

School of Mathematics

Interior Point Methods for Convex Quadratic Programming

Jacek Gondzio

Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio

NATCOR, Edinburgh, June 2016

IPMs for QP

2

Outline

J. Gondzio

- Part 1: IPM for QP
 - quadratic forms
 - duality in QP
 - first order optimality conditions
 - primal-dual framework
- Part 2: Linear Algebra in IPM
 - LP case
 - QP case
 - Cholesky factorization
 - exploiting sparsity
- Part 3: Huge Problems: Block-Sparsity
- Final Comments

Part 1:

IPM for QP

NATCOR, Edinburgh, June 2016

IPMs for QP

3

Convex Quadratic Programs

The quadratic function

J. Gondzio

$$f(x) = x^T Q x$$

is convex if and only if the matrix Q is positive definite. In such case the quadratic programming problem

min
$$c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax = b$,
 $x > 0$,

is well defined.

If there exists a *feasible* solution to it, then there exists an *optimal* solution.

QP Background:

Def. A matrix $Q \in \mathcal{R}^{n \times n}$ is positive semidefinite if $x^T Q x \ge 0$ for any $x \ne 0$. We write $Q \succeq 0$.

Def. A matrix $Q \in \mathbb{R}^{n \times n}$ is positive definite if $x^T Q x > 0$ for any $x \neq 0$. We write $Q \succ 0$.

Example:

Consider quadratic functions $f(x) = x^T Q x$ with the following matrices:

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}, \quad Q_4 = \begin{bmatrix} 5 & -2 \\ -2 & 3 \end{bmatrix}.$$

 Q_1 and Q_4 are positive definite (hence f_1 , f_4 are convex). Q_2 and Q_3 are indefinite (f_2 , f_3 are not convex).

NATCOR, Edinburgh, June 2016

5

J. Gondzio

IPMs for QP

The following 2 slides remind key facts from the duality theory applied to quadratic programming.

Dual Quadratic Program

Consider a quadratic program

min
$$c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax = b$,
 $x > 0$,

where $c, x \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{n \times n}$.

We associate Lagrange multipliers $y \in \mathbb{R}^m$ and $s \in \mathbb{R}^n$ $(s \ge 0)$ with the constraints Ax = b and $x \ge 0$, and write the **Lagrangian**

$$L(x, y, s) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - s^T x.$$

NATCOR, Edinburgh, June 2016

rii Cort, Edinbargii, vano 20

IPMs for QP

Dual QP (cont'd)

J. Gondzio

To determine the Lagrangian dual

$$L_D(y,s) = \min_{x \in X} L(x,y,s)$$

we need stationarity with respect to x:

$$\nabla_x L(x, y, s) = c + Qx - A^T y - s = 0.$$

Hence

$$\begin{array}{l} {}^{\text{C}}L_{D}(y,s) \, = \, c^{T}x + \frac{1}{2}x^{T}Q\,x - y^{T}(Ax - b) - s^{T}x \\ = \, b^{T}y + x^{T}(c + Qx - A^{T}y - s) - \frac{1}{2}x^{T}Q\,x \\ = \, b^{T}y \, - \, \frac{1}{2}x^{T}Q\,x, \end{array}$$

and the **dual** problem has the form: $\max \quad b^T y - \frac{1}{2} x^T Q x$

$$\max b^{T}y - \frac{1}{2}x^{T}Qx$$
s.t.
$$A^{T}y + s - Qx = c,$$

$$x, s \ge 0,$$

where $y \in \mathbb{R}^m$ and $x, s \in \mathbb{R}^n$.

IPMs for QP

QP with IPMs

Consider the *convex* quadratic programming problem.

The **primal**

min
$$c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax = b$,
 $x \ge 0$,

and the dual

$$\begin{aligned} \max & b^T y - \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A^T y + s - Q x = c, \\ & x, s \geq 0. \end{aligned}$$

Apply the *usual* procedure:

- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

NATCOR, Edinburgh, June 2016

9

10

J. Gondzio

IPMs for QP

QP with IPMs: Log Barriers

Replace the **primal** QP

$$\min c^T x + \frac{1}{2} x^T Q x$$
s.t.
$$Ax = b,$$

$$x > 0$$

with the **primal barrier QP**

min
$$c^T x + \frac{1}{2} x^T Q x - \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b$.

