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Solving LP problems: Characterizing a basis

x2

x3

x1

K

minimize f = cTx subject to Ax = b x ≥ 0

A vertex of the feasible region K ⊂ Rn has

m basic components, i ∈ B given by Ax = b
n −m zero nonbasic components, j ∈ N

where B ∪N partitions {1, . . . , n}

Equations partitioned according to B ∪N as

BxB + NxN = b
with nonsingular basis matrix B

Points x ∈ K characterized by

xB = b̂ − B−1NxN for some xN ≥ 0

where b̂ = B−1b
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Solving LP problems: Optimality conditions

x2

x3

x1

K

minimize f = cTx subject to Ax = b x ≥ 0

Objective partitioned according to B ∪N as

f = cT
B xB + cT

N xN

= f̂ + ĉT
N xN

where f̂ = cT
B b̂ and ĉT

N = cT
N − cT

B B
−1N

Partition yields an optimal solution if there is

Primal feasibility b̂ ≥ 0
Dual feasibility ĉN ≥ 0
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The simplex algorithm: Definition

x+αd
x

x2

x3

x1

K

At a feasible vertex x =

[
b̂
0

]
corresponding to B ∪N

1 If ĉN ≥ 0 then stop: the solution is optimal

2 Scan ĉj < 0 for q to leave N

3 Let âq = B−1Neq and d =

[
−âq

eq

]

4 Scan b̂i/âiq > 0 for α and p to leave B
5 Exchange p and q between B and N
6 Go to 1
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Solving dual LP problems: Optimality conditions

Consider the dual problem

maximize fD = bTy subject to ATy + s = c s ≥ 0

For partition B ∪N of {1, . . . , n}
y = B−T (cB − sB)

s =

[
sB

sN

]
for sN = ĉN + NTB−T sB ; some sB ≥ 0

Reduced objective is fD = f̂ − b̂
T
sB

Solution is optimal if there is
Dual feasibility ĉN ≥ 0

Primal feasibility b̂ ≥ 0

Dual simplex algorithm for an LP is primal algorithm applied to the dual problem

Structure of dual equations allows dual simplex algorithm to be applied to primal
simplex tableau
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Dual simplex algorithm: Choose a row

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B

RHS

b̂

b̂p

N

B

Julian Hall, Qi Huangfu, Miles Lubin, Ken McKinnon High performance NLA for the revised simplex method 7 / 44



Dual simplex algorithm: Choose a column

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âT
p

ĉTN

âpq

ĉq

N

B
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Dual simplex algorithm: Update cost and RHS

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq
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Dual simplex algorithm: Data required

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N

Pivotal column âq = B−1aq
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Solving LP problems: Primal or dual simplex?

Primal simplex algorithm

Traditional variant

Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

Preferred variant

Easier to get dual feasibility

More progress in many iterations

Solution dual feasible when primal LP is tightened
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Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âqâT

p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âT
p = πT

p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Update B−1 exploiting B̄ = B + (aq − Bep)eT
p UPDATE
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NLA Challenge

Given initial B with nonsingular B

Each iteration:
Solve B âq = aq

Solve BTπp = ep

Column p of B replaced by aq to give B̄ = B + (aq − Bep)eT
p

Challenge:
Choose initial B
Form PBQ = LU

Solve Bx = b for sparse b
Solve B̄x = b
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NLA Challenge: Choose initial B

Requirements of initial B
Must be a useful starting point for the simplex
algorithm

Corresponding matrix B must be

Nonsingular
Well conditioned
Have sparse representation PBQ = LU

Idiot crash

Feasibility crash

Slack basis

f

x∗

xF

x̄∗

x0

“Slack” basis (B = I ) is simple choice x 0

Standard crash aims for feasible vertex xF

“Idiot” crash aims for near-optimal point x̄∗

Galabova and H (2018)
Ivet’s talk - 15:40 today!
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NLA Challenge: Form PBQ = LU

Triangularisation

Identify row and
column singletons until
every active nonzero
has positive Markowitz
merit

