
GPU acceleration of the matrix-free interior point

method

E. Smith, J. Gondzio and J. A. J. Hall∗

School of Mathematics
and Maxwell Institute for Mathematical Sciences

The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ

United Kingdom.

Technical Report ERGO-11-008†

12th May 2011

Abstract

Interior point methods (IPM) with direct solution of the underlying linear systems of
equations have been used successfully to solve very large scale linear programming (LP)
problems. However, the limitations of direct methods for some classes of problems have led
to iterative techniques being considered. The matrix-free method is one such approach and
is so named since the iterative solution procedure requires only the results of operations Ax
and AT y, where A is the matrix of constraint coefficients. Thus, in principle, it may be
applied to problems where A is not known and only an oracle is available for computing Ax
and AT y. Since the computational cost of these operations may well dominate the total
solution time for the problem, it is important that the techniques used to perform them are
efficient.

This paper outlines the matrix-free interior point method and, for several classes of LP
problems, demonstrates its overwhelmingly superior performance relative to the simplex
method and IPM with equations solved directly. The dominant cost of the operations Ax
and AT y motivates their implementation on a GPU to yield further performance gains.
Different computational schemes for these sparse matrix-vector products are discussed. A
comparison of the speed-up achieved using a many-core GPU implementation with that for
a multi-core CPU implementation indicates the former has better potential.

Keywords: Interior point methods, Linear programming, Matrix-free methods, Parallel sparse
linear algebra

∗Email: J.A.J.Hall@ed.ac.uk
†For other papers in this series see http://www.maths.ed.ac.uk/ERGO/

1



GPU acceleration of the matrix-free IPM 1

1 Introduction

Since they first appeared in 1984 [12], interior point methods (IPM) have been a viable alterna-
tive to the simplex method as a means of solving linear programming (LP) problems [17]. The
major computational cost of IPM is the direct solution of symmetric positive definite systems of
linear equations. However, the limitations of direct methods for some classes of problems have
led to iterative techniques being considered [2, 4, 13]. The matrix-free method of Gondzio [7]
is one such approach and is so named since the iterative solution procedure requires only the
results of products between the matrix of constraint coefficients and a (full) vector. This paper
demonstrates how the performance of the matrix-free IPM may be accelerated significantly us-
ing a Graphical Processing Unit (GPU) via techniques for sparse matrix-vector products that
exploit common structural features of LP constraint matrices.

Section 2 presents an outline of the matrix-free IPM that is sufficient to motivate its linear
algebra requirements. Results for three classes of LP problems demonstrate its overwhelmingly
superior performance relative to the simplex method and IPM with equations solved directly.
Further analysis shows that the computational cost of the matrix-free IPM on these problems is
dominated by the iterative solution of linear systems of equations which, in turn, is dominated
by the cost of matrix-vector products. Techniques for evaluating products with LP constraint
matrices on multi-core CPU and many-core GPU are developed in Section 3. These techniques
exploit commonly-occurring structural features of sparse LP constraint matrices. Results demon-
strate such acceleration in the evaluation of the matrix-vector products that there is a significant
speed-up in the overall solution time for the LP problems, with the GPU implementation of-
fering better potential for further performance enhancement. Conclusions and suggestions for
future work are offered in Section 4.

2 The matrix-free interior point method

The theory of interior point methods is founded on the following general primal-dual pair of
linear programming (LP) problems.

Primal Dual
min cT x max bT y
s. t. Ax = b s. t. AT y + s = c

x ≥ 0 y free, s ≥ 0,

(1)

where A ∈ IRm×n has full row rank m ≤ n, x, s, c ∈ IRn and y, b ∈ IRm. The first order
optimality conditions for these problems can be written as

Ax = b
AT y + s = c

XSe = 0
(x, s) ≥ 0

(2)

where X and S are diagonal matrices whose entries are the components of vectors x and s
respectively and e is the vector of ones. The third equation XSe = 0 is referred to as the
complementarity condition and can be rewritten as xjsj = 0, ∀j = {1, 2, . . . , n}. It implies that
at least one of xj and sj must be zero at the optimal solution of (1).



