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Update procedures for the parallelrevised simplex methodJ. A. J. Hall K. I. M. McKinnon30th September 1992AbstractIn the parallel revised simplex method proposed by Hall et al. in [8],the inversion of basis matrices is perfomed in parallel with the simplexiterations. As a result the update procedure must accommodate the set ofbasis changes which have occurred since commencing the inversion. Thispaper shows that update procedures which modify the factors of the matrixwhich is inverted are inappropriate for the parallel revised simplex methodand that either the product form or an update based on the use of aSchur complement should be used. The essential di�erence between theseapproaches is highlighted and the implementation of the product formwithin the parallel revised simplex method is shown to be straightforward.Two approaches to the problem of using an update based on a Schurcomplement in the parallel revised simplex method are described.1 IntroductionThe simplex method remains the most 
exible approach to the solution of linearprogramming (LP) problems despite the application of interior point methodsintroduced by Karmarkar in 1984. The standard simplex method has beenimplemented in parallel but the comparisons of the performance with a goodserial implementation of the revised simplex method have not been published.It is expected that an e�cient serial code for the revised simplex method willhave superior performance for large sparse LP problems on all practical parallelmachines. For these problems, parallel methods based on the revised simplexmethod with a factored inverse are proposed by Hall et al. in [8].A LP problem has the formmaximize f = cTxsubject to l � x � u (1)Ax = bwhere x 2 IRn and b 2 IRm:1



BTRAN Form �Tk = cTkB�1k .FTRAN Form sk = B�1k vk.UPDATE Update the representation of B�1k usingBk+1 = Bk + (vk �Bkepk)eTpk.Table 1: Operations involving B�1kAt any stage in the simplexmethod, the indices of the variables are partitionedinto two sets. The basic variables xB satisfy lB � xB � uB and each of thenonbasic variables xN is at its upper or lower bound. If the problem is partitionedaccordingly then the objective function is f = cTBxB + cTNxN and the constraintsare ABxB + ANxN = b, where the basis matrix AB is nonsingular. This allows anew set of basic variables to be determined such that the objective function isincreased. This process requires the vector ĉTN = cTN � cTBA�1B AN and a particularcolumn from the matrix ÂN = A�1B AN .The standard simplex method provides the necessary information bymaintaining the vector ĉN and the matrix ÂN explicitly and updates themwith a procedure which parallelises easily. Unfortunately the matrix ÂN isunlikely to retain any sparsity in the matrix A in (1). The revised simplexmethod obtains the necessary information by solving linear systems involvingAB and forming a matrix-vector product with the matrix AN. This requires arepresentation of A�1B which can be updated e�ciently. If this representation andthe corresponding solution procedure exploits sparsity e�ciently then for largeproblems, the performance of a serial code based on the revised simplex method islikely to be superior to that of a parallelization of the standard simplex method.It is convenient to identify iterations in the revised simplex method by theindex k. When this is done, the vector cB in iteration k is referred to as ck and thebasis matrix is referred to as Bk. The column chosen to enter the basis is denotedby vk and this replaces column pk of Bk, that is the vector Bkepk. The operationsin each iteration of the revised simplex method which involve the representationof B�1k are given in Table 1.In the revised simplex method, the initial basis matrix is inverted andan update procedure is used which maintains a representation of B�1k . Therepresentation increases in size with the number of iterations and may becomeunstable if an ill-conditioned basis matrix is encountered. For both these reasonsit is necessary to reinvert some basis matrix Br. This operation is termedINVERT and, in order to exploit sparsity, a factored inverse is formed. Whenthis is complete it is typical for the index k to be reset to zero. Thus, in general,B0 refers to any basis matrix which is inverted.A fundamental di�erence between the parallel and serial revised simplexmethods is that the parallel version performs iterations whilst INVERT is2



