Parallel revised simplex for primal block angular LP problems

Julian Hall and Edmund Smith

School of Mathematics University of Edinburgh jajhall@ed.ac.uk

28th June 2012

- Block angular LP (BALP) problems and their identification
- Computational components of the revised simplex method
- Exploiting parallelism via BALP structure
- Results
- Observations

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} \leq \mathbf{b} \quad \mathbf{x} \geq \mathbf{0}$ $A = \begin{bmatrix} A_{01} & A_{02} & \dots & A_{0r} \\ A_1 & & & & \\ & A_2 & & & \\ & & \ddots & & \\ & & & & A_r \end{bmatrix}$

- Structure
 - The linking rows are $\begin{bmatrix} A_{01} & A_{02} & \dots & A_{0r} \end{bmatrix}$
 - The diagonal blocks are $\begin{bmatrix} A_{11} & A_{22} & \dots & A_{rr} \end{bmatrix}$
 - Diagonal blocks can be many or few; dense or sparse
- Origin
 - Occur naturally in (eg) decentralised planning and multicommodity flow
 - BALP structure can be identified in general sparse LPs

pds-02: 3518 rows, 7535 columns, 11 diagonal blocks

Source: Patient Distribution System, Carolan et al. (1990)

J. A. J. Hall and E. Smith Parallel revised simplex for primal block angular LP problems

Diagonal block of pds-02

dcp1: 4950 rows, 3007 columns, 87 diagonal blocks

Source: Industrial, Hall (1997)

BALP form of general LP problems

A general LP problem may be partitioned into BALP form Ferris and Horn (1998)

- Apply a graph partitioning algorithm to the matrix A
- Remove rows and columns until remaining partitions are disjoint
- Order A according to partition with removed rows and columns in a border

$$A = \begin{bmatrix} A_{00} & A_{01} & A_{02} & \dots & A_{0r} \\ A_{10} & A_{11} & & & & \\ A_{20} & & A_{22} & & \\ \vdots & & & \ddots & \\ A_{r0} & & & & A_{0r} \end{bmatrix}$$

• Remove linking columns by splitting

Example

Matrix...

... with bipartite graph...

... partitioned...

... and borderised...

... yields arrow-head form

- Add duplicate variable x₉
- Add row 7: $x_7 x_9 = 0$
- Yields row-linked BALP form

Revised simplex method (RSM)

RSM: Major computational components

• Factorise B

• Solve
$$B^T \mathbf{y} = \mathbf{d}$$

• Form
$$\mathbf{z} = N' \mathbf{y}$$

where [B:N] is a partition of A

(Data) parallel RSM for general LP problems

• Factorisation and solving the systems are "hard" to parallelise

• Forming $\mathbf{z} = N^T \mathbf{y}$ is "easy" to parallelise

(eg) Forrest and Tomlin (1990), Shu (1995), Wunderling (1996), H and McKinnon (1996, 1998), Bixby and Martin (2000), H (2010), H and Huangfu (2012)

Revised simplex method for BALP problems

• Matrices *B* and *N* in the revised simplex method inherit structure of *A*

$$B = \begin{bmatrix} B_{00} & B_{01} & \dots & B_{0r} \\ B_{11} & & & \\ & & \ddots & \\ & & & B_{rr} \end{bmatrix} \qquad N = \begin{bmatrix} N_{00} & N_{01} & \dots & N_{0r} \\ & N_{11} & & & \\ & & \ddots & & \\ & & & N_{rr} \end{bmatrix}$$

• Operations with *B* and *N* must exploit its structure (eg) Lasdon (1970) • Factorisation must exploit the structure of

$$B = \begin{bmatrix} B_{00} & B_{01} & \dots & B_{0r} \\ & B_{11} & & & \\ & & \ddots & & \\ & & & & B_{rr} \end{bmatrix}$$

- Partition of B_{ii} as $\begin{bmatrix} R_i & T_i \end{bmatrix}$ with T_i nonsingular is guaranteed
- Yields structure

$$\begin{bmatrix} S_0 & S_1 & \dots & S_r & C_1 & \dots & C_r \\ \hline & R_1 & & T_1 & & \\ & & \ddots & & & \ddots & \\ & & & R_r & & T_r \end{bmatrix}$$

