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The simplex method remains the most flexible approach to the solution of linear
programming (L.P) problems despite the application of interior point methods
The standard simplex method has been
implemented in parallel but the comparisons of the performance with a good
serial implementation of the revised simplex method have not been published.

introduced by Karmarkar in 1984.

It is expected that an efficient serial code for the revised simplex method will
have superior performance for large sparse LP problems on all practical parallel
machines. For these problems, parallel methods based on the revised simplex
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Abstract

In the parallel revised simplex method proposed by Hall et al. in [8],
the inversion of basis matrices is perfomed in parallel with the simplex
iterations. As a result the update procedure must accommodate the set of
basis changes which have occurred since commencing the inversion. This
paper shows that update procedures which modify the factors of the matrix
which is inverted are inappropriate for the parallel revised simplex method
and that either the product form or an update based on the use of a
Schur complement should be used. The essential difference between these
approaches is highlighted and the implementation of the product form
within the parallel revised simplex method is shown to be straightforward.
Two approaches to the problem of using an update based on a Schur
complement in the parallel revised simplex method are described.

Introduction

method with a factored inverse are proposed by Hall et al. in [8].

A LP problem has the form

maximize  f = '
subject to [<z<u
Ar =0
where x € IR" and be IR™.



BTRAN | Form n] = ¢ B;".
FTRAN | Form s = B} 'vg.
UPDATE | Update the representation of Bj ' using
Bit1 = B + (vp — Bkepk)eT

PE”

Table 1: Operations involving B;"

At any stage in the simplex method, the indices of the variables are partitioned
into two sets. The basic variables x satisty I < x5 < up and each of the
nonbasic variables x is at its upper or lower bound. If the problem is partitioned
accordingly then the objective function is f = c:]g:sz + cixN and the constraints
are Agrz + Ayry = b, where the basis matriz Ap is nonsingular. This allows a
new set of basic variables to be determined such that the objective function is
increased. This process requires the vector éi = ci — ch;AN and a particular
column from the matrix AN = A;AN.

The standard simplex method provides the necessary information by
maintaining the vector ¢, and the matrix Ay explicitly and updates them
with a procedure which parallelises easily. Unfortunately the matrix Ay is
unlikely to retain any sparsity in the matrix A in (1). The revised simplex
method obtains the necessary information by solving linear systems involving
Ajg and forming a matrix-vector product with the matrix Ay. This requires a
representation of A" which can be updated efficiently. If this representation and
the corresponding solution procedure exploits sparsity efficiently then for large
problems, the performance of a serial code based on the revised simplex method is
likely to be superior to that of a parallelization of the standard simplex method.

It is convenient to identify iterations in the revised simplex method by the
index k. When this is done, the vector ¢ in iteration k£ is referred to as ¢, and the
basis matrix is referred to as By. The column chosen to enter the basis is denoted
by vy, and this replaces column py, of By, that is the vector Bye,, . The operations
in each iteration of the revised simplex method which involve the representation
of B;' are given in Table 1.

In the revised simplex method, the initial basis matrix is inverted and
an update procedure is used which maintains a representation of B;'. The
representation increases in size with the number of iterations and may become
unstable if an ill-conditioned basis matrix is encountered. For both these reasons
it is necessary to reinvert some basis matrix B,. This operation is termed
INVERT and, in order to exploit sparsity, a factored inverse is formed. When
this is complete it is typical for the index k to be reset to zero. Thus, in general,
By refers to any basis matrix which is inverted.

A fundamental difference between the parallel and serial revised simplex
methods is that the parallel version performs iterations whilst INVERT is



proceeding. Thus it must be possible to perform FTRAN and BTRAN whilst
the new factored inverse is unavailable. It is also important to be able to
update the new representation to incorporate the basis changes occurring during
INVERT with minimal delay.

In serial implementations of the revised simplex method the frequency of
INVERT is limited since it requires the sequence of iterations to be halted whilst
it is performed. Indeed, when numerical considerations allow, it is only the growth
in the data required to represent B; ' which makes the investment in reinversion
worthwhile. However, in the parallel revised simplex method it would be possible
to perform INVERTS continually, that is to start inverting the current basis
matrix immediately after the previous INVERT was completed.

Update procedures determine a representation of B; ' which may be classified
according to whether the original factored inverse of By is retained or modified.
It will be seen that this distinction is particularly important when considering a
parallel implementation. Most representations of By ' build up a set of eta vectors
whose density is problem-dependent. These vectors are generally of dimension m,
with one produced for each update. There are four main approaches to updating
which are used to implement the revised simplex method on serial machines.
These are outlined in Section 2 where the two which are generally used in serial
implementations are shown to be inappropriate for the parallel revised simplex
method. Update procedures based on the other two approaches are developed in
Section 3.

