High performance numerical linear algebra for the revised simplex method

Julian Hall¹ Qi Huangfu² Miles Lubin³ Ken McKinnon¹ Others

¹School of Mathematics, University of Edinburgh

 2 FICO

³Google

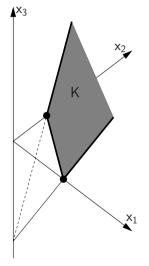
6th IMA Conference on Numerical Linear Algebra and Optimization

28 June 2018

Background

- Primal simplex algorithm
- Dual simplex algorithm
- NLA challenge
- Hyper-sparsity
- Novel update techniques
- Parallel solution of structured LP problems
- Parallel solution of general LP problems

Solving LP problems: Characterizing a basis



minimize $f = \boldsymbol{c}^T \boldsymbol{x}$ subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

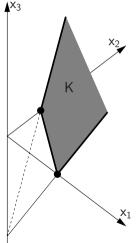
A vertex of the feasible region K ⊂ ℝⁿ has *m* basic components, *i* ∈ B given by Ax = b *n* − *m* zero nonbasic components, *j* ∈ N
where B ∪ N partitions {1,..., n}

• Equations partitioned according to $\mathcal{B} \cup \mathcal{N}$ as $B \boldsymbol{x}_{\scriptscriptstyle B} + N \boldsymbol{x}_{\scriptscriptstyle N} = \boldsymbol{b}$

with nonsingular basis matrix B

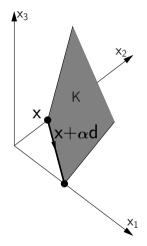
• Points $\mathbf{x} \in K$ characterized by $\mathbf{x}_{B} = \widehat{\mathbf{b}} - B^{-1}N\mathbf{x}_{N}$ for some $\mathbf{x}_{N} \ge \mathbf{0}$ where $\widehat{\mathbf{b}} = B^{-1}\mathbf{b}$

Solving LP problems: Optimality conditions



minimize
$$f = c^T x$$
 subject to $Ax = b$ $x \ge 0$
• Objective partitioned according to $\mathcal{B} \cup \mathcal{N}$ as
 $f = c_B^T x_B + c_N^T x_N$
 $= \widehat{f} + \widehat{c}_N^T x_N$
where $\widehat{f} = c_B^T \widehat{b}$ and $\widehat{c}_N^T = c_N^T - c_B^T B^{-1} N$
• Partition yields an optimal solution if there is
• Primal feasibility $\widehat{b} \ge 0$
• Dual feasibility $\widehat{c}_N \ge 0$

The simplex algorithm: Definition



- At a feasible vertex $\mathbf{x} = \begin{bmatrix} \hat{\mathbf{b}} \\ \mathbf{0} \end{bmatrix}$ corresponding to $\mathcal{B} \cup \mathcal{N}$ **1** If $\hat{c}_{N} > 0$ then stop: the solution is optimal 2 Scan $\hat{c}_i < 0$ for q to leave \mathcal{N} **3** Let $\widehat{\boldsymbol{a}}_q = B^{-1} N \boldsymbol{e}_q$ and $\boldsymbol{d} = \begin{bmatrix} -\widehat{\boldsymbol{a}}_q \\ \boldsymbol{e}_q \end{bmatrix}$ Scan $\hat{b}_i/\hat{a}_{ia} > 0$ for α and p to leave \mathcal{B} **5** Exchange p and q between \mathcal{B} and \mathcal{N}
 - 💿 Go to 1

Solving dual LP problems: Optimality conditions

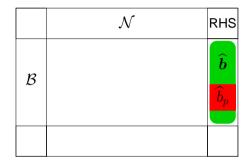
• Consider the **dual problem**

maximize
$$f_D = \boldsymbol{b}^T \boldsymbol{y}$$
 subject to $A^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c}$ $\boldsymbol{s} \ge \boldsymbol{0}$
• For partition $\mathcal{B} \cup \mathcal{N}$ of $\{1, \dots, n\}$
• $\boldsymbol{y} = B^{-T}(\boldsymbol{c}_B - \boldsymbol{s}_B)$
• $\boldsymbol{s} = \begin{bmatrix} \boldsymbol{s}_B \\ \boldsymbol{s}_N \end{bmatrix}$ for $\boldsymbol{s}_N = \hat{\boldsymbol{c}}_N + N^T B^{-T} \boldsymbol{s}_B$; some $\boldsymbol{s}_B \ge \boldsymbol{0}$
• Reduced objective is $f_D = \hat{f} - \hat{\boldsymbol{b}}^T \boldsymbol{s}_B$