GPU acceleration of the matrix-free IPM 2

Interior point methods perturb the complementarity condition, replacing xjsj = 0 by xjsj = µ.
As µ is driven to zero in the course of a sequence of iterations, the vectors x and s partition into
zero and nonzero components. In each iteration, a search direction is computed that maintains
the first two optimality conditions in (2) and the perturbed complementarity condition by solvingA 0 0

0 AT In

S 0 X

∆x
∆y
∆s

 =

ξp

ξd

ξµ

 =

 b−Ax
c−AT y − s
µe−XSe

 . (3)

By using the sets of equations in (3) to eliminate first ∆s, and then ∆x, the following symmetric
positive definite normal equations system is obtained

(AΘAT )∆y = g, (4)

where Θ = XS−1 is a diagonal matrix. The normal equations matrix AΘAT being symmetric
and positive definite, its LLT Cholesky decomposition may be formed. In IPM, this is the
usual means of solving directly for ∆y and hence, by reversing the elimination process, ∆x
and ∆s. However, the density of AΘAT may be significantly higher than A, and the density
of L may be higher still. For some large LP problems, the memory required to store L may be
prohibitive. Following [8] test problems which exhibit this behaviour are given in Table 1. The

Dimensions IPM Simplex
Problem rows columns nonzeros Cholesky nonzeros time time
nug20 15240 72600 304800 38× 106 1034 s 79451 s
nug30 52260 379350 1567800 459× 106 OoM >28 days
1kx1k0 1025 1025 34817 0.5× 106 0.82 s 0.38 s
4kx4k0 4097 4097 270337 8× 106 89 s 11 s
16kx16k0 16385 16385 2129921 128× 106 2351 s 924 s
64kx64k0 65537 65537 16908289 2048× 106 OoM 111 h

Table 1: Prohibitive cost of solving larger QAP problems and Gruca problems using Cplex 11.0.1
IPM and dual simplex

first two problems are larger instances of quadratic assignment problems (QAP) whose solution
is one of the great challenges of combinatorial optimization and the remaining problems are
quantum physics models provided to us by Jacek Gruca. As problem size increases, the memory
requirement of the Cholesky decomposition prevents them from being solved via standard IPM
and the simplex method is seen not to be a viable alternative.

2.1 Matrix-free IPM

For some LP problems the constraint matrix may not be known explicitly due to its size or the
nature of the model, but it may be possible to evaluate Ax and AT y. In other problems there
may be very much more efficient means of obtaining these results than evaluating them as matrix-
vector products. For such problems, Gondzio [7] is developing matrix-free IPM techniques in
which systems of equations are solved by iterative methods using only the results of Ax and
AT y. However, the LPs of interest that can be solved at present are those for which A is known
explicitly but solution via standard IPM and the simplex method is not possible, such as the
LPs in Table 1.



GPU acceleration of the matrix-free IPM 3

Since the normal equations matrix AΘAT is symmetric and positive definite, the method of
conjugate gradients can, in theory, be applied. However, its convergence rate depends on the
ratio between the largest and smallest eigenvalues of AΘAT , as well as the clustering of its
eigenvalues [9]. Recall that since there will be many indices j for which only one of xj and sj

goes to zero as the optimal solution is approached, there will be a very large range of values in Θ.
This ill-conditioning means that conjugate gradients is unlikely to converge. Within matrix-free
IPM, the ill-conditioning of AΘAT is addressed in two ways: by modifying the standard IPM
technique and by preconditioning the resulting normal equations coefficient matrix.