The parallel revised simplex method of Hall et al. [8] performs minor iterations
in which the standard simplex method is applied to a subproblem of (1) formed

from a small set of columns vy, ..., vg of the matrix Ay. The corresponding set
of columns sgq,..., sy from Ay are obtained by a multiple FTRAN of the form
sx; = By 'vg,j = 1,...,¢ which can be distributed so that it takes the same time

as a single FTRAN. Although the minor iterations do not require operations
with B!, it is needed to return to the revised simplex method. Thus it must
be possible to incorporate the basis changes occuring during minor iterations
without significant delay. The implications for the update procedures introduced
in Section 3 are discussed in Section 4. A summary of conclusions is given in
Section 5.

2 Update procedures

This section outlines the four main approaches to updating a representation of
B! which are used in serial implementations of the revised simplex method.
The two approaches which modify the factored inverse of By are shown to be
inappropriate for the parallel revised simplex method.



2.1 The Bartels-Golub and Forrest-Tomlin updates

The Bartels-Golub (BG) update [2] modifies the upper triangular factor of By
and produces a large set of short eta vectors. The Forrest-Tomlin (FT) update [6]
is closely related to the BG update but the modifications of the upper triangular
factor are restricted to a single row. One eta vector is produced for each update
and although it may be short, its dimension is generally of order m.

The BG and FT updates are inappropriate for use within the parallel revised
simplex method since they modify the upper triangular factor of By and the
corresponding factor for B, is unavailable until INVERT is complete. Thus
the updates corresponding to the basis changes which occurred during INVERT
would have to be performed after it was completed. These updates can only be
performed sequentially and if this were done before carrying out further iterations
it would result in a bottleneck which severely restricts the performance of the
parallel revised simplex method. This situation could be eased by continuing
to use the inverse corresponding to By and performing the updates on the
new inverse in parallel with simplex iterations. However, the speed with which
iterations are preformed may be such that it is not possible to catch up in this
way.

It is envisaged by Hall et al. in [8] that an efficient parallel implementation of
the revised simplex method requires parallelism to be exploited when performing
FTRAN and BTRAN. This issue is addressed by McKinnon and Plab in [9] and
requires an investment during INVERT which will only pay off if the inverse is
applied many times. If the factors are modified then the return on this investment
is lost. Thus any update procedure which requires the modification of the original
is inappropriate for the parallel revised simplex method.

2.2 The product form update
The product form (PF) update which is due to Dantzig and Orchard-Hays [4]

maintains the factored inverse of By and a set of eta vectors. These are the same
in number as the F'T update but each is of dimension m.

The product form update stems from the observation that each basis matrix
is obtained from the previous one by the rank one update.

Biyi = Bj+(vj— Bjey))e,

Py

P=0,. k-1
= B](] —I_ (S] - epj)e;;) Where B]S] = Uj

= B;S,;. (2)
Hence B, = BySy...S5_1 (3)
so By = St ... By (4)

Since s; is required by the revised simplex method in iteration j, it is available
at no additional cost. The matrix S; is the identity matrix with column p;
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replaced by the vector

T
§; = [Slpja---aspjpjv---vsnpj]

so it is easy to show that Sj_l is of the same form, where column p; consists of

T
| sy, 1 —Snp;
n; = e N el

2
Sp]p] Sp]p] Sp]p]

the eta vector

Thus the PF representation of B; ' consists of the factored inverse of By and the
vectors n;,7 =0,...,k— 1.

The numerical properties of the PF representation of B;' depend on the
condition of basis matrices By, ..., Bi_1. If any basis matrix B, is ill-conditioned
then there may be a large relative error in the vector s, and/or growth in the eta
vector 5,. In this case, operations with B (and hence operations with B; ' for
k > r) are unstable. If serious growth occurs it is necessary to reinvert the basis
matrix B, and if this were to occur too frequently it would seriously impair the
efficiency of the revised simplex method.

2.3 The block LU update

Update procedures based on the use of a Schur complement were first proposed
by Bisschop and Meeraus [3] for large scale LP problems. It is sufficient to
maintain the factored inverse of By and update a small square dense Schur
complement. This gives a uniquely low storage requirement amongst update
procedures. However, for reasons of efficiency, one of two possible sets of eta
vectors akin to those of the PF update is generally retained. This yields either the
block LU (BLU) update described by Gill et al. [1], which has been implemented
by Eldersveld and Saunders [5], or the alternative block LU (ABLU) update
described by Hall in [7]. The latter is more appropriate to active set methods for
LP so it is the BLU update which is considered in this paper.