proceeding. Thus it must be possible to perform FTRAN and BTRAN whilstthe new factored inverse is unavailable. It is also important to be able toupdate the new representation to incorporate the basis changes occurring duringINVERT with minimal delay.In serial implementations of the revised simplex method the frequency ofINVERT is limited since it requires the sequence of iterations to be halted whilstit is performed. Indeed, when numerical considerations allow, it is only the growthin the data required to represent B�1k which makes the investment in reinversionworthwhile. However, in the parallel revised simplex method it would be possibleto perform INVERTs continually, that is to start inverting the current basismatrix immediately after the previous INVERT was completed.Update procedures determine a representation of B�1k which may be classi�edaccording to whether the original factored inverse of B0 is retained or modi�ed.It will be seen that this distinction is particularly important when considering aparallel implementation. Most representations of B�1k build up a set of eta vectorswhose density is problem-dependent. These vectors are generally of dimensionm,with one produced for each update. There are four main approaches to updatingwhich are used to implement the revised simplex method on serial machines.These are outlined in Section 2 where the two which are generally used in serialimplementations are shown to be inappropriate for the parallel revised simplexmethod. Update procedures based on the other two approaches are developed inSection 3.The parallel revised simplexmethod of Hall et al. [8] performs minor iterationsin which the standard simplex method is applied to a subproblem of (1) formedfrom a small set of columns vk1; : : : ; vkt of the matrix AN . The corresponding setof columns sk1; : : : ; skt from ÂN are obtained by a multiple FTRAN of the formskj = B�1k vkj; j = 1; : : : ; t which can be distributed so that it takes the same timeas a single FTRAN. Although the minor iterations do not require operationswith B�1k , it is needed to return to the revised simplex method. Thus it mustbe possible to incorporate the basis changes occuring during minor iterationswithout signi�cant delay. The implications for the update procedures introducedin Section 3 are discussed in Section 4. A summary of conclusions is given inSection 5.2 Update proceduresThis section outlines the four main approaches to updating a representation ofB�1k which are used in serial implementations of the revised simplex method.The two approaches which modify the factored inverse of B0 are shown to beinappropriate for the parallel revised simplex method.3



2.1 The Bartels-Golub and Forrest-Tomlin updatesThe Bartels-Golub (BG) update [2] modi�es the upper triangular factor of B0and produces a large set of short eta vectors. The Forrest-Tomlin (FT) update [6]is closely related to the BG update but the modi�cations of the upper triangularfactor are restricted to a single row. One eta vector is produced for each updateand although it may be short, its dimension is generally of order m.The BG and FT updates are inappropriate for use within the parallel revisedsimplex method since they modify the upper triangular factor of B0 and thecorresponding factor for Br is unavailable until INVERT is complete. Thusthe updates corresponding to the basis changes which occurred during INVERTwould have to be performed after it was completed. These updates can only beperformed sequentially and if this were done before carrying out further iterationsit would result in a bottleneck which severely restricts the performance of theparallel revised simplex method. This situation could be eased by continuingto use the inverse corresponding to B0 and performing the updates on thenew inverse in parallel with simplex iterations. However, the speed with whichiterations are preformed may be such that it is not possible to catch up in thisway.It is envisaged by Hall et al. in [8] that an e�cient parallel implementation ofthe revised simplex method requires parallelism to be exploited when performingFTRAN and BTRAN. This issue is addressed by McKinnon and Plab in [9] andrequires an investment during INVERT which will only pay o� if the inverse isapplied many times. If the factors are