The technique of IPM regularization adds terms to the original primal-dual pair of LP prob-
lems (1) to give

Primal Dual

min cT x +
1
2
(x− x0)T Rp(x− x0) max bT y +

1
2
(y − y0)

T Rd(y − y0)

s. t. Ax = b s. t. AT y + s = c
x ≥ 0 y free, s ≥ 0,

(5)

where the proximal terms are given by positive definite diagonal matrices Rp and Rd, and
reference points x0 and y0, all of which can be chosen dynamically. Although this transforms
the original LP into a quadratic programming (QP) problem, the theory and techniques of IPM
for QP problems are well established and, after an elimination process similar to that applied
to (3), the normal equations system corresponding to (5) has the coefficient matrix

GR = A(Θ−1 + Rp)−1AT + Rd, (6)

in which Rp guarantees an upper bound on the largest eigenvalue of GR and Rd guarantees that
the spectrum of GR is bounded away from zero. Consequently, for appropriate Rp and Rd the
condition number of GR is bounded regardless of the conditioning of Θ.

The convergence properties of the conjugate gradient method are improved by using the partial
Cholesky decomposition

GR =
[
L11

L21 I

] [
DL

S

] [
LT

11 LT
21

I

]
(7)

to motivate a preconditioner

P =
[
L11

L21 I

] [
DL

DS

] [
LT

11 LT
21

I

]
, (8)

where DS consists of the diagonal entries of S. The number of nontrivial columns in the precon-
ditioner is k � m so, since only the diagonal entries of S are ever computed, the preconditioner
is vastly cheaper to compute, store and apply than the complete Cholesky decomposition. Each
iteration of the preconditioned conjugate gradient (PCG) method requires one operation with
both P−1 and GR. Since DL, DS , Θ, Rp and Rd are all diagonal matrices, the major computa-
tional costs are the operations with the nontrivial columns of P and the matrix-vector products
with A and AT . It is seen in Table 2 that the cost of PCG dominates the cost of solving the
LP problem, and that PCG is dominated by the cost of operating with P−1 and calculating Ax
and AT y. For the QAP problems the cost of applying the preconditioner is greater but, for the
quantum physics problems, the cost of the matrix-vector products increasingly dominates the
solution time for the LP problem. Section 3 considers how the calculation of Ax and AT y may
be accelerated by exploiting a many-core GPU and multi-core CPU.



GPU acceleration of the matrix-free IPM 4

Percentage of solution time
Problem PCG P−1 Ax AT y

nug20 89 55 17 15
nug30 90 54 18 17
1kx1k0 62 41 12 11
4kx4k0 89 42 19 28
16kx16k0 87 30 30 29
64kx64k0 87 19 37 34

Table 2: Proportion of solution time accounted for by preconditioned conjugate gradients, op-
erations with P−1 and calculations of Ax and AT y

3 Accelerating sparse matrix-vector products

The acceleration of the following three core operations

y = Ax (fsax), x = AT y (fsaty), z = (AΘAT )y (fsaat) (9)

is considered for the sparse matrix A ∈ IRm×n, diagonal matrix Θ ∈ IRn×n and dense vectors
x ∈ IRn, y ∈ IRm and z ∈ IRm. If A is held both row-wise and column-wise, all of these
operations parallelise trivially. However double storage is expensive when A is large.

3.1 Operations

Assuming that A is held column-wise, fsax can be considered as

y =
n∑

j=1

ajyj , (10)

where aj is column j of A, and the sum divided in parallel. The reduction of partial vector
sums required is praticable in multi-core (requiring O(tm) temporary storage for t threads) but
not in a many-core environment. To avoid this, a GPU implementation can form and store a
row-wise copy explicitly. This is a high one-off cost in processing effort, and an ongoing doubling
of device memory requirements. The operation with the transpose, fsaty, can be calculated
independently column-wise as

xj = aT
j y, (11)

for j = 1, . . . , n. Algebraically, fsaat may be expressed as the compound operation consisting
of fsaty, a scaling by the diagonal entries of Θ, and then fsax. However, significant gains can
be realised by integration. In the CPU case, a trick [16] may be adapted to allow each column
to be read from memory only once (cache sizes permitting) by calculating

z =
n∑

j=1

ajθj(aT
j y), (12)

where θj for j = 1, . . . , n are the diagonal entries of Θ. In the GPU case, the vector reduction
required again makes this particular algorithm impractical so it is performed as the compound
operation with transfers to and from the device being reduced when the scaling is also done on
the GPU.



