
The practical revised simplex method (Part 2)

Julian Hall

School of Mathematics

University of Edinburgh

January 25th 2007

The practical revised simplex method



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1

◦ Strategies for CHUZC



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1

◦ Strategies for CHUZC

◦ Partial pricing



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1

◦ Strategies for CHUZC

◦ Partial pricing

◦ Hyper-sparsity



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1

◦ Strategies for CHUZC

◦ Partial pricing

◦ Hyper-sparsity

• Parallel simplex



Overview (Part 2)

• Practical implementation of the revised simplex method

◦ Representation of B−1

◦ Strategies for CHUZC

◦ Partial pricing

◦ Hyper-sparsity

• Parallel simplex

• Research frontiers

The practical revised simplex method 1



Representing B−1

• The key to the efficiency of the revised simplex method is the representation of B−1.



Representing B−1

• The key to the efficiency of the revised simplex method is the representation of B−1.

• Periodically: INVERT operation determines representation of B−1 using Gaussian elimination



Representing B−1

• The key to the efficiency of the revised simplex method is the representation of B−1.

• Periodically: INVERT operation determines representation of B−1 using Gaussian elimination

• Each iteration: UPDATE operation updates representation of B−1 according to

B
−1

:=

 
I −

(âq − ep)e
T
p

âpq

!
B

−1

The practical revised simplex method 2



INVERT

• The representation of B−1 is based on LU decomposition from Gaussian elimination.

• Classical factors B = LU fill in.

• Perform row and column interchanges to maintain sparsity: yields PBQ = LU .



INVERT

• The representation of B−1 is based on LU decomposition from Gaussian elimination.

• Classical factors B = LU fill in.

• Perform row and column interchanges to maintain sparsity: yields PBQ = LU .

◦ Markowitz pivot selection criterion (1957) preserves sparsity well.



INVERT

• The representation of B−1 is based on LU decomposition from Gaussian elimination.

• Classical factors B = LU fill in.

• Perform row and column interchanges to maintain sparsity: yields PBQ = LU .

◦ Markowitz pivot selection criterion (1957) preserves sparsity well.

◦ Tomlin pivot selection criterion (1972) more efficient for most LP basis matrices.



INVERT

• The representation of B−1 is based on LU decomposition from Gaussian elimination.

• Classical factors B = LU fill in.

• Perform row and column interchanges to maintain sparsity: yields PBQ = LU .

◦ Markowitz pivot selection criterion (1957) preserves sparsity well.

◦ Tomlin pivot selection criterion (1972) more efficient for most LP basis matrices.

• Permutations P and Q can be absorbed into the ordering of basic variables and constraints.

The practical revised simplex method 3



Tomlin INVERT
1 Find identity columns in B



Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero



Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero

2b Find rows with only one nonzero



Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero

2b Find rows with only one nonzero

3 Factorise the “bump” using GE



Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero

2b Find rows with only one nonzero

3 Factorise the “bump” using GE

• Efficiency depends on the bump being small



Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero

2b Find rows with only one nonzero

3 Factorise the “bump” using GE

• Efficiency depends on the bump being small

• For many practical LP problems there is little or no bump

The practical revised simplex method 4



Using B = LU from Gaussian elimination

• Gaussian elimination yields

B = LU where L =

2664
1

. . .

1

l1 . . . ln−1 1

3775 and U =

2664
u11 u2 . . . un

u22
. . .

unn

3775



Using B = LU from Gaussian elimination

• Gaussian elimination yields

B = LU where L =

2664
1

. . .

1

l1 . . . ln−1 1

3775 and U =

2664
u11 u2 . . . un

u22
. . .

unn

3775

• Bx = r is solved by solving Ly = r and Ux = y.



Using B = LU from Gaussian elimination

• Gaussian elimination yields

B = LU where L =

2664
1

. . .

1

l1 . . . ln−1 1

3775 and U =

2664
u11 u2 . . . un

u22
. . .

unn

3775

• Bx = r is solved by solving Ly = r and Ux = y.

