Parallelizing the dual revised simplex method

Qi Huangfu¹ Julian Hall²

$^{1}\mathsf{FICO}$

²School of Mathematics, University of Edinburgh

Birmingham

9 September 2016

- Background
- Two parallel schemes
 - Single iteration parallelism
 - Multiple iteration parallelism
- An open source parallel simplex solver

Linear programming (LP)

minimize
$$c^T x$$

subject to $Ax = b$ $x \ge 0$

Background

- Fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point methods (1984)
- Large problems have
 - $10^3 10^8$ variables
 - 10³-10⁸ constraints
- Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Solving LP problems

minimize $f_P = \boldsymbol{c}^T \boldsymbol{x}$ maximize $f_D = \boldsymbol{b}^T \boldsymbol{y}$ subject to $A\boldsymbol{x} = \boldsymbol{b} \quad \boldsymbol{x} \ge \boldsymbol{0}$ (P) subject to $A^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c} \quad \boldsymbol{s} \ge \boldsymbol{0}$ (D)

Optimality conditions

• For a partition $\mathcal{B} \cup \mathcal{N}$ of the variable set with nonsingular **basis matrix** B in

$$B\boldsymbol{x}_{B} + N\boldsymbol{x}_{N} = \boldsymbol{b}$$
 for (P) and $\begin{bmatrix} B^{T} \\ N^{T} \end{bmatrix} \boldsymbol{y} + \begin{bmatrix} \boldsymbol{s}_{B} \\ \boldsymbol{s}_{N} \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}_{B} \\ \boldsymbol{c}_{N} \end{bmatrix}$ for (D)

with $oldsymbol{x}_{\scriptscriptstyle N}=oldsymbol{0}$ and $oldsymbol{s}_{\scriptscriptstyle B}=oldsymbol{0}$

- Primal basic variables $\mathbf{x}_{\scriptscriptstyle B}$ given by $\hat{\mathbf{b}} = B^{-1}\mathbf{b}$
- Dual non-basic variables $\mathbf{s}_{\scriptscriptstyle N}$ given by $\widehat{\mathbf{c}}_{\scriptscriptstyle N}^{\sf T} = \mathbf{c}_{\scriptscriptstyle N}^{\sf T} \mathbf{c}_{\scriptscriptstyle B}^{\sf T} B^{-1} N$
- Partition is optimal if there is
 - Primal feasibility $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$
 - Dual feasibility $\widehat{c}_{\scriptscriptstyle N} \geq \mathbf{0}$

Simplex algorithm: Each iteration

Dual algorithm: Assume $\widehat{m{c}}_{\scriptscriptstyle N} \geq m{0}$ Seek $\widehat{m{b}} \geq m{0}$

Scan \widehat{b}_i , $i \in \mathcal{B}$, for a good candidate p to leave \mathcal{B} CHUZRScan $\widehat{c}_j / \widehat{a}_{pj}$, $j \in \mathcal{N}$, for a good candidate q to leave \mathcal{N} CHUZC

Update: Exchange p and q between \mathcal{B} and \mathcal{N}

 $\begin{array}{ll} \text{Update } \widehat{\boldsymbol{b}} := \widehat{\boldsymbol{b}} - \theta_p \widehat{\boldsymbol{a}}_q & \theta_p = \widehat{b}_p / \widehat{\boldsymbol{a}}_{pq} & \text{UPDATE-PRIMAL} \\ \text{Update } \widehat{\boldsymbol{c}}_N^{\ T} := \widehat{\boldsymbol{c}}_N^{\ T} - \theta_d \widehat{\boldsymbol{a}}_p^{\ T} & \theta_d = \widehat{c}_q / \widehat{\boldsymbol{a}}_{pq} & \text{UPDATE-DUAL} \end{array}$

Standard simplex method: Major computational component

Update of tableau:

$$\widehat{\mathcal{N}} := \widehat{\mathcal{N}} - rac{1}{\widehat{a}_{
m
ho q}} \widehat{oldsymbol{a}}_{
m
ho} \widehat{oldsymbol{a}}_{
ho} \widehat{oldsymbol{a}}_{
ho}$$

where $\widehat{N} = B^{-1}N$

- Hopelessly inefficient for sparse LP problems
- Prohibitively expensive for large LP problems