L1

L2

U1

B0

L0

U0

Solve Bx = r as
L0xL = rL

B0x0 = r0 − L2xL

U0xU = rU − L1xL − U1x0

LP basis matrices are typically highly reducible: dim(B0)� m

For network flow problems B is provably triangularisable
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NLA Challenge: Solve B̄x = r using the product form update (PFI)

Each iteration: Exchange p and q between B and N
Column p of B replaced by aq to give B̄ = B + (aq − Bep)eT

p

Take B out as a factor on the left

B̄ = B[I + (B−1aq − ep)eT
p ] = BE

where E = I + (âq − ep)eT
p =




1 η1
. . .

...
µ
...

. . .
ηm 1




µ = âpq is the pivot; remaining entries in âq form the eta vector η

Can solve B̄x = r as Bx = r then x := E−1x as

xp := xp/µ then x := x − xpη

Dantzig and Orchard-Hays (1954)
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NLA Challenge: Solve B̄x = r using the Forrest-Tomlin update (FT)

Given
B̄ = B + (aq − Bep)eT

p where (wlog) B = LU

Multiply B̄ by L−1 to give

L−1B̄ = U + (L−1aq − Uep)eT
p = U + (ãq − up)eT

p = U ′ (a)

Eliminate entries in row p to give R−1U ′ = Ū (b)

p

p

(a) Spiked upper: U ′

p

p

(b) After elimination: Ū

Yields B̄ = LRŪ

Compute ãq when forming âq

Represent R like E

FT more efficient than PFI with
respect to sparsity

Forrest and Tomlin (1972)
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NLA Challenge: Hyper-sparsity



NLA Challenge: Solve Bx = r for sparse r

Given B = LU, solve
Ly = r ; Ux = y

In revised simplex method, r is sparse: consequences?

If B is irreducible then x is full
If B is highly reducible then x can be sparse

Phenomenon of hyper-sparsity
Exploit it when forming x
Exploit it when using x
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NLA Challenge: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem stair B−1 has density of 58%, so B−1r is

typically dense
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NLA Challenge: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem pds-02 B−1 has density of 0.52%, so B−1r

is typically sparse—when r is sparse
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NLA Challenge: Hyper-sparsity

Use solution of Lx = b
To illustrate the phenomenon of hyper-sparsity
To demonstrate how to exploit hyper-sparsity

Apply principles to other triangular solves in the simplex method
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NLA Challenge: Hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

for all i : Lij 6= 0 do
ri = ri − Lij rj

x = r

When b is sparse

Inefficient until r fills in
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NLA Challenge: Hyper-sparsity

Better: Check rj for zero

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

if rj 6= 0 then
for all i : Lij 6= 0 do

ri = ri − Lij rj
x = r

When x is sparse

Few values of rj are nonzero

Check for zero dominates

Requires more efficient identification
of set X of indices j such that rj 6= 0

Gilbert and Peierls (1988)
H and McKinnon (1998–2005)
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NLA Challenge: Hyper-sparsity

Recall: major computational components

FTRAN: Form âq = B−1aq

BTRAN: Form πp = B−Tep

PRICE: Form âT
p = πT

p N

BTRAN: Form πp = B−Tep

Transposed triangular solves

LTx = b has xi = bi − lTi x
Hyper-sparsity: lTi x typically zero
Also store L (and U) row-wise and
use FTRAN code

PRICE: Form âT
p = πT

p N

Hyper-sparsity: πT
p is sparse

Store N row-wise

Form âT
p as a combination of

rows of N for nonzeros in πT
p

H and McKinnon (1998–2005)
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NLA Challenge: Novel update techniques



NLA Challenge: Alternative product form update

Recall: Column p of B is replaced by aq to give B̄ = B + (aq − Bep)eT
p

Traditional PFI takes B out as a factor on the left so B̄ = BE

Idea: Why not take it out on the right!

