the identity so all FTRAN, BTRAN and PRICE operations for early iterations
yield sparse results. To include the results of such iterations would flatter
(and hence obscure) the gains which can be achieved by exploiting hyper-
sparsity. In relation to their computational cost, such iterations also contribute
disproportionally to the total number of iterations. Thus each problem is solved
from a ‘crash’ basis obtained using a stabilisation of the algorithm described by
Maros [11] which, starting from a logical basis, aims to remove logical variables
which are fixed or have finite lower and upper bounds and introduce structural
variables which are free or have only one finite bound. This is done whilst
ensuring that the initial basis matrix is triangular and has no diagonal entries
which are small relative to the other entries in the corresponding column.

The density of each pivotal column âq following FTRAN, update π following
BTRAN and pivotal row âTp following PRICE was determined, and the total
number of each which was found to be sparse throughout the solution procedure
was obtained. Table 1 lists the problems where for none of these three operations
a clear majority of the results is sparse. The remaining problems exhibit hyper-
sparsity to some extent and are listed in Table 2. Note that the sizes of
the problems are given in Tables 6 and 5 respectively. For each of the three
operations, the column headed ‘%’ gives the percentage of the results which
were sparse and the columns headed ‘% NZ’ give the average density of the
result in the cases when it is, respectively, sparse and dense. Note that these
tables also include results for ‘multiple’ BTRAN and PRICE required to update
the reduced costs in phase I. Omitting them would exaggerate the extent of
hyper-sparsity in problems for which the number such operations is significant.
The final column of Table 2 gives the initial letter of the operation for which a
clear majority of the results is sparse.

The main observation from the results in Table 2 is that, since the result of
FTRAN and PRICE is sparse for most problems, if one of the pivotal row and
column is typically sparse then both are. This is unsurprising since the result
of PRICE is a row of the same standard simplex tableau of which the result
of FTRAN is a column. Indeed, it is interesting to consider the model-specific
reasons why the results of all three operations are not typically sparse.

Since the update π is just a single row of B−1
0 and the pivotal column is

usually a linear combination of several columns of B−1
0 , it might be expected

that the π vector is less dense than âq. It is, therefore, surprising that for only
one problem, CYCLE, π is typically sparse and âq is not.

For problems DCP1 and DCP2, their pivotal columns are typically sparse,
but not their pivotal rows. These problems are decentralised planning problems
for which a typical standard simplex tableau is very sparse with a few dense
rows. Thus the pivotal columns are usually sparse. However, the pivot is usually
chosen from one of the dense rows.

Amongst the problems which are complementary to the DCPs in that
their pivotal rows are typically sparse but not their pivotal columns, the most
remarkable are FIT1P and FIT2P: almost all pivotal columns are essentially full

8

FTRAN: âq BTRAN: π PRICE: âTp
Sparse Dense Sparse Dense Sparse Dense

Problem % % NZ % NZ % % NZ % NZ % % NZ % NZ
25FV47 3 2.0 58.9 13 0.5 67.9 16 1.7 90.2
BNL1 20 4.5 26.1 44 1.1 58.4 46 1.6 71.4
BNL2 36 2.8 28.9 36 0.9 37.0 40 1.2 57.8
D2Q06C 15 3.2 51.2 27 0.9 67.8 26 1.4 87.0
D6CUBE 2 6.7 65.2 11 0.7 94.7 13 1.5 75.7
DEGEN2 12 5.1 32.4 43 2.5 59.2 40 2.9 66.0
DEGEN3 18 5.5 24.5 49 1.6 59.0 52 1.8 67.7
DFL001 1 2.2 49.3 35 0.2 84.6 36 0.4 90.5
GREENBEA 13 4.3 26.3 57 0.4 75.9 59 0.8 75.6
GREENBEB 14 4.1 27.2 57 0.3 78.3 59 0.7 80.2
GROW15 1 5.5 82.7 7 1.8 87.4 5 6.4 88.1
GROW22 1 5.0 82.1 8 1.4 93.5 6 4.5 93.7
MAROS-R7 14 2.4 78.3 15 2.1 23.5 12 2.1 53.9
MODSZK1 15 4.3 62.2 26 1.1 66.0 31 1.6 69.8
NESM 34 1.8 39.8 25 4.9 36.6 28 3.7 47.5
PEROLD 6 4.0 64.7 24 1.3 78.3 27 1.7 89.0
PILOT 6 1.6 74.8 12 1.4 71.3 10 1.3 93.9
PILOT.JA 7 4.7 67.4 23 1.0 66.1 24 1.2 89.1
PILOT.WE 14 4.9 75.2 36 1.8 84.4 35 1.6 85.4
PILOT4 3 4.6 63.8 24 2.1 70.0 22 1.8 77.2
PILOT87 5 0.8 75.8 17 1.2 74.4 14 0.9 93.6
PILOTNOV 11 4.8 57.7 29 0.8 51.1 33 1.2 77.9
QAP8 0 2.5 81.7 12 0.6 80.4 14 2.2 98.6
SCSD8 8 3.1 41.9 34 1.4 63.7 45 2.8 44.8
STAIR 2 6.6 79.5 20 0.6 63.5 20 1.8 64.4
TRUSS 5 3.1 48.1 40 0.7 91.5 53 1.6 67.6
WOOD1P 1 0.8 50.4 53 1.3 94.9 46 0.8 85.8

Table 1: Sparsity following FTRAN, BTRAN and PRICE for problems not
exhibiting hyper-sparsity

and almost all pivotal rows are sparse. For these two problems, most columns
of the constraint matrix have only one nonzero entry, with the remainder being
very dense. Thus B−1 is largely diagonal with a small number of essentially full
columns. Most variables chosen to enter the basis have a single nonzero entry
in a row corresponding to these dense columns, and so the pivotal column is (a
multiple of) one of these dense columns of B−1. Each update π is a row of B−1

and its resulting sparsity is inherited by the pivotal row since most columns of
N in the PRICE operation have only one nonzero entry.