- Solution is optimal if there is
 - Dual feasibility $\widehat{c}_{N} \geq 0$
 - Primal feasibility $\widehat{\boldsymbol{b}} \ge \boldsymbol{0}$
- Dual simplex algorithm for an LP is primal algorithm applied to the dual problem
- Structure of dual equations allows dual simplex algorithm to be applied to primal simplex tableau

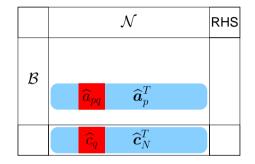
Assume $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$

Scan $\widehat{b}_i < 0$ for p to leave \mathcal{B}

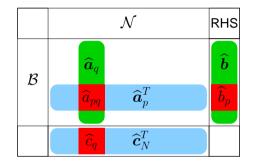


Assume $\widehat{\boldsymbol{c}}_{N} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$

 $\begin{array}{l} \text{Scan } \widehat{b}_i < 0 \text{ for } p \text{ to leave } \mathcal{B} \\ \text{Scan } \widehat{c}_j / \widehat{a}_{pj} < 0 \text{ for } q \text{ to leave } \mathcal{N} \end{array}$



Assume $\widehat{c}_N \geq 0$ Seek $\widehat{b} \geq 0$ Scan $\widehat{b}_i < 0$ for p to leave \mathcal{B} Scan $\widehat{c}_j / \widehat{a}_{pj} < 0$ for q to leave \mathcal{N} Update: Exchange p and q between \mathcal{B} and \mathcal{N} Update $\widehat{b} := \widehat{b} - \alpha_P \widehat{a}_q$ $\alpha_P = \widehat{b}_p / \widehat{a}_{pq}$ Update $\widehat{c}_N^T := \widehat{c}_N^T + \alpha_D \widehat{a}_p^T$ $\alpha_D = -\widehat{c}_q / \widehat{a}_{pq}$

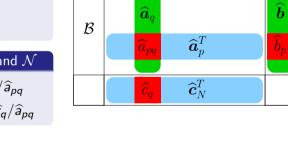


Assume $\widehat{c}_{N} \geq 0$ Seek $\widehat{b} \geq 0$ Scan $\widehat{b}_{i} < 0$ for p to leave \mathcal{B} Scan $\widehat{c}_{j}/\widehat{a}_{pj} < 0$ for q to leave \mathcal{N} Update: Exchange p and q between \mathcal{B} and \mathcal{N}

Update
$$\mathbf{b} := \mathbf{b} - \alpha_P \widehat{\mathbf{a}}_q$$
 $\alpha_P = b_P / \widehat{\mathbf{a}}_{Pq}$
Update $\widehat{\mathbf{c}}_N^T := \widehat{\mathbf{c}}_N^T + \alpha_D \widehat{\mathbf{a}}_P^T$ $\alpha_D = -\widehat{\mathbf{c}}_q / \widehat{\mathbf{a}}_{Pq}$

• Pivotal row
$$\widehat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T} B^{-1} N$$

• Pivotal column
$$\widehat{m{a}}_q = B^{-1}m{a}_q$$



 \mathcal{N}

RHS

Primal simplex algorithm

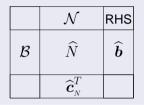
- Traditional variant
- Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

- Preferred variant
- Easier to get dual feasibility
- More progress in many iterations
- Solution dual feasible when primal LP is tightened

Simplex method: Computation

Standard simplex method (SSM): Major computational component



Update of tableau:
$$\widehat{N}:=\widehat{N}-rac{1}{\widehat{a}_{pq}}\widehat{a}_{q}\widehat{a}_{p}^{T}$$
 where $\widehat{N}=B^{-1}N$