• In practice, r is transformed into x as follows.

r := r − rklk k = 1, . . . , n − 1;

rk :=
rk

ukk

, r := r − rkuk k = n, . . . , 2;

r1 :=
r1

u11

.

The practical revised simplex method 5



LU factors as a product of elementary matrices

B = LU may be written as

B = (

n−1Y
k=1

Lk)(

nY
k=1

Uk)

where

Lk =

26666664

1
. . .

1

1

lk
. . .

1

37777775 and Uk =

2666666664

1
. . . uk

1

ukk

1
. . .

1

3777777775
.



LU factors as a product of elementary matrices

B = LU may be written as

B = (

n−1Y
k=1

Lk)(

nY
k=1

Uk)

where

Lk =

26666664

1
. . .

1

1

lk
. . .

1

37777775 and Uk =

2666666664

1
. . . uk

1

ukk

1
. . .

1

3777777775
.

So

B
−1

= (
nY

k=1

U
−1
k )(

n−1Y
k=1

L
−1
k )

The practical revised simplex method 6



Product form and the eta file

• In general, B−1 =

1Y
k=KI

E
−1
k where

E
−1
k =

26666666664

1 −ηk
1

. . . ...

1 −ηk
pk−1

1

−ηk
pk+1 1
... . . .

−ηk
m 1

37777777775

2666666664

1
. . .

1

µk

1
. . .

1

3777777775
.



Product form and the eta file

• In general, B−1 =

1Y
k=KI

E
−1
k where

E
−1
k =

26666666664

1 −ηk
1

. . . ...

1 −ηk
pk−1

1

−ηk
pk+1 1
... . . .

−ηk
m 1

37777777775

2666666664

1
. . .

1

µk

1
. . .

1

3777777775
.

• The pivot is µk; the index of the pivotal row is pk.



Product form and the eta file

• In general, B−1 =

1Y
k=KI

E
−1
k where

E
−1
k =

26666666664

1 −ηk
1

. . . ...

1 −ηk
pk−1

1

−ηk
pk+1 1
... . . .

−ηk
m 1

37777777775

2666666664

1
. . .

1

µk

1
. . .

1

3777777775
.

• The pivot is µk; the index of the pivotal row is pk.

• The set {pk, µk, ηk}
KI
k=1 is known as the eta file.

The practical revised simplex method 7



Eta file from Tomlin INVERT

The practical revised simplex method 8



Eta file (25fv47)

Basis matrix is of dimension is 821; bump is of dimension 411

The practical revised simplex method 9



Eta file (stair)

Basis matrix is of dimension is 356; bump is of dimension 324

The practical revised simplex method 10



Eta file (sgpf5y6)

Basis matrix is of dimension is 246077; bump is of dimension 32

The practical revised simplex method 11



Using the eta file

• The solution of Bx = r is formed by transforming r into x as follows.

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI.



Using the eta file

• The solution of Bx = r is formed by transforming r into x as follows.

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI.

This requires a sparse eta-vector to be added to r (up to) KI times.



Using the eta file

• The solution of Bx = r is formed by transforming r into x as follows.

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI.

This requires a sparse eta-vector to be added to r (up to) KI times.

• The solution of BTx = r is (rTB−1)T and is formed by transforming r into x as follows.

rpk
:= µk(rpk

− r
T
ηk) k = KI, . . . , 1



Using the eta file

• The solution of Bx = r is formed by transforming r into x as follows.

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI.

This requires a sparse eta-vector to be added to r (up to) KI times.

• The solution of BTx = r is (rTB−1)T and is formed by transforming r into x as follows.

rpk
:= µk(rpk

− r
T
ηk) k = KI, . . . , 1

This requires the inner product between a sparse eta-vector and r (up to) KI times.

The practical revised simplex method 12



UPDATE

Update of B−1 defined by

B−1 :=

„
I − (âq−ep)eT

p
âpq

«
B−1



UPDATE

Update of B−1 defined by

B−1 :=

„
I − (âq−ep)eT

p
âpq

«
B−1

=

2666666664

1 −â1q
. . . ...