2 Exploiting hyper-sparsity

Each computational component of an iteration of the revised simplex method
either forms, or operates with, the result of a matrix-vector product. Each of
these components is considered below and it is shown that typical computational

9

FTRAN: âq BTRAN: π PRICE: âTp
Sparse Dense Sparse Dense Sparse Dense >60%

Problem % % NZ % NZ % % NZ % NZ % % NZ % NZ Sparse
80BAU3B 97 2.5 10.7 71 0.4 47.7 73 0.6 49.5 FBP
CYCLE 50 6.6 14.4 85 3.6 20.4 57 3.1 17.6 B
CZPROB 100 1.3 — 66 0.5 83.3 67 0.8 71.5 FBP
FIT1P 0 — 99.2 99 4.9 10.3 100 3.8 — BP
FIT2P 14 0.0 98.9 100 1.1 — 100 0.8 — BP
GANGES 70 3.6 14.8 92 1.8 13.1 78 1.2 27.5 FBP
MAROS 30 3.6 27.5 61 1.0 39.7 64 2.3 53.0 BP
SCFXM3 67 3.5 18.1 71 2.1 22.8 70 2.8 23.9 FBP
SCTAP3 100 1.3 — 100 0.5 — 93 2.2 15.5 FBP
SHELL 100 2.3 — 87 1.1 30.4 91 1.8 15.5 FBP
SHIP08L 100 1.0 — 84 0.3 72.9 85 0.8 23.1 FBP
SHIP12L 100 0.5 — 91 0.2 59.4 91 0.5 20.2 FBP
SHIP12S 100 0.6 — 89 0.4 31.6 89 0.8 26.0 FBP
SIERRA 100 1.9 — 98 0.8 16.2 98 1.3 14.0 FBP
STOCFOR2 24 1.8 54.7 69 2.9 16.0 66 3.2 16.4 BP
STOCFOR3 47 0.3 68.0 100 1.2 — 100 0.9 — BP
WOODW 41 4.8 18.2 77 0.6 65.6 76 1.2 63.4 BP
DCP1 92 5.1 10.7 55 0.9 15.2 49 1.3 79.2 F
DCP2 100 1.3 — 57 0.7 14.6 52 0.3 81.8 F
DETEQ8 100 0.9 10.3 100 0.1 — 100 0.2 — FBP
DETEQ27 95 1.2 12.6 100 0.1 — 100 0.1 — FBP
PDS-02 100 0.7 — 100 0.7 12.9 100 1.0 12.2 FBP
PDS-06 100 1.0 — 97 0.4 17.5 98 0.5 15.1 FBP
PDS-10 100 1.1 — 97 0.2 23.5 97 0.3 22.0 FBP
PDS-20 100 2.1 — 93 0.2 47.5 94 0.3 35.6 FBP

Table 2: Sparsity following FTRAN, BTRAN and PRICE for problems exhibiting
hyper-sparsity

techniques are inefficient in the presence of hyper-sparsity. In each case,
equivalent computational techniques are developed which exploit hyper-sparsity.
Although each individual technique can result in a significant improvement in
performance for the corresponding computational component, the effect on the
solution time for the problem depends on that of components for which the
techniques cannot be applied. Although the overall improvement in performance
will be seen to be modest for problems which do not exhibit hyper-sparsity in
both FTRAN and BTRAN, for those which do the performance improvement
will be seen to be tremendous.

2.1 Relative cost of computational components

Before considering the consequences of hyper-sparsity and techniques by which it
can be exploited for each of the computational components of the revised simplex
method, it is interesting to consider the extent to which these components
contribute to the solution time. Table 3 gives the percentage of CPU which can

10

be attributed to each of the major computational components in the revised
simplex method. This is given for those problems which exhibit hypersparsity
for which the CPU time for each of the computational components is sufficiently
great to be determined reliably. Note that for both FTRAN and BTRAN

the percentage CPU time for the operations (4) and (7) with the INVERT

etas, and (5) and (6) with the UPDATE etas, are presented separately in the
columns headed I-FTRAN, I-BTRAN, U-FTRAN and U-BTRAN. For some of
the problems the frequency with which INVERT is performed is far from being
optimal, in that the percentage of CPU attributable to applying UPDATE etas
and the percentage of CPU attributable to INVERT are far from being equal.
This is done for reasons of direct comparison with the results obtained when
the techniques for exploiting hyper-sparsity are used.

2.2 Hyper-sparse FTRAN

For problems with sparse pivotal columns, since there is unlikely to be more
than a few hundred UPDATE etas, the major computational cost of FTRAN

is the operation (4) which forms ãq = B−1
0 aq. This is seen in Table 3 and is

particularly marked for the later, larger problems.
When the pivotal column âq computed by FTRAN is sparse, unless there is

an extraordinary amount of cancellation, it is expected that only a very small
proportion of the INVERT (and UPDATE) eta vectors, needs to be applied.
Further, since the number of floating point operations required to perform these
few operations can be expected to be of the same order as the number of nonzeros
in âq, the cost of FTRAN when forming ãq = B−1

0 aq will be dominated by the
test for zero when using the standard algorithm illustrated in Figure 2(a). Note
that if trivial L-etas are not eliminated and U -etas not amalgamated when
possible, resulting in an INVERT eta file with 2m etas, the number of tests for
zero, and hence the cost of FTRAN, is double what is necessary. The aim of
this subsection is to develop a computational technique which identifies the etas
which (may) have to be applied without passing through the whole INVERT eta
file and testing each value of bpk for zero.

In developing the algorithm which is illustrated as pseudo-code in Figure 3,
observe first that, corresponding to the indices of the nonzeros in the initial
RHS, there is a set K of indices k of etas for which bpk is nonzero. Note that
since there is at most one L-eta and at most one U -eta in a given row, |K| is at
most twice the number of nonzeros in the initial RHS.

If K is empty then no etas need to be applied so (4) is complete. Otherwise,
the least index k0 ∈ K identifies the skip through the eta file to the first eta which
needs to be applied. Once this has been done, there is a set K′ corresponding
to the updated RHS. The set K′ differs from the initial set K in that index k0

is removed and, as a result of any fill-in, new indices (k > k0) may have been
introduced. These observations are formalised and generalised as the pseudo-
code illustrated in Figure 3, where Ek is used to denote the set of indices of the
nonzeros in ηk. The lists P (1) and P (2) record, for each row, the index of the
first and second eta which have a pivot in the particular row, with a zero index
being recorded if there are fewer than two such etas.

