Computational linear optimization

Julian Hall

School of Mathematics

University of Edinburgh

March 15th 2007

Maxwell Symposium on Computational Mathematics - Computational linear optimization

 $\begin{array}{ll} \text{minimize} & f = \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & A \boldsymbol{x} = \boldsymbol{b} & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

 $\begin{array}{ll} \text{minimize} & f = \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & A \boldsymbol{x} = \boldsymbol{b} & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

• Linear programming (LP) is the fundamental model in optimal decision-making

 $\begin{array}{ll} \text{minimize} & f = \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & A \boldsymbol{x} = \boldsymbol{b} \quad \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

- Linear programming (LP) is the fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point method (1984)

minimize $f = c^T x$ subject to Ax = b $x \ge 0$

- Linear programming (LP) is the fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point method (1984)
- Large problems have

$$\circ 10^3 - 10^7$$
 variables

 $\circ 10^3 - 10^7$ constraints

- $\begin{array}{ll} \text{minimize} & \boldsymbol{f} = \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$
- Linear programming (LP) is the fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point method (1984)
- Large problems have
 - $\circ 10^3 10^7$ variables
 - $\circ 10^3 10^7$ constraints
- Matrix A is sparse

STAIR: 356 rows, 467 columns and 3856 nonzeros

- minimize $f = c^T x$ subject to Ax = b $x \ge 0$
- Linear programming (LP) is the fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point method (1984)
- Large problems have
 - $\circ 10^3 10^7$ variables
 - $\circ 10^3 10^7$ constraints
- Matrix A is sparse
- Structure as much as size determines the computational challenge

Lagrange multipliers \boldsymbol{y} and \boldsymbol{s} exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= 0 & \Rightarrow & x_js_j = 0 & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

Lagrange multipliers \boldsymbol{y} and \boldsymbol{s} exist such that the following conditions hold

$$egin{aligned} Aoldsymbol{x} &= oldsymbol{b} & oldsymbol{x} \geq oldsymbol{0} \ A^Toldsymbol{y} &+ oldsymbol{s} &= oldsymbol{c} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{x} &= oldsymbol{0} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{s} &= oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} = oldsymbol{s} \ oldsy$$

primal feasibility dual feasibility complementarity condition

Simplex method

• Uses a combinatorial approach

Lagrange multipliers y and s exist such that the following conditions hold

$$egin{aligned} Aoldsymbol{x} &= oldsymbol{b} & oldsymbol{x} \geq oldsymbol{0} \ A^Toldsymbol{y} &+ oldsymbol{s} &= oldsymbol{c} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{x} &= oldsymbol{0} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{s} &= oldsymbol{0} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{s} &= oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ oldsymbol{s} \$$

primal feasibility dual feasibility complementarity condition

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$

Lagrange multipliers y and s exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= 0 & \Rightarrow & x_js_j = 0 & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region

Lagrange multipliers y and s exist such that the following conditions hold

$$egin{aligned} Aoldsymbol{x} &= oldsymbol{b} & oldsymbol{x} \geq oldsymbol{0} \ A^Toldsymbol{y} &+ oldsymbol{s} &= oldsymbol{c} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{x} &= oldsymbol{0} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{s} &= oldsymbol{0} & oldsymbol{s} \geq oldsymbol{0} \ oldsymbol{s}^Toldsymbol{s} &= oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} = oldsymbol{0} & oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} & oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ oldsymbol{s} \ oldsymbol{s} &= oldsymbol{s} \ o$$

primal feasibility dual feasibility complementarity condition

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region
- Terminates at an optimal vertex

Lagrange multipliers \boldsymbol{y} and \boldsymbol{s} exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= m{0} & \Rightarrow & x_js_j = m{0} & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

Simplex method

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region
- Terminates at an optimal vertex

Interior point methods (IPM)

• Use an iterative approach

Lagrange multipliers y and s exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= m{0} & \Rightarrow & x_js_j = m{0} & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

Simplex method

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region
- Terminates at an optimal vertex

Interior point methods (IPM)

- Use an iterative approach
- Reduce $x_j s_j = \mu$ to zero $\forall j$

Lagrange multipliers \boldsymbol{y} and \boldsymbol{s} exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= m{0} & \Rightarrow & x_js_j = m{0} & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

Simplex method

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region
- Terminates at an optimal vertex

Interior point methods (IPM)

- Use an iterative approach
- Reduce $x_j s_j = \mu$ to zero $\forall j$
- Move through the interior of the feasible region

