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Abstract 

Feeding cattle with on-pasture supplementation or feedlot diets can increase animal 

efficiency and system profitability while minimizing environmental impacts. However, 

cattle system profit margins are relatively small and nutrient supply accounts for most 

of the costs. This paper introduces a nonlinear profit-maximizing diet formulation 

problem for beef cattle based on well-established predictive equations (NASEM, 

2016). Non-linearity in predictive equations for nutrient requirements poses 

methodological challenges in the application of optimization techniques. In contrast to 

other widely used diet formulation methods, we develop a mathematical model that 

guarantees an exact solution for maximum profit diet formulations. Our method can 
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efficiently solve an often-impractical nonlinear problem by solving a finite number of 

linear problems, i.e. linear time complexity is achieved through parametric linear 

programming. Results show the impacts of choosing different objective functions 

(minimizing cost, maximizing profit, maximizing profit per daily weight gain) may lead 

to different optimal solutions. In targeting improved ration formulation on feedlot 

systems, the paper demonstrates how profitability and nutritional constraints can be 

met as an important part of a sustainable intensification production strategy. 

 

Keywords: linear programming, nonlinear programming, ration formulation, 

optimization, feedlot. 

 

Implications  

This paper introduces a nonlinear profit-maximizing diet formulation problem for beef 

cattle based on established predictive equations (NASEM, 2016). We develop a 

mathematical model that can guarantee an exact solution for maximum profit diet 

formulations. This contrasts with widely used but less robust least-cost diet 

formulation approaches. Our method can efficiently solve an often-impractical 

nonlinear problem by solving a finite number of linear problems. By optimizing ration 

formulation on feedlot systems, this work contributes to the sustainable intensification 

of livestock production. 

 

Introduction 

Cattle system profit margins are relatively small compared to other land uses and 

nutrient supply is the largest production cost element; e.g. for feedlot finishing 

systems in Brazil, feed can represent as much as 88% of variable costs, disregarding 
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animal purchase (Sartorello et al., 2018). Feeding cattle with on-pasture 

supplementation or feedlot diets intensifies production by increasing animal efficiency 

and profitability, compared to extensive pasture-based systems (Kaimowitz and 

Angelsen, 2008). By shortening the animal production cycle and therefore reducing 

methane (CH4) from ruminant enteric fermentation, balanced diets may also 

decrease the greenhouse gas (GHG) emissions intensity per unit product. Increasing 

the adoption of these measures is therefore desirable from different sustainability 

perspectives.   

Ration formulation is a complex problem typically analyzed using mathematical 

optimization (Hertzler et al., 1988; Nicholson et al., 1994; Tedeschi et al., 2000; Soto 

and Reinoso, 2012; Garcia-Launay et al., 2018). 

Ration formulation requires empirical and mechanistic equations to predict growth 

and nutrient requirements as functions of animal characteristics and the diet 

composition(Tedeschi et al., 2005; NASEM - National Academies of Sciences, 

Engineering, and Medicine, 2016). The nonlinear and dynamic nature of biological 

responses and lack of data hinder the construction of completely mechanistic 

models. Thus, animal nutrition models rely on a statistical fit of available data, and a 

mix of mechanistic and empirical equations to predict physiological function 

(Tedeschi et al., 2005). This nonlinear characteristic of biological systems is a 

complicating factor in diet optimization models.  

The objective of this paper is to describe a framework to optimize maximum profit 

diets. We introduce and analyze a non-linear profit-maximizing diet model based on 

the latest version of the “Nutrient Requirements for Beef Cattle” by NASEM (2016). 

However, any cattle growth predictive model that can be parametrically linearized 

can be solved using this approach. We propose a new methodology to solve a 
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nonlinear profit-maximizing diet efficiently.  We further explore how performance may 

be improved between linear and logarithmic time complexity. This paper is structured 

in four sections. Firstly, the material and methods section provides background on 

diet formulation problems, describes the mathematical model for the nonlinear 

programming (NLP) problem of a profit-maximizing diet, and explores how to obtain 

an exact solution solving a finite amount of linear programming (LP) problems. The 

results section shows the solutions using the proposed algorithms, sensitivity 

analysis on key parameters, and convergence. We then discuss in more detail the 

implications of using the model, before a conclusion that summarizes our outcomes 

in terms of its applications and identifies future research. 