1 −âp−1 q

1

−âp+1 q 1
... . . .

−âmq 1

3777777775

2666666664

1
. . .

1

1/âpq

1
. . .

1

3777777775
B−1



UPDATE

Update of B−1 defined by

B−1 :=

„
I − (âq−ep)eT

p
âpq

«
B−1

=

2666666664

1 −â1q
. . . ...

1 −âp−1 q

1

−âp+1 q 1
... . . .

−âmq 1

3777777775

2666666664

1
. . .

1

1/âpq

1
. . .

1

3777777775
B−1

= E−1
k B−1

for pk = p, µk = 1/âpq and ηk = âq − âpqep.

The practical revised simplex method 1



UPDATE (cont.)

• In general, KU UPDATEs after INVERT

B
−1

=

1Y
k=KI+KU

E
−1
k



UPDATE (cont.)

• In general, KU UPDATEs after INVERT

B
−1

=

1Y
k=KI+KU

E
−1
k

• Periodically it will more efficient, or necessary for numerical stability, to re-INVERT.

• Note that KU � KI = O(m)

The practical revised simplex method 2



FTRAN and BTRAN

Using the representation

B
−1

=

1Y
k=KI+KU

E
−1
k



FTRAN and BTRAN

Using the representation

B
−1

=

1Y
k=KI+KU

E
−1
k

• The pivotal column âq = B−1aq is formed by transforming r = aq into âq by the FTRAN
operation

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI + KU .



FTRAN and BTRAN

Using the representation

B
−1

=

1Y
k=KI+KU

E
−1
k

• The pivotal column âq = B−1aq is formed by transforming r = aq into âq by the FTRAN
operation

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI + KU .

• The vector πT = eT
p B−1 required to find the pivotal row is formed by transforming r = ep

into π by the BTRAN operation

rpk
:= µk(rpk

− r
T
ηk) k = KI + KU , . . . , 1.

The practical revised simplex method 3



Strategies for CHUZC

‘Most negative reduced cost’ rule is not the best.

Example:

minimize f = −2x1 − x2

subject to 100x1 + x2 ≤ 1

x1 ≥ 0 and x2 ≥ 0.



Strategies for CHUZC

‘Most negative reduced cost’ rule is not the best.

Example:

minimize f = −2x1 − x2

subject to 100x1 + x2 ≤ 1

x1 ≥ 0 and x2 ≥ 0.

Slack variable y1 puts problem in standard form

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

The practical revised simplex method 4



Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Reduced costs are
−2 for x1

−1 for x2



Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Reduced costs are
−2 for x1

−1 for x2

• x1 is best under Dantzig rule but a unit change in x1 requires a change of −100 in y1.

• Problem solved in two iterations.

The practical revised simplex method 5



The practical revised simplex method 6



Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Rates of change of objective are

−2/
√

1 + 1002 ≈ −0.02 for x1

−1/
√

1 + 1 ≈ −0.71 for x2



Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Rates of change of objective are

−2/
√

1 + 1002 ≈ −0.02 for x1

−1/
√

1 + 1 ≈ −0.71 for x2

• x2 is best under steepest edge rule.

• Problem solved in one iteration.

The practical revised simplex method 7



Edge selection strategies

• ‘Most negative reduced cost’ rule (Dantzig)



Edge selection strategies

• ‘Most negative reduced cost’ rule (Dantzig)

• ‘Greatest reduction’ rule (1951)

◦ Too expensive in practice



Edge selection strategies

• ‘Most negative reduced cost’ rule (Dantzig)

• ‘Greatest reduction’ rule (1951)

◦ Too expensive in practice

• ‘Steepest Edge’ (1963)

◦ Updates exact step lengths

◦ Requires extra BTRAN and PRICE each iteration

◦ Prohibitively expensive start-up cost unless B = I initially



Edge selection strategies

• ‘Most negative reduced cost’ rule (Dantzig)

• ‘Greatest reduction’ rule (1951)

◦ Too expensive in practice

• ‘Steepest Edge’ (1963)