Lagrange multipliers y and s exist such that the following conditions hold

$$egin{aligned} Am{x} &= m{b} & m{x} \geq m{0} \ A^Tm{y} + m{s} &= m{c} & m{s} \geq m{0} \ m{s}^Tm{x} &= m{0} & \Rightarrow & x_js_j = m{0} & orall j \end{aligned}$$

primal feasibility dual feasibility complementarity condition

Simplex method

- Uses a combinatorial approach
- Modifies a partition $\mathcal{B} \cup \mathcal{N}$ of variables until $s \geq 0$
- Moves along edges of the feasible region
- Terminates at an optimal vertex

Interior point methods (IPM)

- Use an iterative approach
- Reduce $x_j s_j = \mu$ to zero $\forall j$
- Move through the interior of the feasible region
- Converge to within *ϵ* of an optimal vertex

- Each iteration
 - $\circ~~$ Form $B^{-1}oldsymbol{r}_F$, $oldsymbol{r}_B^TB^{-1}$ and $Noldsymbol{r}_\pi$
 - Each [B:N] is a partition of A

- Each iteration
 - $\circ~~ {\sf Form}~ B^{-1}oldsymbol{r}_F$, $oldsymbol{r}_B^TB^{-1}$ and $Noldsymbol{r}_\pi$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse

Simplex method

- Each iteration
 - $\circ~~$ Form $B^{-1}oldsymbol{r}_F$, $oldsymbol{r}_B^TB^{-1}$ and $Noldsymbol{r}_\pi$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse

Simplex method

- Each iteration
 - \circ Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse

- Each iteration
 - Form $(A \Theta A^T)^{-1} \boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \boldsymbol{r}$
 - Diagonal matrix ⊖ is iteration-dependent

Simplex method

- Each iteration
 - \circ Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse

- Each iteration
 - Form $(A \ominus A^T)^{-1} \mathbf{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \mathbf{r}$ • Diagonal matrix Θ is iteration-dependent • \mathbf{r} is full

Simplex method

- Each iteration
 - \circ Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations

- Each iteration
 - Form $(A \Theta A^T)^{-1} \mathbf{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \mathbf{r}$ • Diagonal matrix Θ is iteration-dependent • \mathbf{r} is full

Simplex method

- Each iteration
 - Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_\pi$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

- Each iteration
 - Form $(A \ominus A^T)^{-1} \mathbf{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \mathbf{r}$ • Diagonal matrix Θ is iteration-dependent • \mathbf{r} is full

Simplex method

- Each iteration
 - Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

- Each iteration
 - Form $(A\Theta A^T)^{-1}\boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1}\boldsymbol{r}$
 - Diagonal matrix is iteration-dependent *r* is full
- Complexity
 - Theory: $O(\sqrt{n} \log n)$ iterations

Simplex method

- Each iteration
 - Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

- Each iteration
 - Form $(A\Theta A^T)^{-1}\boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1}\boldsymbol{r}$
 - Diagonal matrix Θ is iteration-dependent
 - **r** is **full**
- Complexity
 - Theory: $O(\sqrt{n} \log n)$ iterations
 - Practice: $O(\log n)$ iterations

Simplex method

- Each iteration
 - Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

Questions

- Each iteration
 - Form $(A \Theta A^T)^{-1} \boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \boldsymbol{r}$
 - Diagonal matrix ⊖ is iteration-dependent *r* is full
- Complexity
 - Theory: $O(\sqrt{n} \log n)$ iterations
 - Practice: $O(\log n)$ iterations

Simplex method

- Each iteration
 - Form $B^{-1}\boldsymbol{r}_F$, $\boldsymbol{r}_B^TB^{-1}$ and $N\boldsymbol{r}_\pi$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_F , \boldsymbol{r}_B (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

Questions

• Why is the simplex method still competitive?

- Each iteration
 - Form $(A \Theta A^T)^{-1} \boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \boldsymbol{r}$
 - Diagonal matrix is iteration-dependent *r* is full
- Complexity
 - Theory: $O(\sqrt{n} \log n)$ iterations
 - Practice: $O(\log n)$ iterations

Simplex method

- Each iteration
 - Form $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$
 - Each [B:N] is a partition of A
 - \boldsymbol{r}_{F} , \boldsymbol{r}_{B} (and \boldsymbol{r}_{π}) are sparse
- Complexity
 - Theory: $O(2^n)$ iterations
 - Practice: O(n) iterations

Questions

- Why is the simplex method still competitive?
- What are the computational challenges?