 

Material and methods 

Background to diet formulation problems 

Previous work with a nonlinear problem based on the nutrient requirements of beef 

cattle (NRC, 1984) explored the trade-offs between profit and cost when dealing with 

diet optimization problems (Hertzler et al., 1988). However, recent work on these 

equations (NASEM, 2016) hindered the viability of solving a nonlinear problem 

directly. Detailed descriptions of the evolution of nutrition models for cattle, sheep, 

and goats have been published recently (Tedeschi and Fox, 2018; Cannas et al., 

2019; Tedeschi, 2019). As discussed by Tedeschi (2019), a significant advancement 

in the development of the Cornell Net Carbohydrate and Protein System was 

achieved in the 1990s (Fox et al., 1992; Russell et al., 1992; Sniffen et al., 1992), 

allowing researchers to apply heuristic approaches with linear programming models 

for least-cost diets (Tedeschi et al., 2000; Soto and Reinoso, 2012). 
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Deriving a profit-maximizing beef cattle diet implies dealing with non-linear animal 

weight gain equations associated with the variable energetic concentration of a diet. 

However, many cattle ration formulation studies are based on linear cost-minimizing 

diets (Oishi et al., 2011, 2013; Moraes et al., 2012, 2015; Cortez-Arriola et al., 2016; 

Mackenzie et al., 2016; Garcia-Launay et al., 2018). Linear cost-minimizing diet 

models based on NASEM (2016) assume a fixed daily shrunk weight gain (SWG) 

rather than a variable to be determined. Since SWG depends on the concentration of 

net energy for maintenance (CNEm), and gain (CNEg) in the diet, the least cost 

modeling approach works under the assumption that these are fixed. Profit 

maximization varies with growth rate, animal sales price, diet composition, and feed 

costs. Unless we know optimal CNEm and CNEg beforehand, fixing these 

parameters hinders the possibility of finding profit-maximizing diets.  

 

Cattle growth model 

This work is based on the NASEM (2016) model to predict nutrient requirements and 

growth in beef cattle, which is frequently reviewed and updated to increase accuracy. 

The model includes the Cornell Net Carbohydrate and Protein System (Fox et al., 

1992; Russell et al., 1992; Sniffen et al., 1992; O’Connor et al., 1993) mechanistic 

equations, recommendations on possible fit adjustments and variable parameters for 

a broad range of biophysical conditions, including hormones, lactation, sex, breed, 

climate, heat loss, growing, finishing. Their predictive model for nutrient requirements 

is especially helpful to pinpoint possible shortfalls that hinder growth and metabolic 

efficiency. The process of defining a diet starts with empirical equations to predict 

approximate energy, protein and dry matter intake requirements. After determining 

the diet, nutrient utilization is refined using more sophisticated equations. 
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Based on animal weight, NASEM (2016) estimates the net energy (NEm [Mcal per 

day]) and metabolizable protein (MPm [g per day]) requirements for maintenance as 

a function of shrunk body weight (SBW), sex (SEX), breed (BE), lactation (L) and 

acclimatization factor (a2) as: 

  NEm =  SBW0.75(0.077 BE L (a2 + 0.05 (BCS − 1)SEX + 0.8)) (1) 

 MPm =  3.8 SBW0.75 (2) 

For a given NEm, the dry matter intake (DMI [kg per day]) required can be predicted 

by: 

 𝐷𝑀𝐼 =  𝑆𝐵𝑊 (1.2425 +  1.9218 𝑁𝐸𝑚 –  0.7259 𝑁𝐸𝑚2) (3) 

DMI required for growing/finishing cattle must also hold: 

 DMI =  NEm/CNEm +  NEg/CNEg (4) 

Where CNEm [Mcal/kg] is the concentration of net energy for maintenance; 

NEg[Mcal per day] is net energy available for gain and CNEg[Mcal/kg] is the 

concentration of net energy for gain (Anele et al., 2014). 

