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Block angular linear programming (BALP) problems)

minimize cTx
subject to Ax ≤ b x ≥ 0

A =


A01 A02 . . . A0r

A1

A2

. . .

Ar


Structure

The linking rows are
[
A01 A02 . . . A0r

]
The diagonal blocks are

[
A11 A22 . . . Arr

]
Diagonal blocks can be many or few; dense or sparse

Origin

Occur naturally in (eg) decentralised planning and
multicommodity flow
BALP structure can be identified in general sparse LPs
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pds-02: 3518 rows, 7535 columns, 11 diagonal blocks

Source: Patient Distribution System, Carolan et al. (1990)

J. A. J. Hall and E. Smith Parallel revised simplex for primal block angular LP problems



Diagonal block of pds-02
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dcp1: 4950 rows, 3007 columns, 87 diagonal blocks

Source: Industrial, Hall (1997)
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BALP form of general LP problems

A general LP problem may be partitioned into BALP form
Ferris and Horn (1998)

Apply a graph partitioning algorithm to the matrix A

Remove rows and columns until remaining partitions are
disjoint

Order A according to partition with removed rows and
columns in a border

A =


A00 A01 A02 . . . A0r

A10 A11

A20 A22
...

. . .

Ar0 A0r


Remove linking columns by splitting
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Example

Matrix...

1 2 3 4 5 6 7 8
1 ? ?
2 ? ? ?
3 ? ? ? ? ? ?
4 ? ? ?
5 ? ? ?
6 ? ?

... with bipartite graph...

1

2

3

4

5

6

8

7

6

5

4

3

2

1

... partitioned...

5 2 8 6

7

6

3

2 1 54

3

4 1

A

B

... and borderised...

5 2 8 6

7

6

3

2 1 54

3

4 1

A

B

0
p
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Example (cont.)

... yields arrow-head form

7 2 4 5 1 3 6 8
3 ? ? ? ? ? ? p0
4 ? ? ? A
6 ? ? A
1 ? ? B
2 ? ? ? B
5 ? ? ? B

p0 A A A B B B B

Split the linking column

Add duplicate variable x9

Add row 7: x7 − x9 = 0

Yields row-linked BALP form

2 4 5 7 1 3 6 8 9
7 ? ?
3 ? ? ? ? ? ?
4 ? ? ?
6 ? ?
1 ? ?
2 ? ? ?
5 ? ? ?
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Revised simplex method (RSM)

minimize cTx
subject to Ax = b x ≥ 0

RSM: Major computational components

Factorise B

Solve Bx = r

Solve BTy = d

Form z = NTy

where [B : N] is a partition of A

(Data) parallel RSM for general LP problems

Factorisation and solving the systems are “hard” to parallelise

Forming z = NTy is “easy” to parallelise

(eg) Forrest and Tomlin (1990), Shu (1995), Wunderling (1996), H and McKinnon (1996, 1998), Bixby and Martin

(2000), H (2010), H and Huangfu (2012)
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Revised simplex method for BALP problems

Matrices B and N in the revised simplex method inherit
structure of A

B =


B00 B01 . . . B0r

B11

. . .

Brr

 N =


N00 N01 . . . N0r

N11

. . .

Nrr


Operations with B and N must exploit its structure

(eg) Lasdon (1970)
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Factorising B

Factorisation must exploit the structure of

B =


B00 B01 . . . B0r

B11

. . .

Brr


Partition of Bii as

[
Ri Ti

]
with Ti nonsingular is guaranteed

Yields structure
S0 S1 . . . Sr C1 . . . Cr

R1 T1

. . .
. . .

Rr Tr


More simply, write B =

[
S C
R T

]
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Factorising B

For B =

[
S C
R T

]
S is (hopefully!) small and square

C is unstructured and rectangular

R is block-rectangular

T is block-diagonal

Consider decomposition[
S C
R T

]
=

[
I C

T

] [
W

R̂ I

]
R̂ = T−1R has the same structure as R

W = S − CT−1R is the Schur complement of T

To solve systems involving B requires operations with

matrices C and R̂
factored representations of T and W
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On R̂ = T−1R

Use of R̂ = T−1R analogous to Block-LU update for general
simplex

Eldersveld and Saunders (1990)

Explicit R̂ = T−1R can be avoided
Replace each operation with R̂ (possibly dense) by

Operation with T−1 (again)
Operation with R (sparse)

analogous to Schur complement update for general simplex
Bisschop and Meeraus (1977)

But overhead of R̂ is very small, so use it
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Alternative decompositions