Interior point methods

- Each iteration
 - Form $(A \Theta A^T)^{-1} \boldsymbol{r}$ or $\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}^{-1} \boldsymbol{r}$
 - Diagonal matrix ⊖ is iteration-dependent *r* is full
- Complexity
 - Theory: $O(\sqrt{n} \log n)$ iterations
 - Practice: $O(\log n)$ iterations

Maxwell Symposium on Computational Mathematics - Computational linear optimization

• Practical problems whose structure yields sparse B^{-1} are hyper-sparse

• Practical problems whose structure yields sparse B^{-1} are hyper-sparse • $B^{-1}r_F$, $r_B^T B^{-1}$ and Nr_{π} are sparse vectors

- Practical problems whose structure yields sparse B^{-1} are hyper-sparse
 - $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$ are sparse vectors
 - Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005
 - Simplex now out-performs IPM for hyper-sparse LPs

- Practical problems whose structure yields sparse B^{-1} are hyper-sparse
 - $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$ are sparse vectors
 - Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005
 - Simplex now out-performs IPM for hyper-sparse LPs
 - Challenge: better understanding and promotion of hyper-sparsity

- Practical problems whose structure yields sparse B^{-1} are hyper-sparse
 - $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$ are sparse vectors
 - Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005
 - Simplex now out-performs IPM for hyper-sparse LPs
 - Challenge: better understanding and promotion of hyper-sparsity
- Parallel simplex solver
 - No useful codes

- Practical problems whose structure yields sparse B^{-1} are hyper-sparse
 - $B^{-1} \boldsymbol{r}_F$, $\boldsymbol{r}_B^T B^{-1}$ and $N \boldsymbol{r}_{\pi}$ are sparse vectors
 - Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005
 - Simplex now out-performs IPM for hyper-sparse LPs
 - Challenge: better understanding and promotion of hyper-sparsity
- Parallel simplex solver
 - No useful codes
 - Challenge: develop one!

• Interior point methods better than simplex for many problems

• Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \Theta A^T$

- Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \ominus A^T$
- But: $A \Theta A^T$ can fill in badly

- Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \Theta A^T$
- But: $A \Theta A^T$ can fill in badly
 - Network LP problems are very sparse
 - Constraint (node-arc incidence) matrix for the graph

- Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \Theta A^T$
- But: $A \Theta A^T$ can fill in badly
 - Network LP problems are very sparse
 - Constraint (node-arc incidence) matrix for the graph

- Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \Theta A^T$
- **But:** $A \Theta A^T$ can fill in badly
 - Network LP problems are very sparse
 - Constraint (node-arc incidence) matrix for the graph

• Network(-like) LPs are hyper-sparse and simplex out-performs IPM

- Interior point methods better than simplex for many problems **Challenge:** Maintain sparsity when factoring $A \Theta A^T$
- But: $A \Theta A^T$ can fill in badly
 - Network LP problems are very sparse
 - Constraint (node-arc incidence) matrix for the graph

• Network(-like) LPs are hyper-sparse and simplex out-performs IPM

• **Challenge:** Factor
$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix}$$

Maxwell Symposium on Computational Mathematics - Computational linear optimization

minimize $f = c^T x + \frac{1}{2} x^T Q x$ subject to $Ax = b \quad x \ge 0$

minimize $f = c^T x + \frac{1}{2} x^T Q x$ subject to $Ax = b \quad x \ge 0$

• Solved by natural extension to interior point methods for LP

minimize $f = c^T x + \frac{1}{2} x^T Q x$ subject to $Ax = b \quad x \ge 0$

- Solved by natural extension to interior point methods for LP
- Each iteration
 - Form

$$(A[\Theta^{-1}+Q]^{-1}A^T)^{-1}\boldsymbol{r}$$
 or $\begin{bmatrix} -\Theta^{-1}-Q & A^T\\ A & 0 \end{bmatrix}^{-1}\boldsymbol{r}$

• Matrix $\Theta^{-1} + Q$ is non-diagonal so $A[\Theta^{-1} + Q]^{-1}A^T$ is less likely to be sparse

minimize $f = c^T x + \frac{1}{2} x^T Q x$ subject to $Ax = b \quad x \ge 0$

- Solved by natural extension to interior point methods for LP
- Each iteration
 - Form

$$(A[\Theta^{-1}+Q]^{-1}A^T)^{-1}\boldsymbol{r} \quad \text{or} \quad \begin{bmatrix} -\Theta^{-1}-Q & A^T \\ A & 0 \end{bmatrix}^{-1}\boldsymbol{r}$$

• Matrix $\Theta^{-1} + Q$ is non-diagonal so $A[\Theta^{-1} + Q]^{-1}A^T$ is less likely to be sparse