Since the set K must be searched to determine the next eta to be applied,
there is some scope for variation in the way that this is achieved and, if the
number of entries in K becomes large, there comes a point at which the cost

11

Problem CHUZC I-FTRAN U-FTRAN CHUZR I-BTRAN U-BTRAN
80bau3b 20.51 4.73 1.12 1.07 7.57 1.46
cycle 4.52 8.54 5.40 4.40 20.85 6.16
fit1p 5.09 2.31 14.35 6.48 14.81 21.30
fit2p 8.41 3.31 6.30 9.11 10.42 22.41
maros 3.93 7.02 4.78 1.12 15.73 10.67
scfxm3 6.55 7.42 2.18 6.11 23.14 4.80
ship12l 16.02 5.11 0.70 0.53 10.39 1.23
stocfor2 3.22 6.93 5.94 8.66 12.13 22.28
stocfor3 3.90 6.11 3.47 6.46 16.17 27.58
woodw 11.90 2.71 1.45 1.57 7.75 2.08
dcp1 3.45 4.28 3.55 1.65 13.51 3.64
dcp2 3.90 3.06 1.69 0.28 13.95 1.40
deteq8 11.62 6.98 0.37 0.76 16.64 2.69
deteq27 11.17 6.65 0.31 0.75 16.71 4.24
pds-02 15.48 6.35 0.17 1.48 14.78 4.35
pds-06 14.48 7.37 0.48 0.76 15.10 3.69
pds-10 13.68 6.59 0.33 0.62 14.65 3.31
pds-20 13.34 5.15 0.38 0.74 11.67 4.03

INVERT frequency Solution
Problem PRICE INVERT UPDATE Used Optimal CPU (s)
80BAU3B 54.92 1.69 0.91 50 40 52.01
CYCLE 30.40 9.92 1.63 50 45 6.96
FIT1P 13.43 3.70 2.31 50 16 1.89
FIT2P 30.27 2.39 2.71 50 14 199.84
MAROS 30.34 5.62 1.97 50 30 3.10
SCFXM3 25.76 8.73 2.62 50 55 1.92
SHIP12L 60.04 1.41 1.94 50 42 5.31
STOCFOR2 15.35 3.22 1.98 50 17 3.63
STOCFOR3 16.57 11.29 2.02 50 30 315.99
WOODW 65.74 1.32 0.38 50 31 14.94
DCP1 55.12 8.64 0.85 50 54 65.60
DCP2 52.49 20.45 0.14 100 257 3484.95
DETEQ8 55.48 1.23 0.15 100 63 495.65
DETEQ27 55.19 1.28 0.10 100 53 6470.06
PDS-02 51.91 0.52 0.61 200 68 10.65
PDS-06 53.02 0.71 0.25 200 82 311.26
PDS-10 56.99 0.71 0.17 200 88 1341.13
PDS-20 60.80 1.64 0.10 200 121 19092.51

Table 3: Relative cost of computational components of the revised simplex
method for problems which exhibit hyper-sparsity

12

R = {i : bi 6= 0}
K = {k : bpk 6= 0}
repeat
k0 = mink∈K
bpk0

:= bpk0
/ηk0

for i ∈ Ek0 do
if (bi 6= 0) then
bi := bi + bpk0

[ηk0
]i

else
bi := bpk0

[ηk0
]i

if (P (1)
i > k0) K := K ∪ P (1)

i

if (P (2)
i > k0) K := K ∪ P (2)

i

R := R∪ i
end if

end do
until K = ∅

Figure 3: Hyper-sparse FTRAN for INVERT etas

of the search exceeds the cost of the tests for zero which it seeks to avoid. In
EMSOL, K is maintained as an unordered list and the average skip through the
eta file which has been achieved during the current FTRAN is compared with
a multiple of the number of entries in K to determine the point at which it
is preferable to complete FTRAN using the standard algorithm. The following
alternative strategies are expected to form the subject of future research. By
maintaining K as a set of buckets, each corresponding to some portion of the
eta file, it may be sufficient to search the local bucket to determine the next eta
to be applied. The set K could also be maintained as a heap.

Although the algorithm in Figure 3 does not require the list R of indices of
entries in the RHS which may be nonzero, the operations required to maintain it
are included. It is shown below that knowledge of this set can be advantageous
during CHUZR.

2.3 Hyper-sparse CHUZR

For problems when the pivotal column is typically sparse, the cost of performing
a test for zero for each of the m entries will dominate the small total number
of floating point operations which are performed for the few nonzeros in the
pivotal column. If a list of indices of entries in the pivotal column which may
be nonzero is known, then this overhead is avoided. The nonzero entries in the
pivotal column are also required both to update the values of the basic variables
following CHUZRand, as described below, to update the product form UPDATE

eta file. If the nonzero entries in the workspace vector used to compute the
pivotal column are zeroed after being packed onto the end of the UPDATE eta
file, this yields a contiguous list of real values to update the values of the basic
variables and makes the UPDATE operation near-trivial. A further consequence
is that, so long as pivotal columns remain sparse, the only complete pass through
the workspace vector used to compute the pivotal column is that required to
zero it before the first simplex iteration.

13

2.4 Hyper-sparse BTRAN

When performing BTRAN using the algorithm illustrated in Figure 2(b), most
of the work when applying an eta is the evaluation of the inner product bTηk,
the result of which will frequently be (structurally) zero when the RHS is
sparse. Then, only if bpk is nonzero, is there any non-trivial floating point
operation. Unfortunately, there is no simple way of determining whether there
is a non-empty intersection of the sparsity pattern of b and ηk without a
computational overhead which is comparable to evaluating the inner product
itself. However, worthwhile computational savings follow from the observation
that, when applying ηk during BTRAN, fill-in can only occur in component pk
in the RHS.

2.4.1 Maintaining a list of the indices of nonzeros in the RHS

During BTRAN, it is simple and cheap to maintain a list of the indices of the
nonzeros in the RHS: if bpk is zero and bTηk is nonzero then the index pk is
added to the end of a list. If bpk is nonzero and bpk +bTηk is zero then it is said
that ‘cancellation’ occurs, in which case it is desirable, although not essential,
for the index pk to be removed from the list. For problems when π is frequently
sparse, knowing the indices of all values in the RHS which are (or may be)
nonzero permits a valuable saving during the PRICE operation, as identified
below.