• More simply, write
$$B = \begin{bmatrix} S & C \\ R & T \end{bmatrix}$$

Factorising B

For
$$B = \begin{bmatrix} S & C \\ R & T \end{bmatrix}$$

- S is (hopefully!) small and square
- C is unstructured and rectangular
- R is block-rectangular
- T is block-diagonal

Consider decomposition

$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} = \begin{bmatrix} I & C \\ & T \end{bmatrix} \begin{bmatrix} W \\ \hat{R} & I \end{bmatrix}$$

- $\hat{R} = T^{-1}R$ has the same structure as R
- $W = S CT^{-1}R$ is the **Schur complement** of *T*
- To solve systems involving B requires operations with
 - matrices C and \hat{R}
 - \bullet factored representations of ${\cal T}$ and ${\cal W}$

• Use of $\hat{R} = T^{-1}R$ analogous to Block-LU update for general simplex

Eldersveld and Saunders (1990)

- Explicit $\hat{R} = T^{-1}R$ can be avoided Replace each operation with \hat{R} (possibly dense) by
 - Operation with T^{-1} (again)
 - Operation with *R* (sparse)

analogous to Schur complement update for general simplex Bisschop and Meeraus (1977)

• But overhead of \hat{R} is very small, so use it

Alternative Block LU

$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} = \begin{bmatrix} W & \hat{C} \\ I \end{bmatrix} \begin{bmatrix} I \\ R & T \end{bmatrix}$$

where $\hat{C} = CT^{-1}$ Less attractive since (unlike \hat{R}) \hat{C} is not structured

LU + Schur complement

$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} = \begin{bmatrix} W & \tilde{C} \\ & L \end{bmatrix} \begin{bmatrix} I \\ \tilde{R} & U \end{bmatrix}$$

where T = LU, $\tilde{C} = CU^{-1}$ and $\tilde{R} = L^{-1}R$ Possibly attractive, but

- \tilde{C} and \tilde{R} may have greater cumulative fill-in than \hat{R}
- Operations with T^{-1} are no longer a "black box"

Solving $B\mathbf{x} = \mathbf{r}$

• The system
$$\begin{bmatrix} S & C \\ R & T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_{\bullet} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_{\bullet} \end{bmatrix}$$
 may be solved as
Solve $T\mathbf{z} = \mathbf{r}_{\bullet}$
Form $\mathbf{w} = \mathbf{r}_1 - C\mathbf{z}$
Solve $W\mathbf{x}_1 = \mathbf{w}$
Form $\mathbf{x}_{\bullet} = \mathbf{z} - \hat{R}\mathbf{x}_1$

• In detail

Solve
$$T_i \mathbf{z}_i = \mathbf{r}_i$$
 $i = 1, ..., r$
Form $\mathbf{w} = \mathbf{r}_1 - \sum_{i=1}^r C_i \mathbf{z}_i$
Solve $W \mathbf{x}_1 = \mathbf{w}$
Form $\mathbf{x}_i = \mathbf{z}_i - \hat{R}_i \mathbf{x}_1$ $i = 1, ..., r$

Looks parallel

Solving $B^T \mathbf{y} = \mathbf{d}$

• The system
$$\begin{bmatrix} S^T & R^T \\ C^T & T^T \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_{\bullet} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_{\bullet} \end{bmatrix}$$
 may be solved as
Form $\mathbf{w} = \mathbf{d}_1 - \hat{R}^T \mathbf{d}_{\bullet}$
Solve $W^T \mathbf{y}_1 = \mathbf{w}$
Form $\mathbf{z} = \mathbf{d}_{\bullet} - C^T \mathbf{y}_1$
Solve $T^T \mathbf{y}_{\bullet} = \mathbf{z}$

In detail

Form
$$\mathbf{w} = \mathbf{d}_1 - \sum_{i=1}^{r} \hat{R}_i^T \mathbf{d}_i$$

Solve $W^T \mathbf{y}_1 = \mathbf{w}$
Form $\mathbf{z}_i = \mathbf{d}_i - C_i^T \mathbf{y}_1$ $i = 1, \dots, r$
Solve $T_i^T \mathbf{y}_i = \mathbf{z}_i$ $i = 1, \dots, r$

• Looks parallel

Forming $\mathbf{z} = N^T \mathbf{y}$

• The matrix N has structure

$$N = \begin{bmatrix} N_{00} & N_{01} & \dots & N_{0r} \\ & N_{11} & & & \\ & & \ddots & \\ & & & & N_{rr} \end{bmatrix}$$