The daily shrunk weight gain (SWG[kg per day]) for the given diet is given by: 

 SWG =  13.91 NEg0.9116 SBW−0.6837 (5) 

 

Beef cattle profit-maximizing diet 

Given animal  attributes, e.g., shrunk body weight, breed, sex, and a set J of possible 

ingredients, we formulate a diet by defining its composition in terms of proportion of 

each ingredient xj ∈ [0; 1] and the respective cost cj [US$/kg], ∀ j ∈ J. In T days, total 

profit Z [US$] is defined as: 

 

Z =  T [s ∗ SWG– DMI ∑ cjxj

j∈J

] (6) 
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where s is the animal sale’s price in US$/kg of SBW. Note that SWG is a function of 

NEg, which can be written in terms of CNEm and CNEg by:  

 NEg =  CNEg (DMI –  NEm/CNEm) (7) 

 CNEm = ∑ cnemjxj

j∈J

 (8) 

 CNEg = ∑ cnegjxj

j∈J

 (9) 

thus, combining equations (8) and (9) with (7), we can rewrite profit as: 

𝑍 

=  T {13.91 ∗  s

∗  SBW−0.6837 [(∑ cnegjxj

j∈J

) (DMI –
NEm

∑ cnemjxjj∈J
)]

0.9116

–  DMI  ∑ cjxj

j∈J

}. 

(10) 

The objective function in Equation (10) must be constrained by nutritional 

requirements and feasibility constraints (∑j∈J xj = 1).  The key nutritional requirements 

are the metabolizable protein for maintenance (MPm) and gain (MPg). Protein for 

maintenance and gain [g per day] are straightforwardly obtained by: 

 MPm =  3.8 SBW0.75  (11) 

 MPg =  268 SWG –  29.4 NEg (12) 

but the metabolizable protein contribution of each feed j∈J (mpj) is a function of 

ruminal microbial growth, which depends on the total digestible nutrients (TDN) and 

fat composition (FAT), rumen-undegradable protein (RUP), crude protein (CP) and 

forage content. We adopted the equation developed by (Galyean and Tedeschi, 

2014) to estimate microbial growth without adjustment for dietary fat (Eq. (14)) rather 

than the previously adopted fixed coefficient of 13% of TDN. 
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 mpj  =  0.64 αj  +  RUPj CPj βj (13) 

where:  

 
αj = {

(42.73 + 0.087(TDNj)(xj)) 1000⁄

(53.33 + 0.096(TDNj − 2.55(FATj))(xj)) 1000⁄
FAT < 3.9%
FAT ≥ 3.9%

 

βj = {
0.8
0.6

Forage < 100%

Forage = 100%
 . 

(14) 

A further constraint determines the presence of non-detergent fiber in the diet to 

prevent acidosis on the animal. We can calculate physically effective non-detergent 

fiber (peNDF) [%DMI] requirement based on expected pH in the rumen (rearranging 

NASEM (2016)’s equation to predict pH based on peNDF content):  

 
peNDF = {

0.01 (pH − 5.46)/0.038
 26.3%

pH < 6.46

pH ≥ 6.46
 . (15) 

Thus, it is possible either to constraint peNDF content to be higher than 26.3% or to 

constrain it based on a limit pH desired below 6.46. 

Further constraints to guarantee rumen microorganism efficiency in fiber digestion 

include the fat content, which should be lower than 6% of DMI, and the presence of 

rumen-degradable protein (RDP) to sustain bacterial yield, that should be greater 

than 12.5% of DMI (NASEM, 2016). We assume supplementation of vitamins and 

minerals to the diet, thus we do not include constraints with requirements for those 

ingredients. 

Using the parameters defined on the Equations (10) to (15) and replacing (5) and (7) 

in (12), we can write the nonlinear programming (NLP) model of daily profit as: 

Max Z 

=  T ∗ 13.91 ∗  s

∗  SBW−0.6837 [(∑ cnegjxj

j∈J

) (DMI –
NEm

∑ cnemjxjj∈J
)]

0.9116

 

 (16) 
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–  T ∗ DMI . ∑ cjxj

j∈J

 

s.t. 

∑ mpjxj

j∈J

≥  DMI−1  {

 
 
 
 

 3.8 SBW0.75 

+3727.88 [(∑ cnegjxj

j∈J

) (DMI –
NEm

∑ cnemjxjj∈J
)]

0.9116

 SBW−0.6837 

–  29.4 [(∑ cnegjxj

j∈J

) (DMI –
NEm

∑ cnemjxjj∈J
)]

 
 
 
 