• Hopelessly inefficient for sparse LP problems

• Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

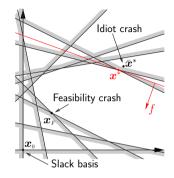
Pivotal row via $B^T \pi_p = e_p$ BTRANand $\widehat{a}_p^T = \pi_p^T N$ PRICEPivotal column via $B \, \widehat{a}_q = a_q$ FTRANRepresent B^{-1} INVERTUpdate B^{-1} exploiting $\overline{B} = B + (a_q - Be_p)e_p^T$ UPDATE

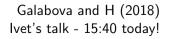
- Given initial ${\cal B}$ with nonsingular ${\cal B}$
- Each iteration:
 - Solve $B\widehat{\boldsymbol{a}}_q = \boldsymbol{a}_q$
 - Solve $B^T \pi_p = e_p$
 - Column p of B replaced by \boldsymbol{a}_q to give $\bar{B} = B + (\boldsymbol{a}_q B\boldsymbol{e}_p)\boldsymbol{e}_p^T$
- Challenge:
 - $\bullet\,$ Choose initial ${\cal B}$
 - Form PBQ = LU
 - Solve Bx = b for sparse b
 - Solve $\bar{B} \mathbf{x} = \mathbf{b}$

NLA Challenge: Choose initial \mathcal{B}

Requirements of initial \mathcal{B}

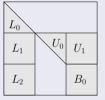
- Must be a useful starting point for the simplex algorithm
- Corresponding matrix B must be
 - Nonsingular
 - Well conditioned
 - Have sparse representation PBQ = LU
- "Slack" basis (B = I) is simple choice x_0
- Standard crash aims for feasible vertex x_F
- "ldiot" crash aims for near-optimal point $ar{x}^*$





Triangularisation

Identify row and column singletons until every active nonzero has positive Markowitz merit



Solve
$$B\mathbf{x} = \mathbf{r}$$
 as
 $L_0\mathbf{x}_L = \mathbf{r}_L$
 $B_0\mathbf{x}_0 = \mathbf{r}_0 - L_2\mathbf{x}_L$
 $U_0\mathbf{x}_U = \mathbf{r}_U - L_1\mathbf{x}_L - U_1\mathbf{x}_0$

- LP basis matrices are typically **highly reducible**: $\dim(B_0) \ll m$
- For network flow problems B is provably triangularisable

NLA Challenge: Solve $\bar{B}x = r$ using the product form update (PFI)

Each iteration: Exchange p and q between \mathcal{B} and \mathcal{N}

- Column *p* of *B* replaced by \boldsymbol{a}_q to give $\bar{B} = B + (\boldsymbol{a}_q B\boldsymbol{e}_p)\boldsymbol{e}_p^T$
- Take B out as a factor on the left

$$\bar{B} = B[I + (B^{-1}\boldsymbol{a}_q - \boldsymbol{e}_p)\boldsymbol{e}_p^T] = BE$$

where $E = I + (\widehat{\boldsymbol{a}}_q - \boldsymbol{e}_p)\boldsymbol{e}_p^T = \begin{bmatrix} 1 & \eta_1 & & \\ \ddots & \vdots & & \\ & \mu & & \\ & \vdots & \ddots & \\ & \eta_m & & 1 \end{bmatrix}$

 $\mu = \hat{a}_{pq}$ is the **pivot**; remaining entries in \hat{a}_q form the **eta vector** η • Can solve $\bar{B}x = r$ as Bx = r then $x := E^{-1}x$ as

 $x_{m{p}} := x_{m{p}}/\mu$ then $m{x} := m{x} - x_{m{p}}m{\eta}$

Dantzig and Orchard-Hays (1954)

NLA Challenge: Solve $\bar{B}x = r$ using the Forrest-Tomlin update (FT)

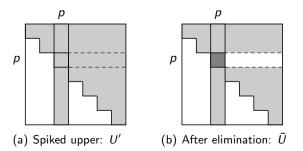
• Given

$$ar{B} = B + (oldsymbol{a}_q - Boldsymbol{e}_p)oldsymbol{e}_p^{T}$$
 where (wlog) $B = LU$

• Multiply \bar{B} by L^{-1} to give

$$L^{-1}\bar{B} = U + (L^{-1}\boldsymbol{a}_q - U\boldsymbol{e}_p)\boldsymbol{e}_p^T = U + (\tilde{\boldsymbol{a}}_q - \boldsymbol{u}_p)\boldsymbol{e}_p^T = U' \quad (a)$$