modi�ed then the return on this investmentis lost. Thus any update procedure which requires the modi�cation of the originalis inappropriate for the parallel revised simplex method.2.2 The product form updateThe product form (PF) update which is due to Dantzig and Orchard-Hays [4]maintains the factored inverse of B0 and a set of eta vectors. These are the samein number as the FT update but each is of dimension m.The product form update stems from the observation that each basis matrixis obtained from the previous one by the rank one update.Bj+1 = Bj + (vj �Bjepj)eTpj ; j = 0; : : : ; k � 1= Bj(I + (sj � epj)eTpj) where Bjsj = vj= BjSj: (2)Hence Bk = B0S0 : : : Sk�1 (3)so B�1k = S�1k�1 : : : S�10 B�10 : (4)Since sj is required by the revised simplex method in iteration j, it is availableat no additional cost. The matrix Sj is the identity matrix with column pj4



replaced by the vector sj = hs1pj ; : : : ; spjpj ; : : : ; snpjiTso it is easy to show that S�1j is of the same form, where column pj consists ofthe eta vector �j = "�s1pjspjpj ; : : : ; 1spjpj ; : : : ; �snpjspjpj #T :Thus the PF representation of B�1k consists of the factored inverse of B0 and thevectors �j; j = 0; : : : ; k � 1.The numerical properties of the PF representation of B�1k depend on thecondition of basis matrices B0; : : : ; Bk�1. If any basis matrix Br is ill-conditionedthen there may be a large relative error in the vector sr and/or growth in the etavector �r. In this case, operations with B�1r (and hence operations with B�1k fork > r) are unstable. If serious growth occurs it is necessary to reinvert the basismatrix Br and if this were to occur too frequently it would seriously impair thee�ciency of the revised simplex method.2.3 The block LU updateUpdate procedures based on the use of a Schur complement were �rst proposedby Bisschop and Meeraus [3] for large scale LP problems. It is su�cient tomaintain the factored inverse of B0 and update a small square dense Schurcomplement. This gives a uniquely low storage requirement amongst updateprocedures. However, for reasons of e�ciency, one of two possible sets of etavectors akin to those of the PF update is generally retained. This yields either theblock LU (BLU) update described by Gill et al. [1], which has been implementedby Eldersveld and Saunders [5], or the alternative block LU (ABLU) updatedescribed by Hall in [7]. The latter is more appropriate to active set methods forLP so it is the BLU update which is considered in this paper.The update procedures which make use of a Schur complement relate thecurrent basis matrix Bk to the basis matrix B0 by a single update rather than bya sequence of rank one updates of the form (2). This multiple rank update is ofthe form Bk = B0 + (Vk �B0ITk )Ik: (5)Clearly Vk need not contain any column of B0 which has been removed andsubsequently returned to the basis. Thus (5) represents l � k net columninterchanges by which Bk may be obtained from B0. If l < k then it is saidthat cancellation of basis changes has occurred. Column pj of B0 is replaced bythe vector vj, for j = 0; : : : ; l� 1 soVk = [v0; : : : ; vl�1] and ITk = hep0; : : : ; epl�1i :5



In iteration k, cancellation happens if the column entering the basis left it sinceinversion, or if the column leaving the basis entered it since inversion. That isthe event vk = B0epj ; for some pj 2 fp0; : : : ; pl�1g (6)or Bkepk = vj; for some vj 2 fv0; : : : ; vl�1g: (7)If both of these events occur then l is reduced by one, if exactly one occurs then lis unchanged and otherwise l increases by one. Cancellation tends to occur whenthe simplex method is at a degenerate vertex and may be signi�cant within ashort sequence of basis changes.It follows from (5) that Bk may be represented asBk = B0(I + (Yk � ITk )Ik); (8)where the columns of Yk are the vectors yj = B�10 vj, for j = 0; : : : ; l � 1. Whilstthese vectors are akin to the eta vectors of the PF update in terms of number,length and density, a fundamental di�erence is that their numerical propertiesare determined by the condition of just B0. By inverting (8) and applying theSherman-Morrison-Woodbury formula,B�1k = (I + (Yk � ITk )Ik)�1B�10 = (I � (Yk � ITk )C�1k Ik)B�10 ; (9)where the Schur complement Ck = IkYk is well-de�ned if B0 is nonsingular.Clearly Ck is nonsingular if and only if Bk is nonsingular.There is no scope for cancellation within