}  

 NEg

∑ cnegjxjj∈J
+

NEm

∑ cnemjxjj∈J
= 𝐷𝑀𝐼 

 ∑ peNDFjxj

j∈J

≥  peNDF 

 ∑ FATjxj

j∈J

 ≤  0.06 

 ∑ RDPj CPj xj

j∈J

 ≤  0.125  

 ∑ xj

j∈J

 =  1 

 xj  ∈  [0;  1] ∀𝑗 ∈ J 

 

It is important to note that the parameters of each feed j∈J: cnegj, cnemj, peNDFj, 

FATj, RDPj, and CPj, are available for over 200 feedstuff on NASEM (2016)’s feed 

library. Furthermore, the constraint for minimum and maximum values of specific 

ingredients on the diet can be easily added without changing the complexity of the 

model. Such constraints simply change the domain of xj from xj ∈ [0; 1] to xj ∈ [lbj; 

ubj], where lbj and ubj are the minimum and maximum concentration of the feed j. 

 

The parametric linear programming model for profit-maximizing diets 

The proposed model contains nonlinearities in the objective function and the first 

constraint. We can remove the complicating factor NEg0.9116 via a linear function. 



10 
 

NASEM (2016) uses the exponential term only for fine adjustments based on the R2 

value.  

We use the linear function f(NEg) = 13.91 SBW-0.6837 (0.86 NEg) as an alternative to 

NASEM (2016)’s SWG = 13.91 NEg0.9116 SBW-0.6837. This approximation presents, 

with the original equation, an R2=0.999 for NEg values between 0 and 8 Mcal per 

day, which is the practical viable range of NEg. 

In general, NLP models can not be solved exactly. Thus, we aim to find a point in the 

solution space that is guaranteed to be within a tolerance ε of the exact solution. 

Considering the suggested linear approximation we can solve the nonlinear 

programming model via parametric linear programming (Dantzig, 1998). The profit 

function Z in (16) is given by the nonlinear animal weight gain function Ω(CNEm, x) 

multiplied by the selling price s (US$/kg), with the diet costs C(CNEm, x) subtracted: 

 Z(CNEm, 𝐱) = s. Ω(CNEm, 𝐱) − C(CNEm, 𝐱) (17) 

where CNEm ∈ K = {[lb, ub], lb, ub ∈ ℝ0
+} is the net energy for maintenance available 

in the diet; lb and ub represent respectively the lower and upper bounds of CNEm; 

and x ∈ ℝ𝑛 is a vector variable representing the daily feed intake proportion of each 

diet ingredient. Profit Z is subject to a set of nonlinear nutritional constraints 

Φ(CNEm, x) and linear constraints F(CNEm, x). For a given animal and a fixed 

CNEm = ki, the nonlinear function Ω and constraints Φ become linear. Thus 

maximizing the NPL {Z(CNEm, x): Φ(CNEm, x), F(CNEm, x)} is equivalent to solving 

the LP{Z(ki, x): Φ(ki, x), F(ki, x)} for ki=CNEm. Thus, the optimal solution for Z(CNEm, 

x) is given by: 

 Z∗ = max{Zi
∗ | Zi

∗  =  max{s. Ω(ki, 𝐱) −  C(ki, 𝐱)|Φ(ki, 𝐱) = 0, F(ki, 𝐱)

= 0, 𝐱 ∈  (ℝ0
+)n}, ∀ ki ∈ K}. 

(18) 

For a fixed value of CNEmi, the model in (16) is equivalent to the linear problem: 
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Max 
Z =  ∑ xj

j∈J

(13.91 ∗ s ∗  SBW−0.68370.86 (DMI –
NEm

CNEmi
) 𝑐𝑛𝑒𝑔𝑗–  DMI. cj) 

 (19) 

s.t. 
∑(𝑚𝑝𝑗 − (𝐷𝑀𝐼 −

𝑁𝐸𝑚

𝐶𝑁𝐸𝑚𝑖
) (3205.97 𝑆𝑊𝐵−0.6837 − 29.4)𝑐𝑛𝑒𝑔𝑗  𝑥𝑗

𝑗

   

≥  𝐷𝑀𝐼−1 3.8 𝑆𝐵𝑊0.75 

 ∑ cnemjxj

j∈J

≤ 𝐶𝑁𝐸𝑚𝑖 + 𝛿 

∑ cnemjxj

j∈J

≥ 𝐶𝑁𝐸𝑚𝑖 − 𝛿 

 ∑ peNDFjxj

j∈J

≥  peNDF 

 ∑ FATjxj

j∈J

 ≤  0.06 

 ∑ RDPj CPj xj

j∈J

 ≤  0.125 

 ∑ xj

j∈J

 =  1 

 xj  ∈  [0;  1] ∀ j ∈ J, 𝛿 → 0 

Figure 1 shows a “brute force” algorithm for parametric linear programming. This 

approach solves (ub-lb)/ε linear programming models and compares the obtained 

solutions for each CNEmi. 