2.4.2 Reducing trivial inner products and operations with zero

When using the product form update, it is valuable to consider the operations
with the UPDATE etas (6) separately from those with INVERT etas (7). For
the former, it is possible to eliminate the structurally trivial inner products and
significantly reduce the number of operations with zero. For the latter, it is
possible to eliminate a significant number of trivial inner products.

UPDATE etas

Let K denote the number of UPDATE operations which have been performed
and let P denote the set of indices of those rows which have been pivotal since
INVERT. Note that the inequality |P| ≤ K is strict if a particular row has been
pivotal more than once. Since fill-in during BTRAN can only occur in row pk,
it follows that the nonzeros in π̃T = eTpE

−1
U

are restricted to the components
with indices in the set P . Thus, when applying ηk, only the nonzeros with
indices in the set P contribute to bTηk. Since |P| is very much smaller than
the dimension of B for large problems, it follows that unless this observation
is exploited, most of the floating point operations using the UPDATE etas are
still trivial. A significant degree of efficiency is thus achieved by maintaining a
rectangular array EP of dimension |P| ×K which holds the values of the entries
corresponding to set P in the UPDATE etas, allowing π̃ to be formed as a
sequence of K short, dense, inner products.

When using this technique, even if EP is full, half the floating point operations
are trivial since the initial RHS has only one nonzero, and at most one nonzero
is created as a result of applying an eta. If the update etas are sparse then EP
will be largely zero and so will most of the inner products bTηk. This may be

14

exploited by searching, for each nonzero in the RHS, for the eta which is the
first (from the end of the file) with a nonzero in that row. The earliest such eta
is then identified as the first which may result in a nonzero value of bTηk. The
overhead of maintaining the data structure and the extra work of performing this
search is usually much less than the computation which is avoided. Indeed, the
initial search frequently identifies that none of the update etas need be applied.
Note that this technique is of benefit whether or not the update etas are sparse,
although it represents a relatively small saving compared to the overall cost of
performing a simplex iteration.

INVERT etas

By being able to identify the nonzeros in UPDATE etas for a given row, is is
shown above that there is a significant reduction in the cost of forming π̃T =
eTpE

−1
U (6). Indeed, if there are no nonzeros in row p of the UPDATE etas, it

follows immediately that π̃ = ep. This technique may also be applied to the
INVERT etas if the list Q(1) of the indices of the last INVERT eta with a nonzero
in each row is known, with an index of zero used to indicate that there is no
such eta. The greatest index in Q(1) corresponding to the nonzeros in π̃ then
indicates the first INVERT eta which must be applied. As with the UPDATE

etas, the technique may indicate that a significant number of the INVERT etas
need not be applied and, if the index is zero, it follows immediately that π = π̃.
More generally, if the list Q(k) of the index of the kth last INVERT eta with a
nonzero in each row is recorded for k from 1 to some small limit then several
significant steps backwards through the INVERT eta file may be made. However,
to implement this technique requires an integer array of dimension equal to that
of B0 for each list so, in EMSOL, only Q(1) and Q(2) are recorded.

2.4.3 Row-wise INVERT eta file

The limitations and/or high storage requirements associated with exploiting
hyper-sparsity during BTRAN with the conventional column-wise (INVERT) eta
file motivate the formation, after INVERT of an equivalent representation stored
row-wise. This may be formed by passing twice through the complete column-
wise INVERT eta file and permits the BTRAN operation (7) to be performed
using the algorithm given in Figure 3 for FTRAN. For problems in which π is
typically sparse, although the computational overhead in forming the row-wise
eta file is significant, it is far outweighed by the savings when applying it.

2.5 Hyper-sparse PRICE

The matrix-vector product πTN is easily formed as a sequence of inner products
between π and the appropriate columns of the constraint matrix. In the case
when π is full, there will be no trivial floating-point operations so this simple
technique is optimal. However this is far from being true if π is sparse, in
which case, by forming πTN as a linear combination of those rows of N which
correspond to nonzero entries in π, all trivial floating point operations are
avoided. Although the cost of maintaining a row-wise representation of the
columns of N is non-trivial, this is far outweighed by the efficiency with which
πTN may be formed.

15

For problems when π is particularly sparse, the cost of testing each entry
for zero dominates the small total number of floating point operations which
are performed for the few nonzeros in π. Thus, as with the pivotal column in
the case of CHUZR, when the indices of the entries in π which may be nonzero
are known (as a result of this list being maintained during BTRAN) the cost of
searching for the nonzeros in π is avoided. As nonzero entries are encountered,
the corresponding workspace entry is zeroed, leaving the workspace zeroed in
preparation for the next BTRAN. Thus, as with the workspace vector used
to compute the pivotal column, so long as π vectors remain sparse, the only
complete pass through this workspace array when solving an LP problem is that
required to zero it before the first simplex iteration.

Since the the row-wise PRICE driven by the indices of nonzeros in π described
above avoids any trivial operations, this technique is optimal. However, it is
advantageous if the list of indices of nonzeros in the pivotal row is maintained
during PRICE, so long as the vector remains sparse. Knowledge of this list
eliminates the overhead of searching for the nonzeros in the pivotal row, which
would otherwise be the dominant cost when updating the reduced costs and
Devex weights. As with the workspace vectors used to compute π and the
pivotal column, so long as pivotal rows remain sparse, the list of indices of
nonzeros enables a zeroed workspace vector to be maintained with just a single
full pass required to zero it before the first simplex iteration.

2.6 Hyper-sparse CHUZC

Before discussing methods for CHUZC which exploit hyper-sparsity, it should
be observed that, since the vector cB of basic costs may be full, the vector of
reduced costs given by

ĉT
N

= cT
N
− cT

B
B−1N,

may also be full. Further, for most of the solution time, a significant proportion
of the reduced costs are negative. Thus, even for LP problems exhibiting hyper-
sparsity, the attractive nonbasic variables do not form a small set whose size
could then be exploited. However, if the pivotal row is sparse, the number of
reduced costs and edge weights which change each iteration is small and it is
this which may be exploited to improve the efficiency of CHUZC.