• **Challenge:** nonconvex QP (with *Q* indefinite)

Maxwell Symposium on Computational Mathematics - Computational linear optimization

• Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in

$$\begin{bmatrix} -\Theta^{-1} - Q & A^T \\ A & 0 \end{bmatrix}$$

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in

 $\begin{bmatrix} -\Theta^{-1} - Q & A^T \\ A & 0 \end{bmatrix}$

• Tailored PCG is possible

Bergamaschi, Gondzio and Zilli won COAP prize for 2004

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in

 $\begin{bmatrix} -\Theta^{-1} - Q & A^T \\ A & 0 \end{bmatrix}$

• Tailored PCG is possible

Bergamaschi, Gondzio and Zilli won COAP prize for 2004

• Challenge: Improved preconditioners

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in

 $\begin{bmatrix} -\Theta^{-1} - Q & A^T \\ A & 0 \end{bmatrix}$

• Tailored PCG is possible

Bergamaschi, Gondzio and Zilli won COAP prize for 2004

• Challenge: Improved preconditioners

Saddle point problems from PDEs

• Elliptic PDE has *H* positive definite in

$$\begin{bmatrix} -H & A^T \\ A & C \end{bmatrix}$$

- Potential loss of sparsity when forming $A \Theta A^T$ encourages the use of iterative methods
- $A[\Theta^{-1} + Q]^{-1}A^T$ is positive definite: consider preconditioned conjugate gradients (PCG)
- Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in

 $\begin{bmatrix} -\Theta^{-1} - Q & A^T \\ A & 0 \end{bmatrix}$

- Tailored PCG is possible
 Bergamaschi, Gondzio and Zilli won
 COAP prize for 2004
- **Challenge:** Improved preconditioners

Saddle point problems from PDEs

• Elliptic PDE has *H* positive definite in

$$\begin{bmatrix} -H & A^T \\ A & C \end{bmatrix}$$

Many special preconditioners

Object-Oriented Parallel Solver (OOPS)

- Gondzio, Grothey and Sarkissian
- Exploit nested block-angular structure

Object-Oriented Parallel Solver (OOPS)

- Gondzio, Grothey and Sarkissian
- Exploit nested block-angular structure
- Results for asset liability management problems with mean-variance QP formulation

problem	scenarios	constraints	variables	iterations	time (s)	processors	machine
ALM8	12,831,873	64,159,366	153,982,477	42	3923	512	BlueGene
ALM9	6,415,937	96,239,056	269,469,355	39	4692	512	BlueGene
ALM10	12,831,873	179,646,223	500,443,048	45	6089	1024	BlueGene
ALM11	16,039,809	352,875,799	1,010,507,968	53	3020	1280	HPCx

Object-Oriented Parallel Solver (OOPS)

- Gondzio, Grothey and Sarkissian
- Exploit nested block-angular structure
- Results for asset liability management problems with mean-variance QP formulation

problem	scenarios	constraints	variables	iterations	time (s)	processors	machine
ALM8	12,831,873	64,159,366	153,982,477	42	3923	512	BlueGene
ALM9	6,415,937	96,239,056	269,469,355	39	4692	512	BlueGene
ALM10	12,831,873	179,646,223	500,443,048	45	6089	1024	BlueGene
ALM11	16,039,809	352,875,799	1,010,507,968	53	3020	1280	HPCx

• ALM11 is the largest optimization problem ever solved directly!

• Healthy competition between simplex and interior point methods

- Healthy competition between simplex and interior point methods
- University of Edinburgh group is playing a leading role in addressing the major challenges:
 - Better sparse direct methods
 - Preconditioned iterative solvers for interior point methods

- Healthy competition between simplex and interior point methods
- University of Edinburgh group is playing a leading role in addressing the major challenges:
 - Better sparse direct methods
 - Preconditioned iterative solvers for interior point methods
 - Parallel simplex solver?

- Healthy competition between simplex and interior point methods
- University of Edinburgh group is playing a leading role in addressing the major challenges:
 - Better sparse direct methods
 - Preconditioned iterative solvers for interior point methods
 - Parallel simplex solver?
 - LP solver with simplex iteration cost and interior point iteration count??

- Healthy competition between simplex and interior point methods
- University of Edinburgh group is playing a leading role in addressing the major challenges:
 - Better sparse direct methods
 - Preconditioned iterative solvers for interior point methods
 - Parallel simplex solver?
 - LP solver with simplex iteration cost and interior point iteration count??

http://www.maths.ed.ac.uk/hall/Talks

Thank you

Maxwell Symposium on Computational Mathematics - Computational linear optimization