the PF representation of B�1k sincethis is formed by inverting the product (3) of B0 with k elementary matricesrather than (implicitly) inverting the matrix I + (Yk � ITk )Ik in (8) during eachiteration.An implementation of the revised simplex method using the BLU update isdescribed by Eldersveld and Saunders in [5]. They show that when it is usedto solve the netlib test set, with INVERT performed every 100 updates, theaverage number of eta vectors is only 25 to 40, with a mean of 34. This shouldbe compared with an average of 50 eta vectors for the PF update, if stabilityrequirements allow 100 updates. Thus the reduction in operations with etavectors due to cancellation when the BLU update is used is signi�cant. Forlarge problems this is expected to more than make up for the additional workrequired to operate with the inverse of the Schur complement.2.4 FTRAN and BTRAN for the PF and BLU updatesWhen using the PF update, the FTRAN operation in Table 1.1 is performed byoperating on vk with B�1k given by (4). For the PF update, the event analogousto (6) is vk = Bjepj ; for some j 2 f0; : : : ; k � 1g: (10)6



If this occurs then FTRAN reduces tosk = S�1k�1 : : : S�1j epj : (11)It is clear from (4) that BTRAN is given by�Tk = cTk S�1k�1 : : : S�10 B�10 : (12)For the BLU update, FTRAN is performed by operating on vk with B�1kgiven by (9). If event (6) occurs then FTRAN reduces tosk = (I � (Yk + ITk )C�1k Ik)epj:Otherwise the �rst operation in FTRAN forms yk = B�10 vk and it is observedthat this is the eta vector which is required by the BLU update. It follows from (9)that BTRAN is given by�Tk = cTk (I � (Yk � ITk )C�1k Ik)B�10 : (13)It is convenient to express ck = d0 + ITk dk, in which case (13) reduces to�Tk = (dT0 + [dT0 (Yk � ITk ) + dTk ]C�1k Ik)B�10 (14)In phase II of the simplex method it is possible to write ck = c0+ ITk dk, wherec0 is the vector cB corresponding to basis matrix B0 and the components of dkupdate c0 according to the basis changes. In this case the components of Y Tk d0in (14) only require updating when event (6) occurred in the previous iteration,requiring at most a single scalar product. It is clear from (12) that this saving isnot available when using the PF update.It is important to observe that the operation with the set of eta vectors Ykfor the BLU update is merely a matrix-vector product. Thus it is easy to exploitparallelism by distributing the columns of Yk amongst a set of processors. Thisnatural parallelism is not available when using the PF update. Depending onthe sparsity of the eta vectors, it is shown by McKinnon and Plab [9] that it ispossible to exploit parallelism to a lesser extent when performing operations withthe eta vectors of the PF update.3 Parallel update proceduresIn this section update procedures for the parallel revised simplex method basedon the use of the product form or a Schur complement are developed. Numericalconsiderations dictate that there is only one practical procedure based on thePF update and it is shown that its implementation within the parallel revisedsimplex method is straightforward. A continuum of procedures which make use ofa Schur complement are developed which has the parallel product form approachas one extreme and a parallelisation of the serial BLU update at the other.7



Basis matrices B0 B1 : : : Br Br+1 : : : BkBefore completing INVERT B0 S0 : : : Sr�1 Sr : : : Sk�1After completing INVERT Br Sr : : : Sk�1Table 2: Representation of Bk using the product form3.1 Parallel product form updatesIf the serial PF update is continued whilst INVERT is proceeding then, it followsimmediately from (3) that once it is complete, Bk may be expressed asBk = BrSr : : : Sk�1 (15)so B�1k = S�1k�1 : : : S�1r B�1r : (16)Thus no numerical operations are required to obtain the PF representationonce INVERT is complete. Unfortunately the eta vectors required to performoperations with B�1k depend upon the condition of all the previous basis matricessince inverting B0 and, inductively, upon the condition of all the basis matricessince commencing the revised simplex method. Thus the e�ect of growth inany eta vector a�ects the stability of all subsequent iterations. The numericalconsequences of this may be unacceptable.The following procedure addresses this problem and is termed the parallelproduct form (PPF) update. Once INVERT is complete, rather than continuewith