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Linear programming problems

minimize f=c'a
subject to Axz=b x >0

e Linear programming (LP) is the fundamental S
model in optimal decision-making \\T-!“”gﬁ

e Solution techniques " N
o Simplex method (1947) A =
o Interior point method (1984) '__"I.;N,f:;

e Large problems have '\\"i".;\:!;=
o 10 — 107 variables T
o 10% — 107 constraints

_ _ STAIR: 356 rows, 467 columns and 3856 nonzeros
e Matrix A is sparse

e Structure as much as size determines the computational challenge
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Optimality conditions for LP

Lagrange multipliers 4y and s exist such that the following conditions hold

Ax = b x >0 primal feasibility
Aly+s=c s>0 dual feasibility
sle=0 = x;js; =0 Vj complementarity condition
Simplex method Interior point methods (IPM)
e Uses a combinatorial approach e Use an iterative approach
e Modifies a partition BU N of variables until s > 0 e Reduce x;s; = u to zero Vj
e Moves along edges of the feasible region e Move through the interior of the

e Terminates at an optimal vertex feasible region

e (Converge to within € of an optimal
vertex
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Simplex method Interior point methods

e Each iteration e Each iteration

1 T -1 _ o1 Tq-1
o Form B™ "rp, ?“BB _a_nd Nr, o Form (A@AT)—lr or [ © A } -
o Each [B : N]is a partition of A A 0
o rp, rp (and r,) are sparse o Diagonal matrix © is iteration-dependent
o 7 is full
e Complexity e Complexity
o Theory: O(2") iterations o Theory: O(1/nlogn) iterations
o Practice: O(n) iterations o Practice: O(logn) iterations
Questions

e Why is the simplex method still competitive?
e What are the computational challenges?
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e Practical problems whose structure yields sparse B~' are hyper-sparse

o B lrp, rgB_l and N7, are sparse vectors
o Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005
o Simplex now out-performs IPM for hyper-sparse LPs
o Challenge: better understanding and promotion of hyper-sparsity
e Parallel simplex solver
o No useful codes
o Challenge: develop one!
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Interior point methods: achievements and challenges

e Interior point methods better than simplex for many problems
Challenge: Maintain sparsity when factoring A© AT
e But: AOA” can fill in badly

o Network LP problems are very sparse
o Constraint (node-arc incidence) matrix for the graph

cv@ K o o ] i

" s A=|" °® °l put AeAT =
N * v

o Network(-like) LPs are hyper-sparse and simplex out-performs [PM

—e ! AT]

o Challenge: Factor { A 0
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Quadratic programming problems

minimize f=c'x + %wTQ:B
subject to Ax =b x >0

e Solved by natural extension to interior point methods for LP
e Each iteration

o Form

-1 771
(A[@_l—I—Q]_lAT)_lr or @A Q % T

o Matrix © ' + Q is non-diagonal so A[©@ ! 4+ Q] *A” is less likely to be sparse
e Challenge: nonconvex QP (with @ indefinite)
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e Potential loss of sparsity when forming A@ A’ encourages the use of iterative methods
o A[O ' 4 Q] 'A" is positive definite: consider preconditioned conjugate gradients (PCG)

e Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods Saddle point problems from PDEs
e Convex QP has @Q positive definite in e Elliptic PDE has H positive definite in
—o - AT —H AT
A 0 A C
e Tailored PCG is possible e Many special preconditioners

Bergamaschi, Gondzio and Zilli won
COAP prize for 2004

e Challenge: Improved preconditioners
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Object-Oriented Parallel Solver (OOPS)

e Exploit nested block-angular structure

e Results for asset liability management problems with mean-variance QP formulation

problem scenarios constraints variables | iterations  time (s)  processors machine
ALM8 12,831,873 64,159,366 153,982,477 42 3923 512 BlueGene
ALM9 6,415,937 96,239,056 269,469,355 39 4692 512 BlueGene
ALM10 12,831,873 | 179,646,223 500,443,048 45 6089 1024  BlueGene
ALM11 16,039,809 | 352,875,799  1,010,507,968 53 3020 1280 HPCx

e ALMI1 is the largest optimization problem ever solved directly!
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Conclusions

e Healthy competition between simplex and interior point methods

e University of Edinburgh group is playing a leading role in addressing the major challenges:
o Better sparse direct methods

o Preconditioned iterative solvers for interior point methods
o Parallel simplex solver?

o LP solver with simplex iteration cost and interior point iteration count??

http://www.maths.ed.ac.uk/hall/Talks

Thank you
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