Alternative Block LU[
S C
R T

]
=

[
W Ĉ

I

] [
I
R T

]
where Ĉ = CT−1

Less attractive since (unlike R̂) Ĉ is not structured

LU + Schur complement[
S C
R T

]
=

[
W C̃

L

] [
I

R̃ U

]
where T = LU, C̃ = CU−1 and R̃ = L−1R
Possibly attractive, but

C̃ and R̃ may have greater cumulative fill-in than R̂

Operations with T−1 are no longer a “black box”
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Solving Bx = r

The system

[
S C
R T

] [
x1

x•

]
=

[
r1
r•

]
may be solved as

Solve Tz = r•
Form w = r1 − Cz
Solve W x1 = w

Form x• = z− R̂x1

In detail

Solve Tizi = ri i = 1, . . . , r

Form w = r1 −
r∑

i=1

Cizi

Solve W x1 = w

Form xi = zi − R̂ix1 i = 1, . . . , r

Looks parallel
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Solving BTy = d

The system

[
ST RT

CT TT

] [
y1

y•

]
=

[
d1

d•

]
may be solved as

Form w = d1 − R̂Td•
Solve W Ty1 = w
Form z = d• − CTy1

Solve TTy• = z

In detail

Form w = d1 −
r∑

i=1

R̂T
i di

Solve W Ty1 = w
Form zi = di − CT

i y1 i = 1, . . . , r
Solve TT

i yi = zi i = 1, . . . , r

Looks parallel
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Forming z = NTy

The matrix N has structure

N =


N00 N01 . . . N0r

N11

. . .

Nrr


Form z = NTy as

Form z0 = NT
00y0

Form zi = NT
0i y0 + NT

ii yi i = 1, . . . , r

Looks parallel
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Factorising B

General structure

B =


S0 S1 . . . Sr C1 . . . Cr

R1 T1

. . .
. . .

Rr Tr


For i = 1, . . . , r

Identify
[
Ri Ti

]
from Bii

Form R̂i = T−1
i Ri

Form Wi = Si − Ci R̂i

Factorise W =
[
S0 W1 . . . Wr

]
Looks parallel
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Updating B

Each simplex iteration aq replaces column p of B

B := B + (aq − Bep)eT
p

Decision

Leave B−1 as “black box” and use traditional simplex update?
Update structure of B and update T , R̂, C , S , W and
factorisations of T and W ?

Chose latter

Novel serial update techniques for W
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Results: Solution time speed-up

Comparison of

Serial solver on general problem (S)

Exploiting 16-block structure in serial (S16)

Exploiting 16-block structure in parallel (P16)
Problem Rows Columns S16 vs S P16 vs S16 P16 vs S
80bau3b 2263 9799 0.4 1.0 0.4
fit2p 3001 13525 1.3 1.1 1.5
perold 626 1376 0.5 1.0 0.5
stocfor2 2158 2031 1.3 0.8 1.0
stocfor3 16676 15695 2.0 1.2 2.4
cre-b 9649 72447 0.3 1.1 0.4
cre-c 3069 3678 0.8 1.2 1.0
ken-13 28633 42659 1.1 1.0 1.1
ken-18 105128 154699 1.3 0.9 1.2
osa-30 4351 100024 1.2 1.1 1.3
osa-60 10281 232966 0.9 1.1 1.0
pds-20 33875 105728 1.1 0.9 0.9
pds-40 66844 212859 0.8 1.2 1.0
stormg2-27 14441 34114 0.7 0.8 0.5
stormg2-125 66186 157496 0.9 0.5 0.5
neos1 131581 1892 2.6 1.1 2.9
Average 1.0 1.0 1.0

Using two AMD Opteron (2378) quad-core processors and 16GiB of RAM
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Results: Why are they not better? (1)

Code efficiency

Code is very efficient in serial: competitive with Clp

Inefficient code would speed up better, but never “catch up”

RHS structure fully exploited

For Bx = r: r is usually nonzero only in one block so

Tizi = ri , i = 1, . . . , r is usually Tqzq = rq, some q

For BTy = d: d is usually nonzero only in one block so

w = d1 −
r∑

i=1

R̂T
i di is usually w = −R̂T

p dp, some p
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Results: Why are they not better? (2)

Deduced BALP structure may be poor

B =

[
S C
R T

]
has significant for some problems

Operations with W = S − CT−1R are serial

Shared memory access overhead

Typically only one calculation for each data access

Computation is memory-bound in serial

AMD Opteron 2378 has only 2 memory channels per processor

J. A. J. Hall and E. Smith Parallel revised simplex for primal block angular LP problems



Observations

BALP structure is attractive in theory

Shared memory computation is memory bound

Distributed memory revised simplex for large BALP is more
promising

Lubin and H (2012)

Looking to parallelise operations with W

Hypergraph partitioning gives smaller border
Aykanat et al. (2004)

Awaiting results using

Two Intel Sandybridge octo-core processors
4 memory channels per processor
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