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Representing B−1

• The key to the efficiency of the revised simplex method is the representation of B−1.

• Periodically: INVERT operation determines representation of B−1 using Gaussian elimination

• Each iteration: UPDATE operation updates representation of B−1 according to

B
−1

:=

 
I −

(âq − ep)e
T
p

âpq

!
B

−1
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INVERT

• The representation of B−1 is based on LU decomposition from Gaussian elimination.

• Classical factors B = LU fill in.

• Perform row and column interchanges to maintain sparsity: yields PBQ = LU .

◦ Markowitz pivot selection criterion (1957) preserves sparsity well.

◦ Tomlin pivot selection criterion (1972) more efficient for most LP basis matrices.

• Permutations P and Q can be absorbed into the ordering of basic variables and constraints.
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Tomlin INVERT
1 Find identity columns in B

2a Find columns with only one nonzero

2b Find rows with only one nonzero

3 Factorise the “bump” using GE

• Efficiency depends on the bump being small

• For many practical LP problems there is little or no bump
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Using B = LU from Gaussian elimination

• Gaussian elimination yields

B = LU where L =

2664
1

. . .

1

l1 . . . ln−1 1

3775 and U =

2664
u11 u2 . . . un

u22
. . .

unn

3775

• Bx = r is solved by solving Ly = r and Ux = y.

• In practice, r is transformed into x as follows.

r := r − rklk k = 1, . . . , n − 1;

rk :=
rk

ukk

, r := r − rkuk k = n, . . . , 2;

r1 :=
r1

u11

.
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LU factors as a product of elementary matrices
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LU factors as a product of elementary matrices

B = LU may be written as

B = (

n−1Y
k=1

Lk)(

nY
k=1

Uk)

where

Lk =

26666664

1
. . .

1

1

lk
. . .

1

37777775 and Uk =

2666666664

1
. . . uk

1

ukk

1
. . .

1

3777777775
.

So

B
−1

= (
nY

k=1

U
−1
k )(

n−1Y
k=1

L
−1
k )
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Product form and the eta file
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Product form and the eta file

• In general, B−1 =

1Y
k=KI

E
−1
k where

E
−1
k =

26666666664

1 −ηk
1

. . . ...

1 −ηk
pk−1

1

−ηk
pk+1 1
... . . .

−ηk
m 1

37777777775

2666666664

1
. . .

1

µk

1
. . .

1

3777777775
.

• The pivot is µk; the index of the pivotal row is pk.

• The set {pk, µk, ηk}
KI
k=1 is known as the eta file.
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Eta file from Tomlin INVERT
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Eta file (25fv47)

Basis matrix is of dimension is 821; bump is of dimension 411
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Eta file (stair)

Basis matrix is of dimension is 356; bump is of dimension 324
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Eta file (sgpf5y6)

Basis matrix is of dimension is 246077; bump is of dimension 32
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Using the eta file

• The solution of Bx = r is formed by transforming r into x as follows.

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI.

This requires a sparse eta-vector to be added to r (up to) KI times.

• The solution of BTx = r is (rTB−1)T and is formed by transforming r into x as follows.

rpk
:= µk(rpk

− r
T
ηk) k = KI, . . . , 1

This requires the inner product between a sparse eta-vector and r (up to) KI times.
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−âmq 1

3777777775

2666666664

1
. . .

1

1/âpq
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UPDATE

Update of B−1 defined by

B−1 :=

„
I − (âq−ep)eT

p
âpq

«
B−1

=

2666666664

1 −â1q
. . . ...

1 −âp−1 q

1

−âp+1 q 1
... . . .

−âmq 1

3777777775

2666666664

1
. . .

1

1/âpq

1
. . .

1

3777777775
B−1

= E−1
k B−1

for pk = p, µk = 1/âpq and ηk = âq − âpqep.
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UPDATE (cont.)
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UPDATE (cont.)

• In general, KU UPDATEs after INVERT

B
−1

=

1Y
k=KI+KU

E
−1
k

• Periodically it will more efficient, or necessary for numerical stability, to re-INVERT.

• Note that KU � KI = O(m)
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FTRAN and BTRAN

Using the representation

B
−1

=

1Y
k=KI+KU

E
−1
k

• The pivotal column âq = B−1aq is formed by transforming r = aq into âq by the FTRAN
operation

rpk
:= µkrpk

, r := r − rpk
ηk k = 1, . . . , KI + KU .

• The vector πT = eT
p B−1 required to find the pivotal row is formed by transforming r = ep

into π by the BTRAN operation

rpk
:= µk(rpk

− r
T
ηk) k = KI + KU , . . . , 1.
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Strategies for CHUZC

‘Most negative reduced cost’ rule is not the best.

Example:

minimize f = −2x1 − x2

subject to 100x1 + x2 ≤ 1

x1 ≥ 0 and x2 ≥ 0.

Slack variable y1 puts problem in standard form

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.
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Example (cont.)
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Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Reduced costs are
−2 for x1

−1 for x2

• x1 is best under Dantzig rule but a unit change in x1 requires a change of −100 in y1.