QP with IPMs: Log Barriers

Replace the dual QP

$$\begin{array}{lll} \max & b^T y - \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A^T y + s - Q x = c, \\ & y \text{ free,} & s \geq 0, \end{array}$$

with the dual barrier QP

max
$$b^T y - \frac{1}{2} x^T Q x + \sum_{j=1}^n \ln s_j$$

s.t. $A^T y + s - Q x = c$.

NATCOR, Edinburgh, June 2016

11

J. Gondzio

IPMs for QP

First Order Optimality Conditions

Consider the primal barrier quadratic program

min
$$c^T x + \frac{1}{2} x^T Q x - \mu \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b$,

where $\mu \geq 0$ is a barrier parameter.

Write out the **Lagrangian**

$$L(x, y, \mu) = c^{T}x + \frac{1}{2}x^{T}Qx - y^{T}(Ax - b) - \mu \sum_{j=1}^{n} \ln x_{j},$$

First Order Optimality Conditions (cont'd)

The conditions for a stationary point of the Lagrangian:

$$L(x, y, \mu) = c^{T} x + \frac{1}{2} x^{T} Q x - y^{T} (Ax - b) - \mu \sum_{j=1}^{n} \ln x_{j},$$

are

$$\nabla_x L(x, y, \mu) = c - A^T y - \mu X^{-1} e + Q x = 0
\nabla_y L(x, y, \mu) = Ax - b = 0,$$

where $X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \dots, x_n^{-1}\}.$

Let us denote

$$s = \mu X^{-1}e$$
, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^{T}y + s - Qx = c,$$

$$XSe = \mu e.$$

NATCOR, Edinburgh, June 2016

13

J. Gondzio

IPMs for QP

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, s) = 0,$$

where $F: \mathbb{R}^{2n+m} \mapsto \mathbb{R}^{2n+m}$ is an application defined as follows:

$$F(x,y,s) = \begin{bmatrix} Ax & -b \\ A^Ty + s - Qx - c \\ XSe & -\mu e \end{bmatrix}.$$

Actually, the first two terms of it are *linear*; only the last one, corresponding to the complementarity condition, is *nonlinear*. Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix}.$$

Newton Method for the FOC (cont'd)

Thus, for a given point (x, y, s) we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T y - s + Qx \\ \mu e - XSe \end{bmatrix}.$$

NATCOR, Edinburgh, June 2016

15

J. Gondzio

IPMs for QP

Interior-Point QP Algorithm

Initialize

$$k = 0, \quad (x^0, y^0, s^0) \in \mathcal{F}^0, \quad \mu_0 = \frac{1}{n} \cdot (x^0)^T s^0, \quad \alpha_0 = 0.9995$$

Repeat until optimality

$$k = k + 1$$

$$\mu_k = \sigma \mu_{k-1}$$
, where $\sigma \in (0,1)$

 Δ = Newton direction towards μ -center

Ratio test:

$$\alpha_P := \max \{ \alpha > 0 : x + \alpha \Delta x \ge 0 \}, \alpha_D := \max \{ \alpha > 0 : s + \alpha \Delta s \ge 0 \}.$$

Make step:

$$x^{k+1} = x^{k} + \alpha_0 \alpha_P \Delta x,$$

$$y_{k+1}^{k+1} = y_k^k + \alpha_0 \alpha_D \Delta y,$$

$$s^{k+1} = s^k + \alpha_0 \alpha_D \Delta s$$

IPMs for QP

From LP to QP

QP problem

min
$$c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax = b$,
 $x \ge 0$.

First order conditions (for barrier problem)

$$Ax = b,$$

$$A^{T}y + s - Qx = c,$$

$$XSe = \mu e.$$

NATCOR, Edinburgh, June 2016

17

J. Gondzio

IPMs for QP

Part 2:

Linear Algebra in IPM

Linear Algebra of IPM: LP Case

FOC

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = \mu e.$$

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

where

$$\begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T y - s \\ \mu e - X S e \end{bmatrix}.$$

NATCOR, Edinburgh, June 2016

_

19

J. Gondzio

IPMs for QP

Linear Algebra, LP Case (cont'd)

In Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

use the third equation to eliminate

$$\Delta s = X^{-1}(\xi_{\mu} - S\Delta x) = -X^{-1}S\Delta x + X^{-1}\xi_{\mu},$$

from the second equation and get

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1}\xi_\mu \\ \xi_p \end{bmatrix}.$$

where $\Theta = XS^{-1}$ is a diagonal scaling matrix.

