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Linear programming problems

minimize f = cTx

subject to Ax = b x ≥ 0

• Linear programming (LP) is the fundamental

model in optimal decision-making

• Solution techniques

◦ Simplex method (1947)

◦ Interior point method (1984)

• Large problems have

◦ 103 − 107 variables

◦ 103 − 107 constraints

• Matrix A is sparse
STAIR: 356 rows, 467 columns and 3856 nonzeros

• Structure as much as size determines the computational challenge
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Optimality conditions for LP

Lagrange multipliers y and s exist such that the following conditions hold

Ax = b x ≥ 0 primal feasibility

ATy + s = c s ≥ 0 dual feasibility

sTx = 0 ⇒ xjsj = 0 ∀j complementarity condition

Simplex method

• Uses a combinatorial approach

• Modifies a partition B∪N of variables until s ≥ 0

• Moves along edges of the feasible region

• Terminates at an optimal vertex

Interior point methods (IPM)

• Use an iterative approach

• Reduce xjsj = µ to zero ∀j

• Move through the interior of the

feasible region

• Converge to within ε of an optimal

vertex
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◦ Each [B : N ] is a partition of A

◦ rF , rB (and rπ) are sparse

Interior point methods

• Each iteration

◦ Form (AΘAT )−1r or

»
−Θ−1 AT

A 0

–−1

r

◦ Diagonal matrix Θ is iteration-dependent

◦ r is full

• Complexity

◦ Theory: O(2n) iterations

◦ Practice: O(n) iterations

• Complexity

◦ Theory: O(
√

n log n) iterations

◦ Practice: O(log n) iterations

Questions

• Why is the simplex method still competitive?

• What are the computational challenges?
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Simplex: achievements and challenges

• Practical problems whose structure yields sparse B−1 are hyper-sparse

◦ B−1rF , rT
BB−1 and Nrπ are sparse vectors

◦ Exploiting hyper-sparsity—Hall and McKinnon won COAP prize for 2005

◦ Simplex now out-performs IPM for hyper-sparse LPs

◦ Challenge: better understanding and promotion of hyper-sparsity

• Parallel simplex solver

◦ No useful codes

◦ Challenge: develop one!
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Interior point methods: achievements and challenges

• Interior point methods better than simplex for many problems

Challenge: Maintain sparsity when factoring AΘAT

• But: AΘAT can fill in badly

◦ Network LP problems are very sparse

◦ Constraint (node-arc incidence) matrix for the graph
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◦ Network(-like) LPs are hyper-sparse and simplex out-performs IPM

◦ Challenge: Factor
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minimize f = cTx + 1
2x

TQx

subject to Ax = b x ≥ 0

• Solved by natural extension to interior point methods for LP

• Each iteration

◦ Form

(A[Θ
−1

+ Q]
−1

A
T
)
−1

r or

»
−Θ−1 −Q AT

A 0

–−1

r

◦ Matrix Θ−1 + Q is non-diagonal so A[Θ−1 + Q]−1AT is less likely to be sparse

• Challenge: nonconvex QP (with Q indefinite)
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Iterative methods for linear systems in interior point methods

• Potential loss of sparsity when forming AΘAT encourages the use of iterative methods

• A[Θ−1 + Q]−1AT is positive definite: consider preconditioned conjugate gradients (PCG)

• Exciting and fruitful cross-disciplinary activity between optimization and PDEs

Interior point methods

• Convex QP has Q positive definite in»
−Θ−1 −Q AT

A 0

–
• Tailored PCG is possible

Bergamaschi, Gondzio and Zilli won

COAP prize for 2004

• Challenge: Improved preconditioners

Saddle point problems from PDEs

• Elliptic PDE has H positive definite in»
−H AT

A C

–
• Many special preconditioners
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Object-Oriented Parallel Solver (OOPS)

• Gondzio, Grothey and Sarkissian

• Exploit nested block-angular structure

• Results for asset liability management problems with mean-variance QP formulation

problem scenarios constraints variables iterations time (s) processors machine

ALM8 12,831,873 64,159,366 153,982,477 42 3923 512 BlueGene
ALM9 6,415,937 96,239,056 269,469,355 39 4692 512 BlueGene
ALM10 12,831,873 179,646,223 500,443,048 45 6089 1024 BlueGene
ALM11 16,039,809 352,875,799 1,010,507,968 53 3020 1280 HPCx

• ALM11 is the largest optimization problem ever solved directly!
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Conclusions

• Healthy competition between simplex and interior point methods

• University of Edinburgh group is playing a leading role in addressing the major challenges:

◦ Better sparse direct methods

◦ Preconditioned iterative solvers for interior point methods

◦ Parallel simplex solver?

◦ LP solver with simplex iteration cost and interior point iteration count??

http://www.maths.ed.ac.uk/hall/Talks

Thank you
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