GPU acceleration of the matrix-free IPM 5

3.2 Kernels

In the serial CPU case, the optimizations that can be applied are well known [1, 6, 10, 11] and
can be briefly summarised as

• Loop unrolling to exploit the deep pipelines and multiple execution units of current super-
scalar architectures.

• Vectorisation using SIMD instructions to improve throughput.

• Data blocking to improve cache efficiency.

In the classes of problems considered, the last is unfortunately not possible: these matrices are
not known to contain dense subblocks. Additionally, vectorising sparse arithmetic efficiently is
difficult, and results are reported for non-vectorised code since this continues to be the fastest
serial implementation obtained.

In the case of parallel multi-core codes, the same optimization strategies and limitations apply.
Parallelisation itself is largely trivial since synchronisation overheads are overshadowed by the
high cost of multiplication. Less clear is under what circumstances memory bandwidth will scale
to permit speed-up, the sparse matrix vector product (SpMV) being expected to be memory
bound.

A GPU is not ideally suited to sparse arithmetic, as memory performance depends critically on
regular (coalesced) access to data. There has been considerable work in this area [3, 5, 14] which
has identified key optimizations as:

• Reordering data for coalescing - e.g. ELLPACK [3]

• Selecting an appropriate degree of parallelism to achieve memory coalescing and to neither
over- nor under-exploit the device - e.g. CSR (vector) uses a warp per row [3], ELLR-T
considers fitting the ideal number of threads per row. [14]

• Identifying problem rows for special treatment - e.g. the HYB kernel [3].

• Data blocking - e.g. BCSR, BELLPACK [5], ELLR-T [14].

As for the CPU case, data blocking does not appear to be applicable to the problems examined,
from quadratic assignment and quantum physics, which have at most one dense row and column.
All other rows and columns have the same, small, number of nonzeroes. For such regular data,
CSR is unlikely to be an optimal storage format.

The first optimization is to extract the dense rows to be treated separately. An entire block
is applied to these rows, the largest unit possible per row without multiple kernel launches per
matrix multiply. This is similar to the treatment of long rows in the HYB kernel of [3].

ELLPACK allows full coalescing at one thread per row, but a single thread per row under-
utilises the test device (a Tesla C2070). Some care allows eight threads per row, where eight
warps each calculate a partial sum for thirty two rows, and these are aggregated. This improves
performance but is a ceiling on the amount parallelism that can be brought to bear per row.
It is beneficial for large problems to use Transpose ELLPACK, which allows multiple warps to
work on each row.



GPU acceleration of the matrix-free IPM 6

3.3 Results

The following results are obtained from a test system having two AMD Opteron 2378 (Shanghai)
quad-core processors, 16 GiB of RAM and a Tesla C2070 GPU with 6 GiB of RAM. Note that
the processors are relatively slow in serial, though the NUMA configuration of the memory bus
gives high parallel memory performance. The GPU is a significantly more highly powered unit,
making raw speed characterisations of less interest than the potential for improvement with a
given investment.

The GPU kernel used is DHTELL2 which consists of one block to handle any dense rows sepa-
rately, then a half warp (sixteen threads) per row using a transposed ELLPACK format to store
the remainder of the matrix.

Solve time (s) SpMV time (s)
Problem Serial 8 core GPU Serial 8 core GPU
nug20 2.19 1.18 1.60 1.49 0.495 0.945
nug30 20.5 15.8 15.4 15.1 9.69 9.45
1kx1k0 0.244 0.177 0.217 0.0360 0.0128 0.0506
4kx4k0 3.03 2.06 2.15 1.06 0.218 0.336
16kx16k0 24.9 18.4 13.5 13.1 6.70 1.72
64kx64k0 170.0 109.0 74.0 115.0 47.4 12.2
96kx128-0 137.0 71.1 58.8 93.4 28.6 15.3
256x256-0 866.0 283.0 222.0 699.0 119.0 56.4

Table 3: Comparison of accelerated matrix-free IPM codes.