• Eliminate entries in row p to give $R^{-1}U' = \bar{U}$ (b)



- Yields $\bar{B} = LR\bar{U}$
- Compute \widetilde{a}_q when forming \widehat{a}_q
- Represent R like E
- FT more efficient than PFI with respect to sparsity

Forrest and Tomlin (1972)

NLA Challenge: Hyper-sparsity

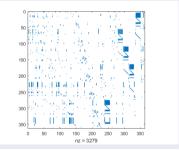
• Given B = LU, solve

$$L\mathbf{y} = \mathbf{r}; \quad U\mathbf{x} = \mathbf{y}$$

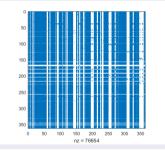
- In revised simplex method, r is sparse: consequences?
 - If *B* is irreducible then *x* is full
 - If B is highly reducible then x can be sparse
- Phenomenon of hyper-sparsity
 - Exploit it when forming x
 - Exploit it when using **x**

Inverse of a sparse matrix and solution of $B\mathbf{x} = \mathbf{r}$

Optimal B for LP problem stair

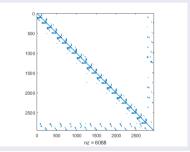


 B^{-1} has density of 58%, so $B^{-1}\mathbf{r}$ is typically dense

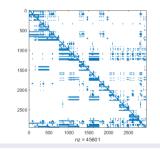


Inverse of a sparse matrix and solution of $B\mathbf{x} = \mathbf{r}$

Optimal B for LP problem pds-02



 B^{-1} has density of 0.52%, so $B^{-1}r$ is typically sparse—when r is sparse



- Use solution of $L \mathbf{x} = \mathbf{b}$
 - To illustrate the phenomenon of hyper-sparsity
 - To demonstrate how to exploit hyper-sparsity
- Apply principles to other triangular solves in the simplex method

Recall: Solve Lx = b using

function ftranL(
$$L$$
, \boldsymbol{b} , \boldsymbol{x})
 $\boldsymbol{r} = \boldsymbol{b}$
for all $j \in \{1, \dots, m\}$ do
for all $i : L_{ij} \neq 0$ do
 $r_i = r_i - L_{ij}r_j$
 $\boldsymbol{x} = \boldsymbol{r}$

When **b** is **sparse**

• Inefficient until r fills in

Better: Check r_j for zero

$$\begin{aligned} \mathbf{function ftranL}(L, \mathbf{b}, \mathbf{x}) \\ \mathbf{r} &= \mathbf{b} \\ \mathbf{for all } j \in \{1, \dots, m\} \ \mathbf{do} \\ & \mathbf{if } r_j \neq 0 \ \mathbf{then} \\ & \mathbf{for all } i : L_{ij} \neq 0 \ \mathbf{do} \\ & r_i &= r_i - L_{ij}r_j \\ \mathbf{x} &= \mathbf{r} \end{aligned}$$

When *x* is **sparse**

- Few values of r_j are nonzero
- Check for zero dominates
- Requires more efficient identification of set X of indices j such that r_j ≠ 0

Gilbert and Peierls (1988) H and McKinnon (1998–2005)

NLA Challenge: Hyper-sparsity

Recall: major computational components

- FTRAN: Form $\widehat{a}_q = B^{-1} a_q$
- BTRAN: Form $\pi_p = B^{-T} \boldsymbol{e}_p$
- **PRICE**: Form $\widehat{\boldsymbol{a}}_p^T = \pi_p^T N$

BTRAN: Form $\pi_p = B^{-T} \boldsymbol{e}_p$

- Transposed triangular solves
- $L^T \mathbf{x} = \mathbf{b}$ has $x_i = b_i \mathbf{I}_i^T \mathbf{x}$
 - Hyper-sparsity: $\boldsymbol{I}_i^T \boldsymbol{x}$ typically zero
 - Also store *L* (and *U*) row-wise and use FTRAN code

PRICE: Form
$$\widehat{\boldsymbol{a}}_p^T = \pi_p^T N$$

- Hyper-sparsity: π_p^T is sparse
- Store N row-wise
- Form *a*^T_p as a combination of rows of N for nonzeros in π^T_p