Linear Algebra of IPM: QP Case

FOC

$$Ax = b,$$

$$A^{T}y + s - Qx = c,$$

$$XSe = \mu e.$$

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

where

$$\xi_p = b - Ax,$$

$$\xi_d = c - A^T y - s + Qx,$$

$$\xi_\mu = \mu e - XSe.$$

NATCOR, Edinburgh, June 2016

21

J. Gondzio

IPMs for QP

Linear Algebra, QP Case (cont'd)

In Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

use the third equation to eliminate

$$\Delta s = X^{-1}(\xi_{u} - S\Delta x) = -X^{-1}S\Delta x + X^{-1}\xi_{u},$$

from the second equation and get

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}.$$

where $\Theta = XS^{-1}$ is a diagonal scaling matrix.

Summary: From LP to QP

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

where

$$\xi_p = b - Ax,$$

$$\xi_d = c - A^T y - s + Qx,$$

$$\xi_\mu = \mu e - XSe.$$

Augmented system

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}.$$

Conclusion:

QP is a natural extension of LP.

NATCOR, Edinburgh, June 2016

23

J. Gondzio

IPMs for QP

IPMs: LP vs QP

Augmented system in LP

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(A\Theta A^T)\Delta y = g.$$

IPMs for QP

IPMs: LP vs QP

Augmented system in **QP**

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(A(\mathbf{Q} + \Theta^{-1})^{-1}A^T)\Delta y = g.$$

One can use normal equations in LP, but not in QP. Normal equations in QP may become almost completely dense even for sparse matrices A and Q. Thus, in QP, usually the indefinite augmented system form is used.

NATCOR, Edinburgh, June 2016

25

J. Gondzio

IPMs for QP

Normal Equations

$$(A\Theta A^T)\Delta y = g.$$

Matrix $A\Theta A^T$ has always the same sparsity structure (only Θ changes in subsequent iterations).

Two step solution method:

- factorization to LDL^T form,
- backsolve to compute direction Δy .

Cholesky factorization

Compute a decomposition

$$LDL^T = A\Theta A^T$$
.

where:

L is a lower triangular matrix; and

D is a diagonal matrix.

Cholesky factorization is simply the **Gaussian Elimination** process that exploits two properties of the matrix:

- symmetry;
- positive definiteness.

NATCOR, Edinburgh, June 2016

27

J. Gondzio

IPMs for QP

Use of Cholesky factorization

Replace the **difficult** equation

$$(A\Theta A^T) \cdot \Delta y = g,$$

with a sequence of **easy** equations:

$$L \cdot u = g,$$

$$D \cdot v = u,$$

$$L^{T} \cdot \Delta y = v.$$

Note that

$$g = Lu$$

$$= L(Dv)$$

$$= LD(L^{T}\Delta y)$$

$$= (LDL^{T})\Delta y$$

$$= (A\Theta A^{T})\Delta y.$$

Symmetric Gaussian Elimination

Let $H \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix

$$H = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ h_{m1} & h_{m2} & \cdots & h_{mm} \end{bmatrix}.$$

By applying Gaussian Elimination to it, we can represent it in the following form:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{mm} \end{bmatrix} \begin{bmatrix} 1 & l_{21} & \cdots & l_{m1} \\ 0 & 1 & \cdots & l_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

NATCOR, Edinburgh, June 2016

29

J. Gondzio

IPMs for QP

Symmetric Gaussian Elimination

Example 1:

$$\begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Example 2:

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & 7 \\ -1 & 7 & 22 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Existence of LDL^T factorization

Lemma 2: The decomposition $H = LDL^T$ with $d_{ii} > 0$, $\forall i$ exists iff H is positive definite (PD).