The update procedures which make use of a Schur complement relate the
current basis matrix By, to the basis matrix By by a single update rather than by
a sequence of rank one updates of the form (2). This multiple rank update is of
the form

By = By + (Vi — BoI} )1, (5)

Clearly Vi need not contain any column of By which has been removed and
subsequently returned to the basis. Thus (5) represents [ < k net column
interchanges by which By may be obtained from By. If [ < k then it is said
that cancellation of basis changes has occurred. Column p; of By is replaced by
the vector v;, for y =0,...,[—1 so

T
Vi = [vo, ... vm1]  and I = |epy, oy ep,| -



In iteration k, cancellation happens if the column entering the basis left it since
inversion, or if the column leaving the basis entered it since inversion. That is
the event

vp = Boey,, for some p; € {po,...,pi—1} (6)

or  Bye,, = vy, for some v; € {vo,...,v_1}. (7)

If both of these events occur then [ is reduced by one, if exactly one occurs then [
is unchanged and otherwise [ increases by one. Cancellation tends to occur when
the simplex method is at a degenerate vertex and may be significant within a
short sequence of basis changes.

It follows from (5) that By may be represented as

By = Bo(I + (Yi — I} ) 1), (8)

where the columns of Y}, are the vectors y; = By 'v;, for j =0,...,1 — 1. Whilst
these vectors are akin to the eta vectors of the PF update in terms of number,
length and density, a fundamental difference is that their numerical properties
are determined by the condition of just By. By inverting (8) and applying the
Sherman-Morrison-Woodbury formula,

Bl = (14 (Yi— ) )7 By = (1= (Yi = L) Oy 1) By (9)

where the Schur complement C) = 1.Y; is well-defined if By is nonsingular.
Clearly (' is nonsingular if and only if By is nonsingular.

There is no scope for cancellation within the PF representation of By ' since
this is formed by inverting the product (3) of By with k elementary matrices
rather than (implicitly) inverting the matrix I + (Y — I )I; in (8) during each
iteration.

An implementation of the revised simplex method using the BLU update is
described by Eldersveld and Saunders in [5]. They show that when it is used
to solve the netlib test set, with INVERT performed every 100 updates, the
average number of eta vectors is only 25 to 40, with a mean of 34. This should
be compared with an average of 50 eta vectors for the PF update, if stability
requirements allow 100 updates. Thus the reduction in operations with eta
vectors due to cancellation when the BLU update is used is significant. For
large problems this is expected to more than make up for the additional work
required to operate with the inverse of the Schur complement.

2.4 FTRAN and BTRAN for the PF and BLU updates

When using the PF update, the FTRAN operation in Table 1.1 is performed by
operating on vy with By ' given by (4). For the PF update, the event analogous
to (6) is

vp = Bje,;, for some j € {0,...,k—1}. (10)
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If this occurs then FTRAN reduces to
Sk:S;_ll_”S,_lepJ_ (11)

J

It is clear from (4) that BTRAN is given by
o= S ST B (12)

For the BLU update, FTRAN is performed by operating on v;, with B}’
given by (9). If event (6) occurs then FTRAN reduces to

sk = (1= (Ve + )7 ey,

Otherwise the first operation in FTRAN forms y;, = Bj v and it is observed
that this is the eta vector which is required by the BLU update. It follows from (9)
that BTRAN is given by

o= el — (Y= [)CT ) By (13)
It is convenient to express ¢, = dy + ]gdk, in which case (13) reduces to
= (dy + [do (Ye = I{) + {107 1) By (14)

In phase II of the simplex method it is possible to write ¢ = ¢g + ]gdk, where
¢o 1s the vector ¢ corresponding to basis matrix By and the components of dj
update ¢ according to the basis changes. In this case the components of Y dg
in (14) only require updating when event (6) occurred in the previous iteration,
requiring at most a single scalar product. It is clear from (12) that this saving is
not available when using the PF update.

It is important to observe that the operation with the set of eta vectors Y}
for the BLU update is merely a matrix-vector product. Thus it is easy to exploit
parallelism by distributing the columns of Y} amongst a set of processors. This
natural parallelism is not available when using the PF update. Depending on
the sparsity of the eta vectors, it is shown by McKinnon and Plab [9] that it is
possible to exploit parallelism to a lesser extent when performing operations with
the eta vectors of the PF update.