the existing eta vectors, they are recalculated using the inverse of Br. Thisrequires another multipleFTRAN whose cost is not prohibitive when performedin parallel. Whilst the new eta vectors are identical to the old using exactarithmetic, the dependence on the condition of the basis matrices preceedingBr is lost. Unfortunately, serious growth in some eta vector �R, R � r, requiresthe inversion of BR+1, before there has been any opportunity to use the inverseof Br! It is easy to see that this situation could lead to most advantages ofparallelism being lost.3.2 Parallel block LU updatesWhen INVERT is complete for Br, the expressionBk = Br(I + (YK � ITK)IK); (17)where YK = B�1r VK and IK correspond to the (net) basis changes occurringduring INVERT, may be inverted to giveB�1k = (I � (YK � ITK)C�1K IK)B�1r : (18)Thus the aim of the BLU update is to perform FTRAN assk = (I � (YK � ITK)C�1K IK)B�1r vk: (19)8



An update procedure must allow operations with B�1k to be performed beforeINVERT is complete and allow the representation corresponding to (19) to beobtained without a signi�cant overhead once INVERT is complete.The �rst approach, termed the PBLU-1 update merely continues the serialBLU update whilst INVERT is proceeding. However, in order to use (19) whenINVERT is complete, it is necessary to form YK = B�1r VK , then form andinvert CK = IKYK . This requires a multiple FTRAN which, when performedin parallel, takes the same time as a single FTRAN. Forming CK requires theappropriate components to be extracted from the columns of YK. The cost ofinverting CK depends upon the number of iterations of the simplex method whichhave ocurred since commencing INVERT. This may be large, particularly ifminor iterations have been performed, in which case parallel dense Gaussianelimination may be necessary.The second approach avoids the multipleFTRAN by forming a second Schurcomplement so is termed the PBLU-2 update. Putting k = r in (9) and usingthe expression to substitute for B�1r in (18) givesB�1k = (I � (YK � ITK)C�1K IK)(I � (Yr � ITr )C�1r Ir)B�10 : (20)Hence, whilst INVERT is proceeding, FTRAN may be performed as theoperation sk = (I � (YK � ITK)C�1K IK)(I � (Yr � ITr )C�1r Ir)B�10 vk: (21)The eta vector required to update YK and CK in (20) is the vector yk = B�1r vkwhich is formed naturally as an intermediate stage in (21). Clearly YK and CKin (19) are available when INVERT is complete so the multiple FTRAN andSchur complement inversion of the PBLU-1 update may be avoided.The PBLU-1 and PBLU-2 updates have an important di�erence in termsof numerical stability. For the PBLU-1 update, since the matrix YK is formedusing the inverse of Br, the eta vectors (and hence the Schur complement CK)are independent of the condition of B0. However the eta vectors which formYK for the PBLU-2 update are obtained from (21) and, as such, depend uponthe condition of B0 and, inductively, upon the condition of all basis matriceswhich have been inverted. This dictates that YK should be reformed, requiring amultiple FTRAN, and CK formed and inverted.Whilst the PBLU-1 update requires a multiple FTRAN, it works with thefull set of basis changes since completing the inversion of B0. The PBLU-2 updateuses two sets of basis changes which form a partition of the full set. It is clearfrom (20) that it is only possible to take advantage of cancellation within thesesets. Hence, if Yk, Yr and YK contain lk, lr and lK eta vectors respectively, thenlk � lr + lK. The compensation for the PBLU-2 update requiring the retentionof more eta vectors is the requirement for operations with the inverse of twosmaller Schur complements rather than one larger Schur complement. The total9



Basis matrices B0 B1 : : : Br Br+1 : : : BkBefore completing INVERT (PBLU-1) B0 Yk CkBefore completing INVERT (PBLU-2) B0 Yr Cr YK CKAfter completing INVERT Br YK CKTable 3: Representation of Bk using the block LU updatework required by the former is l2r + l2K operations whereas the latter requires l2koperations and it is likely that l2r + l2K < l2k.By working with two sets of eta vectors, the possibility for exploitingparallelism by distributing the corresponding operations may be reducedsigni�cantly when using the PBLU-2 update. This is due to the fact that therewill only be a few eta vectors in YK soon after commencing INVERT. With thePBLU-1 update there are always at