The aim of the hyper-sparse CHUZC algorithm described below is to maintain
a list of the most attractive candidates to enter the basis. This is achieved by
first performing an initial complete CHUZC to determine a list C0 of the best s
candidates, the best of which is chosen to enter the basis. For the subsequent
pivotal row, a list D0 is formed of the best s candidates not in C0 whose reduced
cost has changed. The best s candidates from both of these lists is used to
determine a new list of candidates C1, the best of which is chosen to enter the
basis in the next iteration. Unless this scheme is reset periodically by performing
a complete CHUZC, the simplex method could terminate prematurely. For
example, candidates which are initially attractive, but not sufficiently so to
be included in C0, and whose reduced cost does not change subsequently, could
never be chosen to enter the basis.

Even with this reset mechanism, it is possible that all the candidates in
some list Ck may be inferior to some which were not sufficiently attractive to be
included in lists Cj or Dj for j < k. Thus the variable to enter the basis chosen

16

from those in Ck is not that which would be chosen by a complete CHUZC.
This deviation from equivalence with the revised simplex method when using
complete CHUZC is theoretically inelegant and, in practice, leads to a significant
increase in the number of iterations required to solve some problems.

The following modification to this algorithm yields a hyper-sparse CHUZC

which determines as good a candidate as a complete CHUZC. This modification
is based on maintaining a lower bound on the reduced cost (weighted by Devex)
of the best candidate not in Ck. Whenever a list Ck or Dk is formed, the
weighted reduced cost of its least attractive candidate provides a lower bound
on the corresponding value for the most attractive candidate rejected in forming
that list. The least such lower bound over all lists Cj and Dj (j < k) is a lower
bound on the weighted reduced cost of the best candidate not in Ck. If this
value exceeds the weighted reduced cost of the best candidate in Ck, then it is
possible that a complete CHUZC would determine a better candidate. If this
event is used to trigger a reset of C0 then the hyper-sparse CHUZC guarantees
to find as good a candidate as a complete CHUZC.

2.7 Hyper-sparse (preordered) INVERT

The default INVERT in EMSOL is based on the procedure used by Tomlin
in LPM1 and a description is given by Pfefferkorn and Tomlin [12]. This
procedure identifies, and uses as pivots for as long as possible, rows and columns
in the active submatrix which have only a single nonzero. Following this
triangularisation phase, any residual active submatrix is then factorised using
Gaussian elimination with the order of the columns fixed according to a merit
count. Since the pivot in each stage of Gaussian elimination is selected from
a predetermined pivotal column, only this column of the active submatrix is
required. Thus, rather than apply elimination operations to maintain the up-
to-date active submatrix, the up-to-date pivotal column is formed each iteration.
When compared with a Markowitz-based procedure which maintains and selects
the pivot from the whole up-to-date active submatrix, the Tomlin procedure has
a greatly simplified data structure management and pivot search strategy. Thus,
for problems where the diagonal blocks in the optimal block triangular form are
small, the Tomlin INVERT is significantly faster and yields an INVERT eta file
which is no larger than that obtained by a Markowitz INVERT.

The up-to-date pivotal column which is computed in each stage of Gaussian
elimination is formed by passing forwards through the file of L-etas computed
up to that stage. Even for problems where the pivotal column of the standard
simplex tableau is rarely sparse, the pivotal column of the active submatrix
during Gaussian elimination is very likely to be sparse. Thus this partial FTRAN

operation is particularly amenable to the exploitation of hyper-sparsity. Indeed,
it was in the context of INVERT that the authors first observed the dominant
overhead of the test for zero in FTRAN-like operations. Note that the data
structures require to exploit hyper-sparsity during FTRAN itself, is generated
at almost no cost during the course of INVERT.

It is interesting to observe that since the improvement in performance of
INVERT is dependent on the residual active submatrix after the triangularisation
phase to be large enough for its factorisation cost to be dominant, significant
improvement in INVERT is unlikely to coincide with significant improvements
in the performance of BTRAN, FTRAN and PRICE as a result of exploiting

17

hyper-sparsity.

2.8 Hyper-sparse (product-form) UPDATE

The product-form UPDATE requires the nonzeros in the pivotal column to be
stored in packed form with the pivot stored as its reciprocal (so that the divisions
in FTRAN and BTRAN are effected by multiplication. As identified above, the
former is readily achieved during CHUZR and the latter is a scalar operation
performed afterwards.

2.9 Controlling the use of techniques to exploit hyper-
sparsity

The techniques described above are inefficient in the absence of hyper-sparsity
and so should not be applied universally. For problems which do not
exhibit hyper-sparsity at all, or for problems where a particular computational
component does not exhibit hyper-sparsity, this is easily recognised by
monitoring a running average of the density of the result over a number of
iterations and switching off the technique for all subsequent iterations if hyper-
sparsity is seen to be absent. For a computational component which typically
exhibits hyper-sparsity, it is important to identify the situation where the
result for a particular iteration is not going to be sparse, and switch to the
standard algorithm which will then be more efficient. This is usually achieved
by monitoring the density of the result during the operation and switching on
some tolerance. Practical experience has shown that the optimal value of such
tolerances is very insensitive.

2.10 Results

The efficacy of the techniques described in this section may be judged from the
results presented in Tables 4, 6 and 5 which were obtained using EMSOL on a
Sun UltraSPARC 140 with 128Mb of memory. The design of EMSOL allows the
user to set the value of control variables to indicate that the use of particular
computational techniques is either prohibited or forced. However, the default is
for the solver to determine (at run-time) when use of a particular technique is
appropriate. Although tuning of such control parameters is justified when many
problems of a particular nature are to be solved, the results in this paper were
obtained with EMSOL running in its default state, unless stated otherwise.

Table 4 gives, for the problems in Table 3, a detailed breakdown of the
percentage decrease in the CPU time which is attributable to applying the
INVERT etas in FTRAN, applying the INVERT and UPDATE etas in BTRAN,
and performing the PRICE operation. For FIT1P and FIT2P, the time taken
applying the INVERT etas during FTRAN actually increases. This may be due
to the control mechanism not switching off the hyper-sparse technique soon
enough and warrants further investigation. However, for the other problems
and other operations, the savings correlate pretty well with the proportion of
operations in Table 2 which yield sparse results. This indicates that the cost of
these operations when the result is sparse has been vastly reduced leaving the
total cost of these operations to be dominated, in general, by the cost of those
for which the result is not sparse.