• Problem solved in two iterations.
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Example (cont.)

minimize f = −2x1 − x2

subject to 100x1 + x2 + y1 = 1

x1 ≥ 0, x2 ≥ 0 and y1 ≥ 0.

• Starting from logical basis y1 = 1:

• Rates of change of objective are

−2/
√

1 + 1002 ≈ −0.02 for x1

−1/
√

1 + 1 ≈ −0.71 for x2

• x2 is best under steepest edge rule.

• Problem solved in one iteration.
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Edge selection strategies

• ‘Most negative reduced cost’ rule (Dantzig)

• ‘Greatest reduction’ rule (1951)

◦ Too expensive in practice

• ‘Steepest Edge’ (1963)

◦ Updates exact step lengths

◦ Requires extra BTRAN and PRICE each iteration

◦ Prohibitively expensive start-up cost unless B = I initially

• ‘Devex’ (1965)

◦ Updates approximate step lengths

◦ No additional calculation

◦ No start-up cost
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Partial PRICE

• Some LP problems naturally have very many more columns than rows

Rows Columns Nonzeros Columns per row

Name (m) (n) (τ) (n/m) τ/m2

fit2d 25 10500 129018 420 206

nw04 36 87482 724148 2430 559

• PRICE completely dominates solution time

• Simplex method only needs to choose an attractive column, not necessarily the best

• Compute only a small subset of the reduced costs

• Number of iterations may increase but each iteration is vastly faster
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Hyper-sparsity

• Hyper-sparsity exists when

◦ the pivotal column âq = B−1aq is sparse; (FTRAN)

◦ the π vector πT = eT
p B−1 is sparse; (BTRAN)

◦ the pivotal row âT
p = πTN is sparse. (PRICE)

• Exploit hyper-sparsity both when forming and using these vectors.

See

J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method and how to

exploit it. Computational Optimization and Applications 32(3), 259-283, 2005.
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if (rpk
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rpk
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Hyper-sparsity in FTRAN

• FTRAN forms âq = B−1aq using r = aq in

do 10, k = 1, KI + KU

if (rpk
.eq. 0) go to 10

rpk
:= µkrpk

r := r − rpk
ηk

10 continue

• When âq is sparse, most of the work of FTRAN is the test for zero!

Remedy:

Identify the INVERT etas to be applied by

◦ knowing etas associated with a nonzero in a particular row Hall and McKinnon (1999)

◦ representing etas as a graph and perform a depth-first search Gilbert and Peierls (1988)

The practical revised simplex method 11



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue

• When π is sparse, almost all operations in BTRAN are with zeros



Hyper-sparsity in BTRAN

• BTRAN forms πT = eT
p B−1 using r = eT

p in

do 10, k = KI + KU, 1
rpk

:= µk(rpk
− rTηk)

10 continue

• When π is sparse, almost all operations in BTRAN are with zeros

Remedy:

◦ Store INVERT etas row-wise

◦ Use special techniques developed for FTRAN
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Hyper-sparsity in PRICE

• PRICE forms âT
p = πTN

• When π is sparse, components of âp are inner products between two sparse vectors

• Most operations are with zeros

Remedy:

◦ Store N row-wise

◦ Form âT
p by combining rows of N corresponding to nonzeros in π.
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Parallelising the simplex method

Parallel architectures

Distributed Memory

Shared Memory
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Progress to date

• Standard simplex method parallelises beautifully!

◦ Still slower than sequential revised simplex

• Revised simplex method viewed as sequential

◦ Computational components performed in sequence

◦ PRICE, CHUZC and CHUZR parallelise

◦ BTRAN, FTRAN and INVERT are sequential

• Hall and McKinnon (1995)

◦ ParLP: n-processor asynchronous (Dantzig)

◦ Speed-up factor: 2.5–4.8

• Wunderling (1996)

◦ SMoPlex: 2-processor synchronous (Steepest Edge)

◦ Speed-up factor: 0.75–1.4

• Hall and McKinnon (1996–97)

◦ PARSMI: n-processor asynchronous (Devex)

◦ Speed-up factor: 1.7–1.9
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Research frontiers

• Hypersparsity

◦ Column and row selection strategies to promote hypersparsity in the revised simplex method

∗ Very challenging

◦ Specialist variants of Gilbert-Peierls for LP

• Parallel simplex

◦ SYNPLEX: stable synchronous version of PARSMI

∗ Implemented but needs improvements and/or parallel INVERT

◦ Parallel Tomlin INVERT

∗ Serial simulation for hyper-sparse LPs gives very encouraging results.

∗ Parallel implementation due Summer 2007

◦ Parallel FTRAN and BTRAN

∗ Some scope for standard LPs

∗ Very challenging for hyper-sparse LPs!
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Conclusions

The simplex method has been around for 60 years

• Value of method means that the computational state-of-the-art is very advanced

• There is still scope for further improvements

• Making advances is demanding but attracts attention!

Slides available as

http://www.maths.ed.ac.uk/hall/RealSimplex/
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