For the precision of ε=10-2, the proposed method will need to solve O(ε-1) LP models. 

The values lb and ub can be calculated by solving: NEg = CNEg (DMI – NEm/CNEm) 

≥ 0, thus CNEm ≥ NEm (SBW (1.2425 + 1.9218 NEm – 0.7259 NEm2))-1. 

The well-behaved characteristic of the problem suggests that we can obtain a faster 

solution with numerical optimization methods. We use the golden-section search 

method (GSS) (Press et al., 2007) which breaks the interval using the golden-ratio 
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proportion φ = (1-√5)/2. This method requires solving O(log ε-1) LPs, a considerable 

reduction in comparison with the brute force approach.  

We chose a precision of ε=10-2 since, in reality, it is unlikely that beef producers can 

achieve a higher precision when mixing feedstuff to prepare the ration. Furthermore, 

one can easily incorporate other predictive equations or constraints in the proposed 

model, provided they are linear within each feedstuff xj. In section “Discussion” we 

comment on the possibility of implementing predictive equations for CH4 emission 

suggested by NASEM (2016). 

The model developed in Python 3 (Marques) uses the HiGHS solver (Huangfu and 

Hall, 2018) to optimize LP models in the algorithm. All results from this work can be 

obtained by replicating the execution with the same input data. 

 

Bioeconomic Data 

We use bioeconomic data based on a representative feedlot finishing system in 

Brazil (ANUALPEC, 2017) consisting of Nellore steers with average body condition 

score (BCS) 5 and the initial shrunk body weight of 300 kg under a finishing time of 

60 days. Table 1 shows the used ingredients and costs (CEPEA, 2018). Nellore 

selling price s was assumed 1.44 [US$/kg] (CEPEA, 2018). We obtained the 

ingredient’s properties from the NASEM (2016) feed library, presented in 

Supplementary Table S1. 

 

Results  

Figure 2 shows the profit, diet cost and shrunk weight gain as a function of CNEm. It 

is clear from the results that the global optimum for the least-cost diet is not the same 

for maximum profit. We also notice that there are changes in the curve inflection 
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(∂f/∂CNEm) in similar positions for all three curves. Figure 3 shows diet profiles for 

different values of CNEm. The chosen values are the neighborhood where the subtle 

change in inflection occurs. We spot those occurrences by the dual values, i.e. 

indicators of activity of each constraint, and reduced costs, i.e., an indicator of 

minimal change in each variable coefficient to change optimal solution.  

Figure 2 also shows that for CNEm < 1.26 the diet cost varies greatly. This is 

because of the change in urea concentration in the diet as we see in Figure 3. Urea 

is used as a protein source and is one of the most expensive ingredients available. 

The limited allowance of energetic concentration pushes the use of urea as a protein 

source. As CNEm increases, cheaper feedstuff replaces increase contribution to 

protein requirements. 

Figure 2 shows that for 1.26 ≤ CNEm < 1.67 diet costs remain considerably steady. 

Thus, the increase in profit derives from an increase in shrunk weight gain up until 

the point diet costs start to increase again. From Figure 3 we notice that as CNEm 

increase in this range, the diet drifts the use of sugarcane silage to sorghum grain. 

This shift is a response to the increase in required protein to achieve higher SWG 

since sorghum grain has more than twice the amount of proteins of sugarcane silage. 

The change in the diet composition from CNEm = 1.66 to CNEm = 1.67 is 

imperceptible in Figure 2. However, there is a shift in the dual variable related to 

peNDF, indicating that this constraint is active (slack = 0) from this solution and 

beyond. This can be noticed in Figure 3 by the insertion of new ingredients previously 

unused, cottonseed whole. Analogously, the fat content becomes an active constraint 

for CNEm ≥ 1.76, from this point and beyond slack on the maximum fat content 

constraint is 0 and soybean meal high in CP is introduced in the diet. 
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For CNEm ≥ 1.94, dual values are 0 for metabolized protein constraint and for ∑j∈J 

cnemj xj ≤ CNEmi + δ, so at this point, protein requirements are easily met but the 

increase in shrunk weight gain per CNEm does not compensate anymore and the 

daily profit significantly decreases beyond this point. 