18

Problem I-FTRAN I-BTRAN U-BTRAN PRICE
80BAU3B 76.73 69.32 77.65 81.90
CYCLE 76.47 88.55 100.00 89.26
FIT1P -100.00 81.25 91.30 79.31
FIT2P -3.22 89.75 99.14 95.93
MAROS 16.00 76.79 86.84 72.22
SCFXM3 76.47 49.06 54.55 71.19
SHIP12L 82.76 86.44 100.00 92.96
STOCFOR2 28.57 53.06 95.56 66.13
STOCFOR3 40.66 93.49 99.59 95.66
WOODW 41.86 72.36 78.79 86.59
DCP1 25.80 73.49 83.82 84.10
DCP2 55.18 79.82 89.44 82.47
DETEQ8 89.61 96.35 94.69 98.57
DETEQ27 92.82 97.94 98.49 99.08
PDS-02 87.67 92.35 90.00 98.16
PDS-06 90.71 95.57 94.54 97.30
PDS-10 90.42 96.11 97.55 97.14
PDS-20 89.94 93.77 99.10 95.37

Table 4: Percentage improvement in the performance of computational
components of the revised simplex method when exploiting hyper-sparsity

Table 5 shows quite clearly how the techniques described in this section yield
a significant improvement in the performance of EMSOL for almost all problems
which exhibit hyper-sparsity.

Table 6 indicates the improvement in solution time for the problems which
do not exhibit hyper-sparsity when EMSOL is permitted to use the techniques
for exploiting hyper-sparsity. With only a few exceptions, these techniques
yield little if any improvement in performance. This is not surprising since the
techniques for exploiting hyper-sparsity during FTRAN, BTRAN and PRICE are
‘switched off’, with the exception of the row-wise representation of the entries
in UPDATE etas for rows which have been pivotal since INVERT. However,
this technique has little overall effect on performance since the operations
with the UPDATE etas are dominated by those with the INVERT etas. The
effect of exploiting hyper-sparsity during INVERT has a marked effect on the
performance of a few problems, notably DFL001.

2.10.1 Comparison with OSL simplex and barrier

All of the techniques described above, with the exception of the hyper-sparse
CHUZC have been implemented within EMSOL, whose performance is compared
in Table 7 with that of the revised simplex solver and barrier solver in OSL [8],
for the test problems which exhibit hyper-sparsity. The results are given and
show that, with the exception of the largest two PDS problems, EMSOL is
clearly superior—by an order of magnitude for some problems. The extent to
which the computational cost of complete CHUZC now dominates the solution
time for the problem may be seen in the column headed ‘CHUZC’, where the
absence of a value indicates that the overall solution time is too short for the

19

Dimensions Solution time CPU (s)
Problem Rows Columns Nonzeros Sparse Hyper-sparse Speed-up
80BAU3B 2262 9799 21002 52.01 19.17 2.7
CYCLE 1903 2857 20720 6.96 1.83 3.8
CZPROB 929 3523 10669 3.27 1.72 1.9
FIT1P 627 1677 9868 1.89 1.24 1.5
FIT2P 3000 13525 50284 199.84 87.79 2.3
GANGES 1309 1681 6912 1.31 0.68 1.9
MAROS 846 1443 9614 3.10 1.70 1.8
SCFXM3 990 1371 7777 1.92 1.04 1.8
SCTAP3 1480 2480 8874 1.48 0.52 2.8
SHELL 536 1775 3556 0.43 0.24 1.8
SHIP08L 778 4283 12802 2.72 0.83 3.3
SHIP12L 1151 5427 16170 5.31 1.51 3.5
SHIP12S 1151 2763 8178 1.24 0.48 2.6
SIERRA 1227 2036 7302 1.20 0.44 2.7
STOCFOR2 2157 2031 8343 3.63 1.97 1.8
STOCFOR3 16675 15695 64875 315.99 108.71 2.9
WOODW 1098 8405 37474 14.94 4.77 3.1
DCP1 4950 3007 93853 65.60 20.62 3.2
DCP2 32388 21087 559390 3484.95 911.70 3.8
DETEQ8 20678 56227 128968 495.65 99.94 5.0
DETEQ27 68672 186928 429472 6470.06 1131.32 5.7
PDS-02 2953 7535 16390 10.65 2.19 4.9
PDS-06 9881 28655 62524 311.26 55.25 5.6
PDS-10 16558 48763 106436 1341.13 255.33 5.3
PDS-20 33874 105728 230200 19092.51 3220.69 5.9

Table 5: Solution time for EMSOL with sparse and hyper-sparse techniques
when applied to problems exhibiting hyper-sparsity

proportion of time accounted for by CHUZC to be determined reliably.
For the PDS problems, the initial vertex following the crash is feasible.

A phase II version of hyper-sparse CHUZC is much more straightforward to
implement than a phase I version since it is not necessary to handle the situation
where reduced costs change as a result of basic cost changes. For these problems,
the performance of EMSOL with hyper-sparse CHUZC is compared to that of
OSL in Table 8. For the largest of the PDS problems, EMSOL is still not
faster than the OSL simplex solver. This is due to the fact that OSL requires
fewer than one tenth of the number of iterations required by EMSOL. For
problems such as the PDS problems which are highly degenerate, it is often
highly advantageous to first solve a perturbation of the problem and then recover
a solution to the original problem. When solving the PDS problems, OSL
reports that it is solving a perturbed problem and this may well account for
the dramatically smaller number of iterations required to solve the problem.
EMSOL has no such perturbation strategy and this will be the subject of future
research. This technique has no effect on the computational requirements in
simplex iterations so, if an effective perturbation strategy were implemented in
EMSOL its performance on the PDS problems would reflect its clear superiority