• Form $\mathbf{z} = N^T \mathbf{y}$ as

Form
$$\mathbf{z}_0 = N_{00}^T \mathbf{y}_0$$

Form $\mathbf{z}_i = N_{0i}^T \mathbf{y}_0 + N_{ii}^T \mathbf{y}_i$ $i = 1, \dots, r$

Looks parallel

• General structure

$$B = \begin{bmatrix} S_0 & S_1 & \dots & S_r & C_1 & \dots & C_r \\ \hline R_1 & & & T_1 & & \\ & \ddots & & & \ddots & \\ & & & R_r & & & T_r \end{bmatrix}$$

• For
$$i = 1, ..., r$$

• Identify $\begin{bmatrix} R_i & T_i \end{bmatrix}$ from B_{ii}
• Form $\hat{R}_i = T_i^{-1}R_i$
• Form $W_i = S_i - C_i\hat{R}_i$
• Factorise $W = \begin{bmatrix} S_0 & W_1 & \dots & W_r \end{bmatrix}$

Looks parallel

• Each simplex iteration \mathbf{a}_q replaces column p of B

$$B := B + (\mathbf{a}_q - B\mathbf{e}_p)\mathbf{e}_p^T$$

- Decision
 - Leave B^{-1} as "black box" and use traditional simplex update?
 - Update structure of B and update T, \hat{R} , C, S, W and factorisations of T and W?
- Chose latter
- Novel serial update techniques for W

Comparison of

- Serial solver on general problem (S)
- Exploiting 16-block structure in serial (S16)
- Exploiting 16-block structure in parallel (P16)

Problem	Rows	Columns	S16 vs S	P16 vs S16	P16 vs S
80bau3b	2263	9799	0.4	1.0	0.4
FIT2P	3001	13525	1.3	1.1	1.5
PEROLD	626	1376	0.5	1.0	0.5
stocfor2	2158	2031	1.3	0.8	1.0
STOCFOR3	16676	15695	2.0	1.2	2.4
CRE-B	9649	72447	0.3	1.1	0.4
CRE-C	3069	3678	0.8	1.2	1.0
KEN-13	28633	42659	1.1	1.0	1.1
KEN-18	105128	154699	1.3	0.9	1.2
osa-30	4351	100024	1.2	1.1	1.3
OSA-60	10281	232966	0.9	1.1	1.0
PDS-20	33875	105728	1.1	0.9	0.9
PDS-40	66844	212859	0.8	1.2	1.0
stormg2-27	14441	34114	0.7	0.8	0.5
stormg2-125	66186	157496	0.9	0.5	0.5
NEOS1	131581	1892	2.6	1.1	2.9
Average			1.0	1.0	1.0

Using two AMD Opteron (2378) quad-core processors and 16GiB of RAM

Code efficiency

- Code is very efficient in serial: competitive with Clp
- Inefficient code would speed up better, but never "catch up"

RHS structure fully exploited

• For $B\mathbf{x} = \mathbf{r}$: \mathbf{r} is usually nonzero only in one block so

$$T_i \mathbf{z}_i = \mathbf{r}_i, i = 1, \dots, r$$
 is usually $T_q \mathbf{z}_q = \mathbf{r}_q$, some q

• For $B^T \mathbf{y} = \mathbf{d}$: **d** is usually nonzero only in one block so

$$\mathbf{w} = \mathbf{d}_1 - \sum_{i=1}^r \hat{R}_i^T \mathbf{d}_i$$
 is usually $\mathbf{w} = -\hat{R}_p^T \mathbf{d}_p$, some p

Deduced BALP structure may be poor

•
$$B = \begin{bmatrix} S & C \\ R & T \end{bmatrix}$$
 has significant for some problems

• Operations with $W = S - CT^{-1}R$ are serial

Shared memory access overhead

- Typically only one calculation for each data access
- Computation is memory-bound in serial
- AMD Opteron 2378 has only 2 memory channels per processor

- BALP structure is attractive in theory
- Shared memory computation is memory bound
- Distributed memory revised simplex for large BALP is more promising

Lubin and H (2012)

- \bullet Looking to parallelise operations with W
- Hypergraph partitioning gives smaller border

Aykanat et al. (2004)

- Awaiting results using
 - Two Intel Sandybridge octo-core processors
 - 4 memory channels per processor