◦ Updates exact step lengths

◦ Requires extra BTRAN and PRICE each iteration

◦ Prohibitively expensive start-up cost unless B = I initially

• ‘Devex’ (1965)

◦ Updates approximate step lengths

◦ No additional calculation

◦ No start-up cost

The practical revised simplex method 8



Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559



Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559

• PRICE completely dominates solution time



Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559

• PRICE completely dominates solution time

• Simplex method only needs to choose an attractive column, not necessarily the best



Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559

• PRICE completely dominates solution time

• Simplex method only needs to choose an attractive column, not necessarily the best

• Compute only a small subset of the reduced costs



Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559

• PRICE completely dominates solution time

• Simplex method only needs to choose an attractive column, not necessarily the best

• Compute only a small subset of the reduced costs

• Number of iterations may increase but each iteration is vastly faster

The practical revised simplex method 9



Hyper-sparsity

• Hyper-sparsity exists when

◦ the pivotal column âq = B−1aq is sparse; (FTRAN)



Hyper-sparsity

• Hyper-sparsity exists when

◦ the pivotal column âq = B−1aq is sparse; (FTRAN)

◦ the π vector πT = eT
p B−1 is sparse; (BTRAN)



Hyper-sparsity

• Hyper-sparsity exists when

◦ the pivotal column âq = B−1aq is sparse; (FTRAN)

◦ the π vector πT = eT
p B−1 is sparse; (BTRAN)

◦ the pivotal row âT
p = πTN is sparse. (PRICE)



Hyper-sparsity

• Hyper-sparsity exists when

◦ the pivotal column âq = B−1aq is sparse; (FTRAN)

◦ the π vector πT = eT
p B−1 is sparse; (BTRAN)

◦ the pivotal row âT
p = πTN is sparse. (PRICE)

• Exploit hyper-sparsity both when forming and using these vectors.

See

J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and how to

exploit it. Computational Optimization and Applications 32(3), 259-283, 2005.

The practical revised simplex method 10



Hyper-sparsity in FTRAN

• FTRAN forms âq = B−1aq using r = aq in

do 10, k = 1, KI + KU

if (rpk
.eq. 0) go to 10

rpk
:= µkrpk

r := r − rpk
ηk

10 continue



Hyper-sparsity in FTRAN

• FTRAN forms âq = B−1aq using r = aq in

do 10, k = 1, KI + KU

if (rpk
.eq. 0) go to 10

rpk
:= µkrpk

r := r − rpk
ηk

10 continue

• When âq is sparse, most of the work of FTRAN is the test for zero!



Hyper-sparsity in FTRAN

• FTRAN forms âq = B−1aq using r = aq in

do 10, k = 1, KI + KU

if (rpk
.eq. 0) go to 10

rpk
:= µkrpk

r := r − rpk
ηk

10 continue

• When âq is sparse, most of the work of FTRAN is the test for zero!

Remedy:

Identify the INVERT etas to be applied by

◦ knowing etas associated with a nonzero in a particular row Hall and McKinnon (1999)



Hyper-sparsity in FTRAN

• FTRAN forms âq = B−1aq using r = aq in

do 10, k = 1, KI + KU

if (rpk
.eq. 0) go to 10

rpk
:= µkrpk

r := r − rpk
ηk

10 continue

• When âq is sparse, most of the work of FTRAN is the test for zero!

Remedy:

Identify the INVERT etas to be applied by

◦ knowing etas associated with a nonzero in a particular row Hall and McKinnon (1999)

◦ representing etas as a graph and perform a depth-first search Gilbert and Peierls (1988)

The practical revised simplex method 11



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue

• When π is sparse, almost all operations in BTRAN are with zeros



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue

• When π is sparse, almost all operations in BTRAN are with zeros

Remedy:

◦ Store INVERT etas row-wise

◦ Use special techniques developed for FTRAN

The practical revised simplex method 12



Hyper-sparsity in PRICE

• PRICE forms âT
p = πTN

• When π is sparse, components of âp are inner products between two sparse vectors



Hyper-sparsity in PRICE

• PRICE forms âT
p = πTN

• When π is sparse, components of âp are inner products between two sparse vectors

• Most operations are with zeros



Hyper-sparsity in PRICE

• PRICE forms âT
p = πTN

• When π is sparse, components of âp are inner products between two sparse vectors

• Most operations are with zeros

Remedy:

◦ Store N row-wise

◦ Form âT
p by combining rows of N corresponding to nonzeros in π.