20

Dimensions Solution time CPU (s)
Problem Rows Columns Nonzeros Sparse Hyper-sparse Speed-up
25FV47 821 1571 10400 15.74 11.65 1.4
BNL1 643 1175 5121 2.15 1.44 1.5
BNL2 2324 3489 13999 17.72 11.30 1.6
D2Q06C 2171 5167 32417 151.84 116.04 1.3
D6CUBE 415 6184 37704 195.90 154.34 1.3
DEGEN2 444 534 3978 1.11 0.89 1.2
DEGEN3 1503 1818 24646 26.50 15.39 1.7
DFL001 6071 12230 35632 7339.64 4243.50 1.7
GREENBEA 2392 5405 30877 89.64 43.47 2.1
GREENBEB 2392 5405 30877 76.60 37.35 2.1
GROW15 300 645 5620 1.80 1.91 0.9
GROW22 440 946 8252 5.78 5.19 1.1
MAROS-R7 3136 9408 144848 283.42 267.65 1.1
MODSZK1 687 1620 3168 3.79 2.92 1.3
NESM 662 2923 13288 8.05 5.48 1.5
PEROLD 625 1376 6018 7.06 6.73 1.0
PILOT 1441 3652 43167 254.89 270.51 0.9
PILOT.JA 940 1988 14698 18.14 16.10 1.1
PILOT.WE 722 2789 9126 13.01 10.12 1.3
PILOT4 410 1000 5141 2.37 2.48 1.0
PILOT87 2030 4883 73152 623.54 601.13 1.0
PILOTNOV 975 2172 13057 8.03 5.92 1.4
QAP8 912 1632 7296 56.21 56.66 1.0
SCSD8 397 2750 8584 4.06 2.27 1.8
STAIR 356 467 3856 1.48 0.81 1.8
TRUSS 1000 8806 27836 90.76 42.03 2.2
WOOD1P 244 2594 70215 5.15 7.36 0.7

Table 6: Solution time for EMSOL with sparse and hyper-sparse techniques
when applied to problems not exhibiting hyper-sparsity

over OSL in terms of iteration speed.
When a phase I version of the hyper-sparse CHUZC is implemented in

EMSOL it may be expected that, as has been seen for the PDS problems, there
will be a performance improvement for the remaining problems which exhibit
hyper-sparsity which corresponds to the proportion of CPU time attributable
to complete CHUZC given in Table 7.

3 Comparison with a network solver

A class of LP problems which are well known to maintain sparsity are those
with a near or complete network structure. It is, therefore, of interest to see how
the performance of a general revised simplex solver with techniques to exploit
hyper-sparsity compares with the network simplex method. In this section,
EMSOL and OSL are compared with NETFLO, the efficient implementation of
the network simplex method due to Kennington [9]). This is done using the
NETGEN test set [10] of network problems which are now very modest in size,

21

Speed-up of hyper-sparse EMSOL over CHUZC

Problem Sparse EMSOL OSL simplex OSL barrier CPU %
80BAU3B 2.7 1.9 1.3 53.8
CYCLE 3.8 12.1 5.1 17.7
CZPROB 1.9 1.2 2.2
FIT1P 1.5 2.8 21.9 8.9
FIT2P 2.3 1.3 28.0 24.1
GANGES 1.9 2.5 3.1 1.7
MAROS 1.8 4.7 2.0 21.1
SCFXM3 1.8 2.5 2.0 12.4
SCTAP3 2.8 4.7 5.1
SHELL 1.8 1.9 4.6
SHIP08L 3.3 1.9 3.0
SHIP12L 3.5 2.2 2.2 49.2
SHIP12S 2.6 2.8 3.9
SIERRA 2.7 2.2 5.4
STOCFOR2 1.8 4.5 2.1 6.8
STOCFOR3 2.9 7.2 0.5 13.2
WOODW 3.1 2.1 2.1 33.1
DCP1 3.2 12.2 2.6 12.9
DCP2 3.8 8.4 1.0 16.6
DETEQ8 5.0 11.2 2.5 63.8
DETEQ27 5.7 11.6 2.6 68.3
PDS-02 4.9 1.4 4.4 58.9
PDS-06 5.6 1.0 2.3 67.8
PDS-10 5.3 0.7 2.2 69.9
PDS-20 5.9 0.4 2.3 65.6

Table 7: Speed-up of EMSOL over OSL

and a larger problem generated by the authors using the NETGEN program.
Initial results when applying EMSOL to the NETGEN set using the

techniques for exploiting hyper-sparsity developed in Section 2 showed that the
PRICE operation dominated the solution time overwhelmingly. This suggested
that, as in NETFLO, it is preferable not to maintain a full set of reduced
costs and use a partial pricing strategy. This is a standard technique, used
particularly when solving LP problems with very many more columns than
rows. The technique, and the consequences of using it in the presence of hyper-
sparsity is outlined below.

3.1 Partial and multiple PRICE/CHUZC

Rather than incur the cost of maintaining the value of, and choosing from,
a full set of reduced costs, it may be preferable to work with a small subset
of the nonbasic variables in a given simplex iteration. There are two classical
approaches: (pure) partial PRICE where reduced costs are formed for a different
small set of variables each iteration, and multiple PRICE where reduced costs
for a small set of variables are updated until none is attractive.

Whilst a partial or multiple PRICE strategy greatly reduces the cost of the

22

OSL simplex OSL barrier
Problem Iteration count CPU time CPU time
PDS-02 3.8 2.3 7.5
PDS-06 7.2 1.6 3.7
PDS-10 8.0 1.7 5.3
PDS-20 10.8 0.8 5.3

Table 8: Increase in iteration count and solution speed of hyper-sparse EMSOL
over OSL for the PDS problems

PRICE operation, it can lead to a significant increase in the number of iterations
required to solve the problem. This is due to the fact that the ‘best’ candidate
to enter the basis is not normally chosen, either because its reduced cost has not
been computed, or because the possibilities for using even a simple edge-weight
based strategy such as Devex are severely restricted. However, for problems
where the tableau row is usually sparse, the reduced cost and Devex weight
for most attractive candidates are unchanged from one iteration to the next so
there may be no significant impact on the number of iterations required. For
problems with very many more columns than rows, a complete PRICE is so
expensive that a large increase in the number of iterations can be accepted.

In EMSOL, what is referred to below as partial PRICE is a combination of
multiple and pure partial PRICE. Reduced costs are updated for a small set of
variables, but those which enter the basis or become unattractive are replaced
each iteration. Periodically the current ‘pool’ is discarded and a full re-PRICE

is performed.