Proof:

Part 1 (\Rightarrow)

Let $H = LDL^T$ with $d_{ii} > 0$. Take any $x \neq 0$ and let $u = L^T x$. Since L is a unit lower triangular matrix it is nonsingular so $u \neq 0$ and

$$x^{T}Hx = x^{T}LDL^{T}x = u^{T}Du = \sum_{i=1}^{m} d_{ii}u_{i}^{2} > 0.$$

NATCOR, Edinburgh, June 2016

31

J. Gondzio

IPMs for QP

Proof (cont'd):

Part 2 (\Leftarrow)

Proof by induction on dimension of H.

For m = 1. $H = h_{11} = d_{11} > 0$ iff H is PD.

Assume the result is true for $m = k - 1 \ge 1$.

Let $H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix} \in \mathcal{R}^{k \times k}$ be given $k \times k$ positive definite matrix

with $W \in \mathcal{R}^{(k-1)\times(k-1)}$, $a \in \mathcal{R}^{k-1}$ and $q \in \mathcal{R}$. Note first that since H is PD, W is also PD. Indeed for any $(x,0) \in \mathcal{R}^k$ we have

$$[x,0]\begin{bmatrix} W & a \\ a^T & q \end{bmatrix}\begin{bmatrix} x \\ 0 \end{bmatrix} = x^T W x > 0 \quad \forall x \in \mathbb{R}^{k-1}, x \neq 0.$$

From inductive hypothesis we know that $W = LDL^T$ with $d_{ii} > 0$. Let

$$\begin{bmatrix} W & a \\ a^T & q \end{bmatrix} = \begin{bmatrix} L & 0 \\ l^T & 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} L^T & l \\ 0 & 1 \end{bmatrix},$$

where l is the solution of equation (LD)l = a (it is well defined since L and D are nonsingular) and d is given by $d = q - l^T Dl$.

Hence matrix $H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix}$ has an $\bar{L}\bar{D}\bar{L}^T$ decomposition.

It remains to prove that d > 0. Consider the vector

$$x = \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}.$$

Since H is positive definite, we get

$$0 < x^{T}Hx$$

$$= [-l^{T}L^{-1}, 1] \begin{bmatrix} L & 0 \\ l^{T} & 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} L^{T} & l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}$$

$$= [0, 1] \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = d,$$

which completes the proof.

NATCOR, Edinburgh, June 2016

33

J. Gondzio

IPMs for QP

Large Problems are Sparse

Suppose a medium or large LP is solved: $m, n \sim 10^3 - 10^6$. Can all variables be linked at the same time? No, usually only a subset of them is linked.

There are usually only *several* nonzeros per row in an LP. Large problems are always **sparse**.

Very large problems are often **block-sparse**.

Exploiting sparsity in computations leads to huge savings.

Exploiting sparsity means mainly avoiding doing useless computations: the computations for which the result is known, as for example multiplications with zero.

Exploiting sparsity: Example

$$Ax = \begin{bmatrix} 2 & 1 & 0 & 4 & 0 & 0 \\ 0 & 2 & 0 & -1 & 5 & -1 \\ 3 & 0 & 3 & 8 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 5 \\ 0 \\ 0 \\ -2 \end{bmatrix}.$$

It requires computing

$$2 \cdot A_{.1} + 5 \cdot A_{.3} - 2 \cdot A_{.6}$$

and involves only five multiplications and five additions. We say that this matrix-vector multiplication needs 5 flops.

A flop is a floating point operation:

$$x := x + a \cdot b$$
.

NATCOR, Edinburgh, June 2016

35

J. Gondzio

IPMs for QP

Exploiting Sparsity in Cholesky Factorization

Matrix H and its Cholesky Factor

$$H = \begin{bmatrix} \mathbf{p} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & x \\ \mathbf{x} & x \end{bmatrix} \Rightarrow L = \begin{bmatrix} x \\ x & x \\ x & x & x \\ x & x & x & x \end{bmatrix}$$

Reordered Matrix H and its Cholesky Factor

$$PHP^{T} = \begin{bmatrix} x & x \\ x & x \\ x & x \\ x & x & x \end{bmatrix} \Rightarrow L = \begin{bmatrix} x \\ x \\ x \\ x & x & x \end{bmatrix}$$

Minimum Degree Ordering

Sparse Matrix Pivot h_{11}

Pivot
$$h_1$$

$$\begin{bmatrix} \mathbf{p} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ x & x & x \\ \mathbf{x} & x & \mathbf{f} & \mathbf{f} & x \\ \mathbf{x} & \mathbf{f} & x & \mathbf{f} & x \\ \mathbf{x} & x & \mathbf{f} & \mathbf{f} & x \end{bmatrix}$$

Pivot
$$h_{22}$$

Minimum degree ordering:

choose a diagonal element corresponding to a row with the *minimum* number of nonzeros.