3 Parallel update procedures

In this section update procedures for the parallel revised simplex method based
on the use of the product form or a Schur complement are developed. Numerical
considerations dictate that there is only one practical procedure based on the
PF update and it is shown that its implementation within the parallel revised
simplex method is straightforward. A continuum of procedures which make use of
a Schur complement are developed which has the parallel product form approach
as one extreme and a parallelisation of the serial BLU update at the other.



‘Basismatrices ‘Bo‘Bl‘...‘BT ‘BTH‘...‘Bk ‘
Before completing INVERT | By ‘ So ‘ S LS, oo | SEo
After completing INVERT B, S, oo | SEo

Table 2: Representation of By using the product form

3.1 Parallel product form updates

If the serial PF update is continued whilst INVERT is proceeding then, it follows
immediately from (3) that once it is complete, By may be expressed as

B, = B,S....5_ (15)
so By' = S ...87'B . (16)

Thus no numerical operations are required to obtain the PF representation
once INVERT is complete. Unfortunately the eta vectors required to perform
operations with B; ' depend upon the condition of all the previous basis matrices
since inverting By and, inductively, upon the condition of all the basis matrices
since commencing the revised simplex method. Thus the effect of growth in
any eta vector affects the stability of all subsequent iterations. The numerical
consequences of this may be unacceptable.

The following procedure addresses this problem and is termed the parallel
product form (PPF) update. Once INVERT is complete, rather than continue
with the existing eta vectors, they are recalculated using the inverse of B,. This
requires another multiple FTRAN whose cost is not prohibitive when performed
in parallel. Whilst the new eta vectors are identical to the old using exact
arithmetic, the dependence on the condition of the basis matrices preceeding
B, is lost. Unfortunately, serious growth in some eta vector ngr, B > r, requires
the inversion of Bryq, before there has been any opportunity to use the inverse
of B! It is easy to see that this situation could lead to most advantages of
parallelism being lost.

3.2 Parallel block LU updates
When INVERT is complete for B,, the expression

Br=B,(I + (Yx — JIT')]K)a (17)

where Yy = BT_IVK and [ correspond to the (net) basis changes occurring
during INVERT, may be inverted to give

Bt = (1= (Yie = L) O o) B (18)
Thus the aim of the BLU update is to perform FTRAN as
sp= (1 — (Y — I)Cx k) By oy (19)
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An update procedure must allow operations with By to be performed before
INVERT is complete and allow the representation corresponding to (19) to be
obtained without a significant overhead once INVERT is complete.

The first approach, termed the PBLU-1 update merely continues the serial
BLU update whilst INVERT is proceeding. However, in order to use (19) when
INVERT is complete, it is necessary to form Yy = B 'Vi, then form and
invert C'x = IxYx. This requires a multiple FTRAN which, when performed
in parallel, takes the same time as a single FTRAN. Forming C requires the
appropriate components to be extracted from the columns of Y. The cost of
inverting C'x depends upon the number of iterations of the simplex method which
have ocurred since commencing INVERT. This may be large, particularly if
minor iterations have been performed, in which case parallel dense Gaussian
elimination may be necessary.

The second approach avoids the multiple FTRAN by forming a second Schur
complement so is termed the PBLU-2 update. Putting £ = r in (9) and using
the expression to substitute for B " in (18) gives

Bt = (I = (Y = I)Cr L) (I = (Y, = 1) L) B (20)

Hence, whilst INVERT is proceeding, FTRAN may be performed as the

operation

sk = (I = (Yie = ) O T ) (I = (Y, = 1))C7 1) By Mo (21)

The eta vector required to update Yx and Cg in (20) is the vector y, = B, vy

which is formed naturally as an intermediate stage in (21). Clearly Yx and Ck
in (19) are available when INVERT is complete so the multiple FTRAN and
Schur complement inversion of the PBLU-1 update may be avoided.

The PBLU-1 and PBLU-2 updates have an important difference in terms
of numerical stability. For the PBLU-1 update, since the matrix Yz is formed
using the inverse of B,, the eta vectors (and hence the Schur complement Cf)
are independent of the condition of By. However the eta vectors which form
Yi for the PBLU-2 update are obtained from (21) and, as such, depend upon
the condition of By and, inductively, upon the condition of all basis matrices
which have been inverted. This dictates that Yx should be reformed, requiring a
multiple FTRAN, and Cx formed and inverted.