3.2 Updating ‘complete’ π

In order to calculate reduced costs directly it is necessary to have the ‘complete’
π vector

πT = cTBB
−1,

where cB is the vector of basic costs. This vector may be dense or even full,
particularly in phase I when there are many infeasibilities, or in phase II when
solving network problems for which there is a cost on each arc. In this case,
the complete π vector has no sparsity which may be exploited during BTRAN.
However, given π, the vector π′ required for the subsequent iteration is given
by

π′T = cT
B′B

′−1 = (cB + δpep)TB′
−1

= cT
B

(
I − 1

ηp
(η − ep)eTp

)
B−1 + δpe

T
pB
′−1

= cT
B
B−1 − 1

ηp
cT
B

(η − ep)eTpB−1 + δpe
T
pB
′−1

= πT + (δp − cTB(η − ep))eTpB′
−1

23

NETGN101–150 NETGN201
Minimum Average Maximum

NETFLO 1 1 1 1
EMSOL 2.9 6.1 14 2.4
OSL 13 30 79 24

Table 9: Solution time for EMSOL and OSL simplex relative to NETFLO

since ηpeTpB
′−1 = eTpB

−1. Thus the complete π vector may be updated using
the unit π vector eTpB

−1. Observing further that since ĉq = cq − cTBη,

δp − cTB(η − ep) = δp + cBp − cTBη
= cB′p + (ĉq − cq)

and it follows that even the inner product cTBη may be avoided.

3.3 Results

In comparing EMSOL and OSL against NETFLO, it is worth observing that
all use some form of partial pricing and, in phase I, add a multiple of the phase
II objective to the L1-penalty function which penalises infeasibilities. At the
expense of a larger number of phase I iterations, this reciprocal of the ‘big-M ’
method aims to find a first feasible vertex which is much closer to an optimal
solution than would be achieved if the L1-penalty function were minimized
regardless of the phase II objective. Note also that brief practical experience
showed OSL’s network solver to be very much less efficient than its revised
simplex solver! The standard NETGEN problems, numbered NETGN101–150,
have between 1000 and 10000 rows, and between 12500 and 75000 columns.
For the purposes of the results given below, these problems, which are small
by today’s standards, are supplemented by a larger problem generated by the
authors using the Netgen program. This problem, named NETGN201 has 25000
rows and 100000 columns.

As the results in Table 9 clearly show, for the smaller problems EMSOL
is faster than OSL by about the same factor that it is slower than NETFLO.
However, for NETGN201 the performance of EMSOL is somewhat closer to that
of NETFLO than OSL is to EMSOL.

Although it would be remarkable if the performance of EMSOL were similar
to that of a well-written network solver, it is worth considering why NETFLO
is faster than EMSOL. The main reason is that NETFLO exploits fully the fact
that the basis of a network problem corresponds to a spanning tree by combining
BTRAN with UPDATE, FTRAN with CHUZR, and INVERT is avoided since the
spanning tree triangularisation of the basis matrix is updated each iteration.
Finally, NETFLO solves problems with only integer-valued bounds and costs so
no floating-point operations are required, whereas EMSOL treats the positive
and negative unit entries in the constraint matrix as floating-point numbers.

Another factor which may explain the relatively good performance of
EMSOL on NETGN201 is the fact that for most of the small problems, the
data structures required by NETFLO sit entirely within the cache on the SUN
UltraSPARC 140 chip. NETFLO requires six arrays of size equal to the number

24

of nodes (rows) and five arrays of size equal to the number of arcs. For a
problem such as NETGN101 with 5000 nodes and 25000 arcs, this corresponds
to a memory requirement of 620 Kbytes: little more than the chip cache size
of 512 Kbytes. Since NETFLO performs partial pricing, it is likely that only
the data for the nonbasic variables not priced for many iterations would need
to be read from memory into cache. Contrast this with EMSOL which, with
its general revised simplex data structures, requires far more data per iteration
than could fit into the cache.

4 Conclusions and extensions

This paper has presented a number of techniques for exploiting hyper-sparsity in
the revised simplex method. These techniques have been shown to improve the
performance of the authors’ solver, EMSOL, to such an extent that, for problems
which exhibit hyper-sparsity, it is many times faster than a major commercial
solver. As important are the comparisons which show EMSOL to be several
times faster than a commercial barrier solver. Although this performance gain
may only be achieved for a subset of LP problems, the amenable problems in
this paper are large (albeit not particularly so) and or of genuine practical value.

As indicated in Section 2, the performance of EMSOL is likely to improve
further when hyper-sparse CHUZC is fully implemented. In addition if
techniques, such as perturbation, are implemented in EMSOL which reduce
the number of iterations required to solve a problem without compromising the
iteration speed, further performance gains may be achieved.

References

[1] J. Bisschop and A. J. Meeraus. Matrix augmentation and partitioning in
the updating of the basis inverse. Mathematical Programming, 13:241–254,
1977.

[2] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann.
An empirical evaluation of the KORBX algorithms for military airlift
applications. Operations Research, 38(2):240–248, 1990.

[3] G. B. Dantzig and W. Orchard-Hays. The product form for the inverse in
the simplex method. Math. Comp., 8:64–67, 1954.

[4] I. S. Duff. On algorithms for obtaining a maximum transversal. Technical
Report CSS 49, AERE, Harwell, 1978.

[5] J. J. H. Forrest and J. A. Tomlin. Updated triangular factors of the basis
to maintain sparsity in the product form simplex method. Mathematical
Programming, 2:263–278, 1972.

[6] D. M. Gay. Electronic mail distribution of linear programming test
problems. Mathematical Programming Society COAL Newsletter, 13:10–
12, 1985.

[7] P. M. J. Harris. Pivot selection methods of the Devex LP code.
Mathematical Programming, 5:1–28, 1973.

25

[8] IBM. Optimization Subroutine Library, guide and reference, release 2, 1993.

[9] L. J. Kennington and R. V. Helgason. Algorithms for Network
Programming, pages 244–256. John Wiley and Sons, New York, 1980.

[10] D. Klingman, A. Napier, and J. Stutz. NETGEN - a program for generating
large scle (un) capacitated assignment, transportation, and minimum cost
network flow problems. Management Science, 20:814–822, 1974.

[11] I. Maros and G. Mitra. Finding better starting bases for the simplex
method. In P. Kleinschmidt, et al., editor, Operations Research Proceedings
1995, pages 7–12. Springer Verlag, 1996.

[12] C. E. Pfefferkorn and J. A. Tomlin. Design of a linear programming system
for the ILLIAC IV. Technical Report SOL 76-8, Systems Optimization
Laboratory, Stanford University, 1976.

[13] R. Tarjan. Depth first search and linear graph algorithms.
SIAM J. Comput., 1:146–160, 1972.

26