Permute rows and columns of H accordingly.

NATCOR, Edinburgh, June 2016

37

J. Gondzio

IPMs for QP

Nested Dissection:

Original Matrix

Oliginal Matrix												
	1	2	3	4	5	6	7	8	9	10	11	
1	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}							
2	\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}					
3	\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}							
4		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}				\boldsymbol{x}		
5	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}							
6				\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}		
7		\boldsymbol{x}				\boldsymbol{x}	\boldsymbol{x}				\boldsymbol{x}	
8						\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	
9								\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	
10				\boldsymbol{x}		\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	
11							\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	

Roardored Matrix

Reordered Matrix											
	1	2	3	5	6	8	9	10	11	4	7
1	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}							
2	\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}						\mathbf{X}	\mathbf{X}
3	\boldsymbol{x}		\boldsymbol{x}	\boldsymbol{x}						\mathbf{x}	
5	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}						\mathbf{X}	
6					\boldsymbol{x}	\boldsymbol{x}		\boldsymbol{x}		\mathbf{x}	\mathbf{X}
8					\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		
9						\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		
10					\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\mathbf{x}	
11						\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		\mathbf{x}
4		\mathbf{x}	\mathbf{x}	\mathbf{X}	\mathbf{x}			\mathbf{x}		\mathbf{X}	
7		\mathbf{X}			\mathbf{x}				\mathbf{x}		\mathbf{x}

Cholesky factorization

$$LDL^T = A\Theta A^T$$
.

Involved preparation step:

- minimum degree ordering (reduces # of nonzeros of L);
- symbolic factorization (predicts the sparsity structure of L).

Computational complexity of different steps:

- minimum degree ordering $\mathcal{O}(\sum_i n_i^2)$
- numerical factorization $\mathcal{O}(\sum_i n_i^2)$
- symbolic factorization $\mathcal{O}(\sum_i n_i)$
- backsolve $\mathcal{O}(\sum_i n_i)$

where n_i is # of nonzero entries in L_i

NATCOR, Edinburgh, June 2016

39

J. Gondzio

IPMs for QP

Linear Algebra: Simplex Method vs IPM

Suppose an LP of dimension $m \times n$ is solved.

Iterations to reach an optimum:

Simplex N	IPM			
Theory	Practice	Theory	Practice	
Nonpolynomial	O(m+n)	$O(\sqrt{n})$	$O(\log_{10} n)$	

But one iteration of the simplex method is usually significantly less expensive. Simplex method solves equation with the basis matrix:

$$\begin{bmatrix} B & N \\ 0 & I_{n-m} \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix},$$

which reduces to

$$Bx_B = b.$$

IPM solves equation with the matrix $A\Theta A^T$:

$$(A\Theta A^T)\Delta y = g.$$

J. Gondzio IPMs for QP

Implementation of IPMs

Andersen, Gondzio, Mészáros and Xu

Implementation of IPMs for large scale LP, in: *Interior Point Methods in Mathematical Programming*, T. Terlaky (ed.), Kluwer Academic Publishers, 1996, pp. 189–252.

Recent Survey on IPMs (easy reading)

Gondzio

Interior point methods 25 years later, European J. of Operational Research 218 (2012) 587-601. http://www.maths.ed.ac.uk/~gondzio/reports/ipmXXV.html

NATCOR, Edinburgh, June 2016

41

42

J. Gondzio

IPMs for QP

Part 3:

Huge Problems: Block-Sparsity

J. Gondzio

IPMs for QP

Structured Problems

Observation:

Truly large scale problems are not only sparse... \rightarrow such problems are structured

Structure is displayed in:

- \bullet Jacobian matrix A
- Hessian matrix Q

Structure can be exploited in:

- IPM Algorithm
- Linear Algebra of IPM—(focus of the rest of this lecture)

NATCOR, Edinburgh, June 2016

43

J. Gondzio

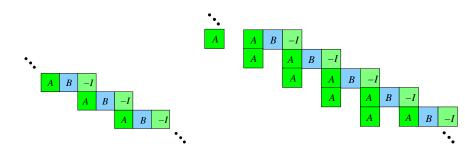
IPMs for QP

Structured Problems

... are present everywhere.