The optimal diet has CNEm = 1.92 Mcal/kg and DMI of 6.78 kg per day containing 

21.35% of cottonseed whole, 0.11% of distillers grain plus soluble, 24.21% of 

sorghum grain, 40.13% of soybean meal high CP, 12.63% of sugarcane silage and 

1.57% of urea. The daily profit of 0.76 US$ per day is associated with a shrunk 

weight gain of 1.21 kg per day and a diet cost of 0.99 US$ per day.  

Figure 4 shows the sensitivity analysis of CNEm vs. profit. For unused ingredients, 

the decrease in price [US$/kg] necessary to change diet composition is US$0.09 for 

citrus pulp, corn grain and wheat middlings, US$0.10 for corn silage, US$0.16 for 

cottonseed meal, and US$0.13 for soybean hulls. On the other hand, due to different 

SWG factors for each feed, a change in cattle’s price higher than +US$0.42/kg would 

also change the optimal diet composition. Figure 4 also shows that max {daily 

profit/SWG} ≠ max {daily profit}. Daily profit is 5% lower for the alternative objective 

function. This means that optimal direction is different for those objective functions, 

implying that they are not proportional to each other. 

We show in Figure 5 convergence results using numerical optimization with 

precision ε=10-2. The golden-section search takes O(log ε-1) iterations to complete. 

Daily profit, daily cost, and CNEm converged for the same values found using the 

brute force search: 0.76 US$ per day, 0.9864 US$ per day and 1.92 Mcal/kg. While 

the brute force algorithm took 96 iterations to find the optimal solution with ε=10-2, the 

golden-section search took 10 for the same ε. Since the number of iterations to find a 

solution through brute force in a range D is n = ⌈D2/ε⌉, for ε=10-6 and D = 1.15, it 
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would require 1,322,500 iterations. On the other hand, for the same range D, the 

GSS would need n = ⌈(log ε - log D)/log φ⌉, i.e. 29 iterations for ε=10-6. 

 

Discussion 

Transforming the nonlinear programming problem into a parametric linear 

programming equivalent has practical and computational advantages. Since LPs can 

be solved in pseudo-polynomial time, we have a good estimation of computational 

time based solely on a few characteristics of the data and model. The brute force 

search algorithm is the slowest possible approach, having to solve O(ε-1) LPs to find 

the ε-solution for the NLP model. However, it is unrealistic to work with precisions 

greater than 10-2 in diet formulation, which means a solution can usually be found 

with no more than 200 LPs resolutions, depending on the feasible range of CNEm. 

Since this basic diet optimization model is small, i.e. 7 constraints and no more than 

300 feed ingredients in NASEM (2016)’s library, it can be further developed for more 

complex scenarios, e.g. environmental constraints. 

The golden-section search showed a significant increase in performance compared 

with the brute force search. For ε=10-2 it took 10 iterations to complete, roughly 1/10 

of the initial approach. Since the golden-section search has to solve only O(log ε-1) 

LPs, it can be useful for more complex diet optimization models. Empirical evidence 

shows that the function Z(CNEm, x) on Equation (17) is unimodular, thus both brute 

force and golden-section search are guaranteed to obtain a minimizer within ε of that 

exact minimizer.  

Further model limitations are related to the assumed linear growth of SBW over time. 

Since the predicted requirements change with cattle bodyweight, ideally the model 

should revaluate diet periodically. Thus, the results only hold for small periods of 
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feeding. For long periods of feeding the result will accumulate great inaccuracy from 

the dynamic weight of the animal. To overcome this, the feeding time T can be 

discretized by a micro-period p to maximize profit along the whole feeding time. 

Thus, a new index t∈{1, …, T/p} must be introduced into the model. This approach is 

equivalent to approximate nonlinear growth by linear segments. 

Mathematical models to optimize diet are always bounded to limitations on the 

accuracy of predictive equations for nutrient requirements and absorption. 