Revised simplex method: Major computational components

$$\pi_p^T = e_p^T B^{-1}$$
 BTRAN $\widehat{a}_p^T = \pi_p^T N$ PRICE
 $\widehat{a}_q = B^{-1} a_q$ FTRAN Invert B INVERT

Row selection: Dual steepest edge (DSE)

- Weight \hat{b}_i by w_i : measure of $||B^{-T}\boldsymbol{e}_i||_2$
- Requires additional FTRAN but can reduce iteration count significantly

Column selection: Bound-flipping ratio test (BFRT)

- Minimizes the dual objective whilst remaining dual feasible
 - Dual variables may change sign if corresponding primal variables can flip bounds
- Requires additional FTRAN but can reduce iteration count significantly

Exploiting parallelism: Background

Data parallel standard simplex method

- Good parallel efficiency of $\widehat{N} := \widehat{N} \frac{1}{\widehat{a}_{pq}} \widehat{a}_q \widehat{a}_p^T$ was achieved
- Only relevant for dense LP problems

Data parallel revised simplex method

- Only immediate parallelism is in forming $\pi_p^T N$
- When $n \gg m$ significant speed-up was achieved

Bixby and Martin (2000)

Task parallel revised simplex method

• Overlap computational components for different iterations

Wunderling (1996), H and McKinnon (1995-2005)

• Modest speed-up was achieved on general sparse LP problems

Single iteration parallelism: Dual revised simplex method

- Computational components appear sequential
- Each has highly-tuned sparsity-exploiting serial implementation
- Exploit "slack" in data dependencies

Single iteration parallelism: Computational scheme

- Parallel PRICE to form $\hat{a}_p^T = \pi_p^T N$
- Other computational components serial
- Overlap any independent calculations
- Only four worthwhile threads unless $n \gg m$ so PRICE dominates
- More than Bixby and Martin (2000)
- Better than Forrest (2012)

Huangfu and H (2014)

Single iteration parallelism: clp vs hsol vs sip

Performance on spectrum of 30 significant LP test problems

- sip on 8 cores is 1.15 times faster than hsol
- hsol (sip on 8 cores) is 2.29 (2.64) times faster than clp

Multiple iteration parallelism

- sip has too little work to be performed in parallel to get good speedup
- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form $m{\pi}_{\mathcal{P}}=B^{-1}m{e}_{\mathcal{P}}$
- Data-parallel PRICE to form \widehat{a}_{p}^{T} (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011-2014)

Multiple iteration parallelism: cplex vs pami vs hsol

- pami is less efficient than hsol in serial
- pami speedup more than compensates
- pami performance approaching cplex

Multiple iteration parallelism: cplex vs xpress

• pami ideas incorporated in FICO Xpress (Huangfu 2014)

- hsol and its variants (sip and pami) are high performance codes
- Useful open-source resource?
 - Reliable?
 - Well-written?
 - Better than clp?
- Limitations
 - No presolve
 - No crash
 - No advanced basis start

Extended testing using 159 test problems

- 98 Netlib
- 16 Kennington
- 4 Industrial
- 41 Mittelmann

Exclude 7 which are "hard"

Reliability on 152 test problems

- hsol, sip and pami fail on cycle
- pami with 8 threads fails on stat96v1

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

- Dual simplex
- No presolve
- No crash

Ignore results for 82 LPs with minimum solution time below 0.1s

hso1: Performance and reliability

Presolve

Prototype implementation of a full range of presolve techniques

Galabova (2016)

Crash

- Standard crash procedures are simple to implement
- Questionable value for dual simplex: dual steepest edge is expensive to initialise when B \neq I

Advanced basis start

- Essential for hsol to be used in MIP and SLP solvers
- Only complication is dual steepest edge

- Two parallel schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- High performance open-source parallel simplex solver in preparation

Slides: http://www.maths.ed.ac.uk/hall/NLAO_16/

Paper: Q. Huangfu and J. A. J. Hall Parallelizing the dual revised simplex method *Technical Report ERGO-14-011, School of Mathematics, University of Edinburgh, 2014 Accepted for publication in Mathematical Programming Computation*