Sources of Structure

$Dynamics \rightarrow Staircase structure$



$$x_{t+1} = A_t x_t + B_t u_t$$

$$x_{t+1} = A_t x_t + B_t u_t$$
 $x_{t+1} = A_t^{t+1} x_t + \dots + A_{t-p}^{t+1} x_{t-p} + B_t u_t$

NATCOR, Edinburgh, June 2016

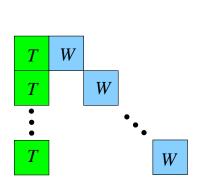
45

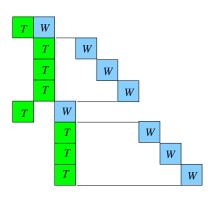
J. Gondzio

IPMs for QP

Sources of Structure

Uncertainty \rightarrow Block-angular structure



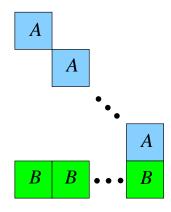


$$T_{lt}x_{a(l_t)} + W_{lt} x_{l_t} = b_{l_t}$$

Sources of Structure

Common resource constraint

$$\sum_{i=1}^{n} B_i x_i = b \rightarrow \textbf{Dantzig-Wolfe structure}$$



NATCOR, Edinburgh, June 2016

IPMs for QP

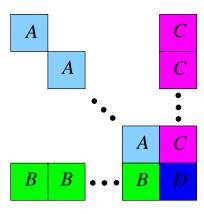
47

Sources of Structure

J. Gondzio

Other types of **near-separability**

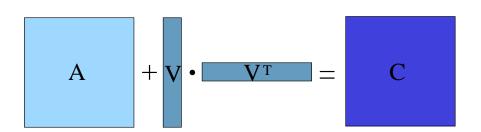
 \rightarrow Row and column bordered block-diagonal structure



Sources of Structure

(low) rank-corrector

$$A + VV^T = C$$



and networks, ODE- or PDE-discretizations, etc.

NATCOR, Edinburgh, June 2016

49

J. Gondzio

IPMs for QP

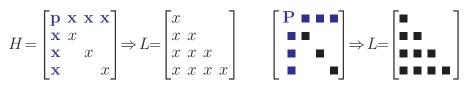
From Sparsity to Block-Sparsity:

Sparse Matrix

$$H = \begin{bmatrix} \mathbf{p} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & x \\ \mathbf{x} & x \end{bmatrix} \Rightarrow L = \begin{bmatrix} x \\ x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

$$PHP^T = \begin{bmatrix} x & x \\ x & x \\ x & x \\ x & x & x \end{bmatrix} \Rightarrow L = \begin{bmatrix} x \\ x \\ x \\ x & x & x \end{bmatrix} \qquad \begin{bmatrix} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix} \Rightarrow L = \begin{bmatrix} \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix}$$

Block-Sparse Matrix

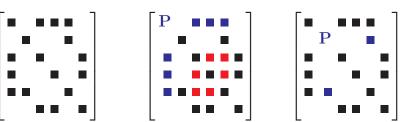


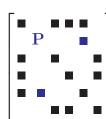
$$\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \Rightarrow L = \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$$

From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix Pivot Block H_{11} Pivot Block H_{22}





Choose a diagonal block-pivot corresponding to a block-row with the *minimum* number of blocks.

Permute block-rows and block-columns of H accordingly.

NATCOR, Edinburgh, June 2016

51

J. Gondzio

IPMs for QP

Abstract Linear Algebra for IPMs

Execute the operation

"solve (reduced) KKT system"

in IPMs for LP, QP and NLP.