Regardless, under the infinite set of possible diets, optimization techniques deliver a 

“close to optimal” solution facing variation proportional to the uncertainty in the 

process. Some suggest adjustments on predictive equations based on each 

particular application (NASEM, 2016) which may also correct the assertiveness of 

our model’s solution. Still, it is key to have a proper understanding of the premises 

and scope of both the predictive equations and the mathematical optimization models 

when applying them to cattle feeding operations. 

Furthermore, in response to concerns over livestock emissions researchers have 

been focusing on the environmental impacts of rations. Optimization models to 

evaluate economic and environmental (impact) trade-offs usually modify the 

traditional least-cost algorithm objective function (Wang et al., 2000a; b; Tedeschi et 

al., 2000; Pomar et al., 2007; Oishi et al., 2011; Moraes et al., 2012), use multi-

criteria analysis (Hadrich et al., 2005; Moraes and Fadel, 2013; Moraes et al., 2015), 

develop multi-objective models (Garcia-Launay et al., 2018) or integrate life-cycle 

assessment analysis exogenously (Oishi et al., 2013; Mackenzie et al., 2016). As our 

results show, the choice of the objective function will impact the optimal solution and 

thus on related economic analysis. 
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The NASEM (2016) model suggests a variety of equations to predict CH4 emissions. 

Such equations (e.g. those based on the International Panel on Climate Change 

guidelines (Penman et al., 2006)) can be also introduced into our model either in the 

constraints or in the objective function. 

 

Conclusion 

Our model improves optimal diet formulation by considering the interaction between 

CNEm and CNEg and diet profit. As the choice of maximum profit, profit/shrunk 

weight gain or minimum diet cost leads to different solutions, general results from 

one perspective cannot always be extrapolated.  

From a nutritional perspective, our model presents a straightforward approach to 

define a baseline diet solely based on animal characteristics. Since it does not 

require net energy concentration beforehand, it has a broader solution space than a 

traditional least-cost diet. Furthermore, the relation with the NASEM (2016)’s 

prediction system allows the same approximations to be made in our model. 

It is unlikely that in future the NASEM (2016)’s equations will evolve in a way that 

compromises our model since it would concurrently jeopardize the process by which 

the nutritionist formulates the baseline diet. Thus, as their system continues to 

evolve, our model should be able to accommodate changes in the equations for the 

nutrient requirement prediction.  

The parametric linear programming approach makes it easier to implement further 

developments to the model to asses a more complex situation. Furthermore, the 

possibility of solving the profit-maximizing diet problem with the golden-section 

search suggests that our model could be extended or integrated with others, and still 

be solvable in a reasonable time. 
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Table 1 Common Brazilian ingredients to ration formulation (CEPEA, 2018). 

Ingredient Cost [US$/kg] 

Citrus pulp, dry 0.14 

Corn grain 0.18 

Corn silage 0.19 

Cottonseed meal 0.33 

Cottonseed whole 0.11 

Distillers grain plus soluble, dry 0.14 

Grain sorghum grain 0.10 

Soybean hulls 0.16 

Soybean meal high CP 0.20 

Sugarcane silage 0.09 

Wheat middlings 0.15 

Urea 0.40 
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Figure captions  

Figure 1 Parametric linear programming algorithm for solving the nonlinear 

programming model. The concentration of net energy for maintenance (CNEm) 

varies inside the feasible range (LB – lower bound to UB – upper bound) with a step 

ε. Each solution is stored and the one with maximum objective function (zi) is 

retrieved at the end. 

 

Figure 2 Results from the parametric linear programming algorithm. The green dots 

represent maximum daily profit for that concentration of net energy for maintenance 

(CNEm), calculated as shrunk-weight gain (SWG – blue triangle) times animal’s sale 

price, minus daily costs (Daily cost – yellow rhombus). The white markers represent 

the optimal solution, i.e maximum daily profit.  

 

Figure 3 Diet profiles for frontier points on the objective function. The star (*) 

represents a diet profile of the NLP model’s optimal solution. 

 

Figure 4 Comparison of daily profit and profit per bodyweight gain. The daily profit 

divided by the shrunk-weight gain (blue rhombus) and daily profit (green dots) for 

each value of concentration of net energy for maintenance (CNEm). For each of the 

objective functions the optimal solution is highlighted (white rhombus and dot, 

respectively). 

 

Figure 5 Golden-section search convergence for daily profit (blue dot), diet cost (red 

triangle), and concentration of net energy for maintenance (CNEm – white rhombus). 