Speed-up of sparse matrix-vector kernels using all 8 cores of the test system is between two
and six times, giving at most a threefold speed-up of the IPM solution time. Using the high
powered GPU, speed-up of these same kernels can approach ten times, though overall solution
time is reduced no more than four times. Clearly significant speed-up of matrix-free interior
point, whether by many-core or multi-core parallelism, is possible.

4 Conclusions

The matrix-free approach shows promise in making some of the most difficult classes of problem
tractable by interior point methods. Its focus on a small core of sparse operations makes highly
optimized implementations using state of the art hardware possible without excessive difficulty.

The particular choice of many-core or multi-core acceleration depends on the hardware available.
As has been noted elsewhere [15], a GPU can provide performance essentially equivalent to a
small number of multi-core processors in the context of sparse problems.

References

[1] Advanced Micro Devices, Inc., Softare Optimization Guide for AMD Family 10h and
12h Processors, 2011.



GPU acceleration of the matrix-free IPM 7

[2] G. Al-Jeiroudi, J. Gondzio, and J. Hall, Preconditioning indefinite systems in interior
point methods for large scale linear optimization, Optimization Methods and Software, 23
(2008), pp. 345–363.

[3] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA, Tech.
Rep. NVR-2008-004, NVIDIA Corporation, 2008.

[4] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in in-
terior point methods for optimization, Computational Optimization and Applications, 28
(2004), pp. 149–171.

[5] J. W. Choi, A. Singh, and R. W. Vuduc, Model-driven autotuning of sparse matrix-
vector multiply on GPUs, in Proceedings of the 15th ACM SIGPLAN Symposium on prin-
ciples and practice of parallel programming, ACM, 2010, pp. 115–126.

[6] M. Chuvelev and S. Kazakov, High performance dense linear algebra in Intel Math
Kernel Library. International Conference Dedicated to the 100th Anniversary of the Birth-
day of Sergei L. Sobolev, 2008.

[7] J. Gondzio, Matrix-free interior point method, Computational Optimization and Applica-
tions, (2010). Published online October 14, 2010: DOI 10.1007/s10589-010-9361-3.

[8] , Interior point methods 25 years later, Tech. Rep. ERGO-11-003, School of Mathe-
matics, University of Edinburgh, King’s Buildings, Edinburgh, 2011.

[9] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear sys-
tems, J. Res. Natl. Bur. Stand, 49 (1952), pp. 409–436.

[10] E.-J. Im and K. Yelick, Optimizing sparse matrix computations for register reuse in
SPARSITY, in Proceedings of the International Conference on Computational Science,
volume 2073 of LNCS, Springer, 2001, pp. 127–136.

[11] Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual,
2009.

[12] N. K. Karmarkar, A new polynomial–time algorithm for linear programming, Combina-
torica, 4 (1984), pp. 373–395.

[13] A. R. L. Oliveira and D. C. Sorensen, A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming, Linear Algebra and its
Applications, 394 (2005), pp. 1–24.

[14] F. Vázquez, G. Ortega, J. Fernández, and E. Garzón, Improving the performance
of the sparse matrix vector product with GPUs, in 2010 10th IEEE Conference on Computer
and Information Technology (CIT 2010), 2010, pp. 1146–1151.

[15] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringapure,
On the limits of GPU acceleration, in Proceedings of the 2nd USENIX Conference on Hot
topics in parallelism, USENIX Association, 2010.

[16] R. Vuduc, A. Gyulassy, J. W. Demmel, and K. A. Yelick, Memory hierarchy
optimizations and performance bounds for sparse AT Ax, Tech. Rep. UCB/CSD-03-1232,
EECS Department, University of California, Berkeley, 2003.

[17] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.