B̄ = [I + (aq − Bep)eT
p B
−1]B = TB

where T = I + (aq − ap′)êT
p

T is formed of known data and readily invertible (like E for PFI)
Naturally compute êp when solving BTπp = ep
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NLA Challenge: Middle product form update

Recall: Column p of B is replaced by aq to give B̄ = B + (aq − Bep)eT
p

Idea: Substitute B = LU and take factors L on the left and U on the right!

B̄ = LU + (aq − Bep)eT
p

= LU + LL−1(aq − Bep)eT
p U
−1U

= L[I + (ãq − Uep)ẽT
p ]U

= LMU where M = I + (ãq − up)ẽT
p

M is formed of known data and readily invertible (like E for PFI)
Naturally compute ãq when solving B âq = aq and ẽp when solving BTπp = ep
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NLA Challenge: Collective Forrest-Tomlin update

Update Forrest-Tomlin representation of B after multiple basis changes

Don’t have data to perform a sequence of standard FT updates

Have to perform elimination corresponding to multiple spikes

Huangfu and H (2013)
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NLA Challenge: Parallel solution of structured LP problems



NLA Challenge: Parallel solution of stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + . . . + cT

NxN

subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables x i ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete
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NLA Challenge: Parallel solution of stochastic MIP problems

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S

Julian Hall, Qi Huangfu, Miles Lubin, Ken McKinnon High performance NLA for the revised simplex method 32 / 44



PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

minimize cT
1 x1 + cT

2 x2 + . . . + cT
NxN + cT

0 x0

subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i



T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions

.
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known

.
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PIPS-S: Exploiting problem structure

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination
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PIPS-S: Overview

Scope for parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for parallelism in block forward and block backward substitution

Scope for parallelism in PRICE

Implementation

Distribute problem data over processes

Perform data-parallel BTRAN, FTRAN and PRICE over processes

Used MPI

Lubin, H, Petra and Anitescu (2013)
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PIPS-S: Results

On Fusion cluster: Performance relative to clp

Dimension Cores Storm SSN UC12 UC24

m + n = O(106)
1 0.34 0.22 0.17 0.08

32 8.5 6.5 2.4 0.7

m + n = O(107) 256 299 45 67 68

On Blue Gene

Instance of UC12

m + n = O(108)

Requires 1 TB of RAM

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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NLA Challenge: Parallel solution of general LP problems



NLA Challenge: Parallel solution of general LP problems

Perform standard dual simplex minor iterations for rows in set P (|P| � m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−TeP
Data-parallel PRICE to form âT

p (as required)

Task-parallel multiple FTRAN for primal, dual and weight updates

Novel update techniques for minor iterations

Huangfu and H (2011–2014)
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NLA Challenge: HiGHS (2011–date)

Overview

Written in C++ to study parallel simplex

Dual simplex with steepest edge and BFRT

Forrest-Tomlin update

complex and inherently serial
efficient and numerically stable

Concept

High performance serial solver (hsol)

Exploit limited task and data parallelism in standard dual RSM iterations (sip)

Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Test-bed for research

Work-horse for consultancy
Huangfu, H and Galabova (2011–date)
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HiGHS: cplex vs pami vs hsol

1 2 3 4 5
0

20

40

60

80

100

cplex pami (8 cores) hsol pami

pami is less efficient than hsol in serial

pami speedup more than compensates

pami performance approaching cplex

Julian Hall, Qi Huangfu, Miles Lubin, Ken McKinnon High performance NLA for the revised simplex method 42 / 44



HiGHS: Impact

1 1.25 1.5 1.75 2
0

20

40

60

80

100

cplex xpress xpress (8 cores)

pami ideas incorporated in FICO Xpress (Huangfu 2014)

Xpress has been the fastest simplex solver for most of the past five years
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To close

Conclusions

Revised simplex method offers NLA
challenges

Novel techniques of practical value are
hard to find but get noticed

Look for alternative algorithms for fast
(approximate) solution of LPs

Slides:
http://www.maths.ed.ac.uk/hall/NLAO18

Code:
https://github.com/ERGO-Code/HiGHS
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