Whilst the PBLU-1 update requires a multiple FTRAN, it works with the
full set of basis changes since completing the inversion of By. The PBLU-2 update
uses two sets of basis changes which form a partition of the full set. It is clear
from (20) that it is only possible to take advantage of cancellation within these
sets. Hence, if Y}, Y, and Yx contain /i, [, and [k eta vectors respectively, then
I <1, 4+ lg. The compensation for the PBLU-2 update requiring the retention
of more eta vectors is the requirement for operations with the inverse of two
smaller Schur complements rather than one larger Schur complement. The total

9



‘Basismatrices ‘Bg ‘Bl ‘ ‘BT B, ‘ ‘Bk ‘
Before completing INVERT (PBLU-1) | By Y. O
Before completing INVERT (PBLU-2) | By Y, C, Yi Ck
After completing INVERT ‘ B, Y Ck

Table 3: Representation of By using the block LU update

work required by the former is [> + [3. operations whereas the latter requires [}
operations and it is likely that [* + I3 < [7.

By working with two sets of eta vectors, the possibility for exploiting
parallelism by distributing the corresponding operations may be reduced
significantly when using the PBLU-2 update. This is due to the fact that there
will only be a few eta vectors in Yx soon after commencing INVERT. With the
PBLU-1 update there are always at least [, scalar products to be distributed.

The representation of By using the PBLU-1 and PBLU-2 updates is
summarised in Table 3.

An extension of the PBLU-2 update is the PBLU-4 update which uses four
Schur complements of still smaller dimension corresponding to partitions of the
sets of basis changes occuring during iterations 0,...,r —1 and during INVERT
into two subsets. Whilst this may reduce the cost of performing the update and
using the invertible representation, it depends on the condition of twice as many
basis matrices as the PBLU-2 update. The number of Schur complements in
the representation of B;' may be increased to a maximum of k, each of unit
dimension. If this is done then the representation of Bj ' reduces to that of
the product form. Thus a continuum of update procedures from the single Schur
complement PBLU-1 update to the product form PPF update may be considered.

Experience reported by Eldersveld and Saunders [5] suggests that the serial
BLU update is more efficient than the PF update due to the reduction in
the number of operations with eta vectors. This is likely to be magnified in
the parallel implementation since a product involving BLU eta vectors may be
distributed. Although a continuum of methods is available, the gain in efficiency
by distributing the operations with a single set of eta vectors Y; may be such
that the PBLU-1 update is preferable. This will be determined by practical
experience.

4 Accommodating the basis changes during
minor iterations
When performing minor iterations of the standard simplex method on a subset

of the columns of the LP problem the representation of B;' is not required.
However, in order to return to the revised simplex method, the representation of
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B;! should either be updated during the minor iterations or the basis changes
should be retained and the corresponding updates performed after completing
the minor iterations. In this section the resulting implications for the update
procedures introduced in Section 3 are discussed.

The columns of the matrix AN in the minor iterations are the vectors si; =
Bi'vgi,j = 1,...,t corresponding to the current basis matrix By. As such the
eta vector required to perform the product form update is available naturally so
the minor iterations pose no problems when using the PPF update.

The eta vectors required by the PBLU updates are the vectors yx = By vy,
which are not readily available during the minor iterations. To accumulate these
vectors during the minor iterations requires a single operation with the inverse
of By during each minor iteration which would inhibit performance significantly.
It is therefore clear that the basis changes occurring during minor iterations
should be accumulated and the corresponding eta vectors calculated as a multiple
FTRAN when the minor iterations are complete. It is possible that INVERT
is completed during the multiple FTRAN, in which case a second multiple
FTRAN corresponding to the new factored inverse would be necessary. Although
this occurrence would be unfortunate, it is not expected to occur sufficiently often
to reduce performance significantly.

5 Conclusions

The possibilities for the implementation of the full range of serial update
procedures within the parallel revised simplex method has been discussed and
the following conclusions can be made. Update procedures which modify the
factored inverse are inappropriate since the updates corresponding to basis
changes which have occurred during INVERT must be applied sequentially
before the representation of the current basis matrix may be used. The inherent
numerical problems of the PF update are magnified when implemented in the
simplest and most efficient manner so an alternative procedure is suggested which
alleviates this problem somewhat. Even with this approach, there is no guarantee
that instability cannot lead to the PF representation being be prohibitively
inefficient. A continuum of methods based on the use of a Schur complement has
been constructed which ranges from the stable PBLU-1 update to the unstable
PPF update. The gain in efficiency when the operations with the set of eta
vectors corresponding to the PBLU-1 update are distributed may be such that
the only competition is the PBLU-2 update without a multiple FTRAN which
is inferior numerically. Practical experience will allow further conclusions to be
drawn.
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