H and McKinnon (1998-2005)

NLA Challenge: Novel update techniques

NLA Challenge: Alternative product form update

- **Recall:** Column *p* of *B* is replaced by \boldsymbol{a}_q to give $\bar{B} = B + (\boldsymbol{a}_q B\boldsymbol{e}_p)\boldsymbol{e}_p^T$
 - Traditional PFI takes B out as a factor on the left so $\bar{B} = BE$
- Idea: Why not take it out on the right!

$$ar{B} = [I + (oldsymbol{a}_q - Boldsymbol{e}_p)oldsymbol{e}_p^TB^{-1}]B = TB$$

where $T = I + (oldsymbol{a}_q - oldsymbol{a}_{p'})oldsymbol{\widehat{e}}_p^T$

• *T* is formed of known data and readily invertible (like *E* for PFI) Naturally compute \hat{e}_p when solving $B^T \pi_p = e_p$

NLA Challenge: Middle product form update

- **Recall:** Column p of B is replaced by \boldsymbol{a}_q to give $\bar{B} = B + (\boldsymbol{a}_q B\boldsymbol{e}_p)\boldsymbol{e}_p^T$
- Idea: Substitute B = LU and take factors L on the left and U on the right!

$$\begin{split} \bar{B} &= LU + (\boldsymbol{a}_q - B\boldsymbol{e}_p)\boldsymbol{e}_p^T \\ &= LU + LL^{-1}(\boldsymbol{a}_q - B\boldsymbol{e}_p)\boldsymbol{e}_p^T U^{-1}U \\ &= L[I + (\widetilde{\boldsymbol{a}}_q - U\boldsymbol{e}_p)\widetilde{\boldsymbol{e}}_p^T]U \\ &= LMU \quad \text{where} \quad M = I + (\widetilde{\boldsymbol{a}}_q - \boldsymbol{u}_p)\widetilde{\boldsymbol{e}}_p^T \end{split}$$

• *M* is formed of known data and readily invertible (like *E* for PFI) Naturally compute \tilde{a}_q when solving $B \hat{a}_q = a_q$ and \tilde{e}_p when solving $B^T \pi_p = e_p$

- Update Forrest-Tomlin representation of B after multiple basis changes
- Don't have data to perform a sequence of standard FT updates
- Have to perform elimination corresponding to multiple spikes

Huangfu and H (2013)

NLA Challenge: Parallel solution of structured LP problems

NLA Challenge: Parallel solution of stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

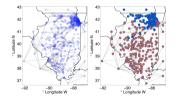
- Variables $x_0 \in \mathbb{R}^{n_0}$ are first stage decisions
- Variables $\mathbf{x}_i \in \mathbb{R}^{n_i}$ for i = 1, ..., N are second stage decisions Each corresponds to a scenario which occurs with modelled probability
- The objective is the expected cost of the decisions
- In stochastic MIP problems, some/all decisions are discrete

NLA Challenge: Parallel solution of stochastic MIP problems

- Power systems optimization project at Argonne
- Integer second-stage decisions
- Stochasticity from wind generation
- Solution via branch-and-bound
 - Solve root using parallel IPM solver PIPS

Lubin, Petra et al. (2011)

• Solve nodes using parallel dual simplex solver PIPS-S

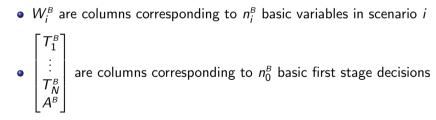


Convenient to permute the LP thus:

PIPS-S: Exploiting problem structure

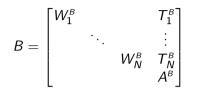
• Inversion of the basis matrix B is key to revised simplex efficiency

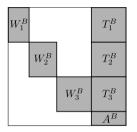
$$B = \begin{bmatrix} W_1^B & & T_1^B \\ & \ddots & & \vdots \\ & & W_N^B & T_N^B \\ & & & A^B \end{bmatrix}$$



PIPS-S: Exploiting problem structure

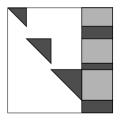
• Inversion of the basis matrix B is key to revised simplex efficiency