The practical revised simplex method 13



Parallelising the simplex method

Parallel architectures

Distributed Memory



Parallelising the simplex method

Parallel architectures

Distributed Memory

Shared Memory

The practical revised simplex method 14



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise

◦ BTRAN, FTRAN and INVERT are sequential



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise

◦ BTRAN, FTRAN and INVERT are sequential

• Hall and McKinnon (1995)

◦ ParLP: n-processor asynchronous (Dantzig)

◦ Speed-up factor: 2.5–4.8



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise

◦ BTRAN, FTRAN and INVERT are sequential

• Hall and McKinnon (1995)

◦ ParLP: n-processor asynchronous (Dantzig)

◦ Speed-up factor: 2.5–4.8

• Wunderling (1996)

◦ SMoPlex: 2-processor synchronous (Steepest Edge)

◦ Speed-up factor: 0.75–1.4



Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise

◦ BTRAN, FTRAN and INVERT are sequential

• Hall and McKinnon (1995)

◦ ParLP: n-processor asynchronous (Dantzig)

◦ Speed-up factor: 2.5–4.8

• Wunderling (1996)

◦ SMoPlex: 2-processor synchronous (Steepest Edge)

◦ Speed-up factor: 0.75–1.4

• Hall and McKinnon (1996–97)

◦ PARSMI: n-processor asynchronous (Devex)

◦ Speed-up factor: 1.7–1.9

The practical revised simplex method 15



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP

• Parallel simplex

◦ SYNPLEX: stable synchronous version of PARSMI

∗ Implemented but needs improvements and/or parallel INVERT



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP

• Parallel simplex

◦ SYNPLEX: stable synchronous version of PARSMI

∗ Implemented but needs improvements and/or parallel INVERT

◦ Parallel Tomlin INVERT

∗ Serial simulation for hyper-sparse LPs gives very encouraging results.

∗ Parallel implementation due Summer 2007



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP

• Parallel simplex

◦ SYNPLEX: stable synchronous version of PARSMI

∗ Implemented but needs improvements and/or parallel INVERT

◦ Parallel Tomlin INVERT

∗ Serial simulation for hyper-sparse LPs gives very encouraging results.

∗ Parallel implementation due Summer 2007

◦ Parallel FTRAN and BTRAN



Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP

• Parallel simplex

◦ SYNPLEX: stable synchronous version of PARSMI

∗ Implemented but needs improvements and/or parallel INVERT

◦ Parallel Tomlin INVERT

∗ Serial simulation for hyper-sparse LPs gives very encouraging results.

∗ Parallel implementation due Summer 2007

◦ Parallel FTRAN and BTRAN

∗ Some scope for standard LPs

∗ Very challenging for hyper-sparse LPs!

The practical revised simplex method 16



Conclusions

The simplex method has been around for 60 years



Conclusions

The simplex method has been around for 60 years

• Value of method means that the computational state-of-the-art is very advanced



Conclusions

The simplex method has been around for 60 years

• Value of method means that the computational state-of-the-art is very advanced

• There is still scope for further improvements



Conclusions

The simplex method has been around for 60 years

• Value of method means that the computational state-of-the-art is very advanced

• There is still scope for further improvements

• Making advances is demanding but attracts attention!



Conclusions

The simplex method has been around for 60 years

• Value of method means that the computational state-of-the-art is very advanced

• There is still scope for further improvements

• Making advances is demanding but attracts attention!

Slides available as

http://www.maths.ed.ac.uk/hall/RealSimplex/

The practical revised simplex method 17