least lr scalar products to be distributed.The representation of Bk using the PBLU-1 and PBLU-2 updates issummarised in Table 3.An extension of the PBLU-2 update is the PBLU-4 update which uses fourSchur complements of still smaller dimension corresponding to partitions of thesets of basis changes occuring during iterations 0; : : : ; r�1 and during INVERTinto two subsets. Whilst this may reduce the cost of performing the update andusing the invertible representation, it depends on the condition of twice as manybasis matrices as the PBLU-2 update. The number of Schur complements inthe representation of B�1k may be increased to a maximum of k, each of unitdimension. If this is done then the representation of B�1k reduces to that ofthe product form. Thus a continuum of update procedures from the single Schurcomplement PBLU-1 update to the product form PPF update may be considered.Experience reported by Eldersveld and Saunders [5] suggests that the serialBLU update is more e�cient than the PF update due to the reduction inthe number of operations with eta vectors. This is likely to be magni�ed inthe parallel implementation since a product involving BLU eta vectors may bedistributed. Although a continuum of methods is available, the gain in e�ciencyby distributing the operations with a single set of eta vectors Yk may be suchthat the PBLU-1 update is preferable. This will be determined by practicalexperience.4 Accommodating the basis changes duringminor iterationsWhen performing minor iterations of the standard simplex method on a subsetof the columns of the LP problem the representation of B�1k is not required.However, in order to return to the revised simplex method, the representation of10



B�1k should either be updated during the minor iterations or the basis changesshould be retained and the corresponding updates performed after completingthe minor iterations. In this section the resulting implications for the updateprocedures introduced in Section 3 are discussed.The columns of the matrix ÂN in the minor iterations are the vectors skj =B�1k vkj; j = 1; : : : ; t corresponding to the current basis matrix Bk. As such theeta vector required to perform the product form update is available naturally sothe minor iterations pose no problems when using the PPF update.The eta vectors required by the PBLU updates are the vectors yk = B�10 vkwhich are not readily available during the minor iterations. To accumulate thesevectors during the minor iterations requires a single operation with the inverseof B0 during each minor iteration which would inhibit performance signi�cantly.It is therefore clear that the basis changes occurring during minor iterationsshould be accumulated and the corresponding eta vectors calculated as a multipleFTRAN when the minor iterations are complete. It is possible that INVERTis completed during the multiple FTRAN, in which case a second multipleFTRAN corresponding to the new factored inverse would be necessary. Althoughthis occurrence would be unfortunate, it is not expected to occur su�ciently oftento reduce performance signi�cantly.5 ConclusionsThe possibilities for the implementation of the full range of serial updateprocedures within the parallel revised simplex method has been discussed andthe following conclusions can be made. Update procedures which modify thefactored inverse are inappropriate since the updates corresponding to basischanges which have occurred during INVERT must be applied sequentiallybefore the representation of the current basis matrix may be used. The inherentnumerical problems of the PF update are magni�ed when implemented in thesimplest and most e�cient manner so an alternative procedure is suggested whichalleviates this problem somewhat. Even with this approach, there is no guaranteethat instability cannot lead to the PF representation being be prohibitivelyine�cient. A continuum of methods based on the use of a Schur complement hasbeen constructed which ranges from the stable PBLU-1 update to the unstablePPF update. The gain in e�ciency when the operations with the set of etavectors corresponding to the PBLU-1 update are distributed may be such thatthe only competition is the PBLU-2 update without a multiple FTRAN whichis inferior numerically. Practical experience will allow further conclusions to bedrawn. 11
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