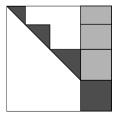
- B is nonsingular so
 - $W_i^{\scriptscriptstyle B}$ are "tall": full column rank
 - $\begin{bmatrix} W_i^B & T_i^B \end{bmatrix}$ are "wide": full row rank
 - $A^{\scriptscriptstyle B}$ is "wide": full row rank
- Scope for parallel inversion is immediate and well known

• Eliminate sub-diagonal entries in each $W_i^{\scriptscriptstyle B}$ (independently)



• Apply elimination operations to each T_i^B (independently)

 Accumulate non-pivoted rows from the W^B_i with A^B and complete elimination



Scope for parallelism

- Parallel Gaussian elimination yields **block LU** decomposition of B
- Scope for parallelism in block forward and block backward substitution
- Scope for parallelism in PRICE

Implementation

- Distribute problem data over processes
- Perform data-parallel BTRAN, FTRAN and PRICE over processes
- Used MPI

Lubin, H, Petra and Anitescu (2013)

PIPS-S: Results

On Fusion cluster: Performance relative to clp										
	Dimension	Cores	Storm	SSN	UC12	UC24				
	$m+n=O(10^6)$	1 32	0.34 8.5		0.17 2.4					
	$m+n=O(10^7)$	256	299	45	67	68				

On Blue Gene

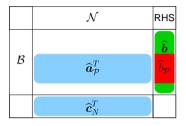
- Instance of UC12
- $m + n = O(10^8)$
- Requires 1 TB of RAM
- Runs from an advanced basis

Cores	Iterations	Time (h)	lter/sec
1024	Exceeded	execution t	ime limit
2048	82,638	6.14	3.74
4096	75,732	5.03	4.18
8192	86,439	4.67	5.14

NLA Challenge: Parallel solution of general LP problems

NLA Challenge: Parallel solution of general LP problems

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial



- Task-parallel multiple BTRAN to form $m{\pi}_{\mathcal{P}}=B^{-T}m{e}_{\mathcal{P}}$
- Data-parallel PRICE to form \widehat{a}_{p}^{T} (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates
- Novel update techniques for minor iterations

Huangfu and H (2011-2014)

NLA Challenge: HiGHS (2011-date)

Overview

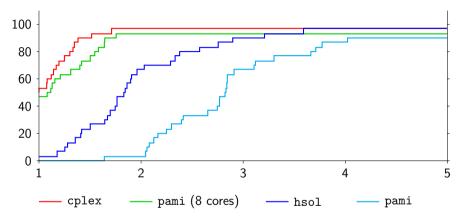
- Written in C++ to study parallel simplex
- Dual simplex with steepest edge and BFRT
- Forrest-Tomlin update
 - complex and inherently serial
 - efficient and numerically stable

Concept

- High performance serial solver (hsol)
- Exploit limited task and data parallelism in standard dual RSM iterations (sip)
- Exploit greater task and data parallelism via minor iterations of dual SSM (pami)
- Test-bed for research
- Work-horse for consultancy

Huangfu, H and Galabova (2011-date)

HiGHS: cplex vs pami vs hsol



- pami is less efficient than hsol in serial
- pami speedup more than compensates
- pami performance approaching cplex

HiGHS: Impact



- pami ideas incorporated in FICO Xpress (Huangfu 2014)
- Xpress has been the fastest simplex solver for most of the past five years

To close

Conclusions

- Revised simplex method offers NLA challenges
- Novel techniques of practical value are hard to find but get noticed
- Look for alternative algorithms for fast (approximate) solution of LPs

Slides:

http://www.maths.ed.ac.uk/hall/NLAO18

Code:

https://github.com/ERGO-Code/HiGHS

I. L. Galabova and J. A. J. Hall.

A quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems.

Technical Report ERGO-18-009, School of Mathematics, University of Edinburgh, 2018.

J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to exploit it.

Computational Optimization and Applications, 32(3):259–283, December 2005.

Q. Huangfu and J. A. J. Hall.

Novel update techniques for the revised simplex method. Computational Optimization and Applications, 60(4):587–608, 2015.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. *Mathematical Programming Computation*, 10(1):119–142, 2018.

M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.

Parallel distributed-memory simplex for large-scale stochastic LP problems.

Computational Optimization and Applications, 55(3):571–596, 2013.