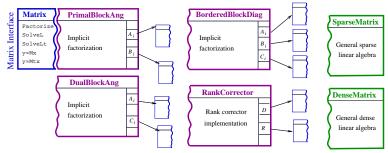
It works like the "backslash" operator in MATLAB.

Assumptions:

Q and A are block-structured

OOPS: Object-oriented linear algebra for IPM

- Every node in the *block elimination tree* has its own linear algebra implementation (depending on its type)
- Each implementation is a realisation of an abstract linear algebra interface.
- Different implementations are available for different structures



⇒ Rebuild *block elimination tree* with matrix interface structures NATCOR. Edinburgh, June 2016 53

J. Gondzio

IPMs for QP

54

Example: Financial Planning Problems (ALM)

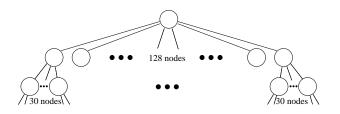
- A set of assets $\mathcal{J} = \{1...J\}$ given (bonds, stock, real estate)
- At every stage t = 0..T 1 we can buy or sell different assets
- The return of asset j at stage t is uncertain

Investment decisions: what to buy or sell, at which time stage Objectives:

- maximize the final wealth • minimize the associated risk \Rightarrow Mean Variance formulation: $\max E(X) - \rho \text{Var}(X)$
- ⇒ Stochastic Program: ⇒ formulate deterministic equivalent
 - standard QP, but huge
 - extentions: nonlinear risk measures (log utility, skewness)

ALM: Largest Problem Attempted

- Optimization of 21 assets (stock market indices) 7 time stages.
- Using multistage stochastic programming Scenario tree geometry: 128-30-16-10-5-4 \Rightarrow 16M scenarios.
- 3840 second level nodes with 350.000 variables each.
- Scenario Tree generated using geometric Brownian motion.
- $\bullet \Rightarrow 1.01$ billion variables, 353 million constraints



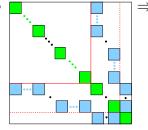
NATCOR, Edinburgh, June 2016

55

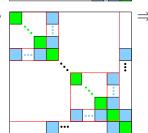
J. Gondzio

IPMs for QP

Sparsity of Linear Algebra



- $-63 + 128 \times 63 = 8127$ columns for Schur-complement
- Prohibitively expensive



- Need facility to exploit nested structure
- Need to be careful that Schurcomplement calculations stay sparse on second level

	_							*	machine
ALM8	7	6	13M	64M	154M	42	3923	512	BlueGene
ALM9	7	14	6M	96M	269M	39	4692	512	BlueGene
ALM10	7	13	12M	180M	500M	45	6089	1024	BlueGene
ALM11	7	21	16M	353M	1.011M	53	3020	1280	HPCx

The QP problem with

- 353 million of constraints
- 1 billion of variables

was solved in 50 minutes using 1280 procs (May 2005).

Equation systems of dimension **1.363 billion** were solved with the direct (implicit) factorization.

 \longrightarrow One IPM iteration takes less than a minute.

NATCOR, Edinburgh, June 2016

57

J. Gondzio IPMs for QP

References

- Gondzio and Sarkissian, Parallel interior point solver for structured linear programs, *Math Prog* 96 (2003) 561-584.
- Gondzio and Grothey, Parallel IPM solver for structured QPs: application to financial planning problems, Annals of Operations Research 152 (2007) 319-339.
- Woodsend and Gondzio, Exploiting separability in large scale linear support vector machine training, Comput Optimization and Appls 49 (2011) 241-269.
- K. Fountoulakis, J. Gondzio and P. Zhlobich, Matrixfree interior point method for compressed sensing problems, Math Prog Computation 6 (2014), pp. 1-31.

Papers available: http://www.maths.ed.ac.uk/~gondzio/

OOPS: Object-Oriented Parallel Solver

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

NATCOR, Edinburgh, June 2016

J. Gondzio

IPMs for QP

Interior Point Methods:

- Unified view of optimization
 - \rightarrow from LP via QP to NLP
- Predictable behaviour
 - \rightarrow small number of iterations
- Unequalled efficiency
 - competitive for small problems ($n \le 10^6$)
 - beyond competition for large problems ($n \ge 10^6$)

Use IPMs in your research!

NATCOR, Edinburgh, June 2016

59