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Solution of linear programming (LP) problems

minimize f=c¢'x subjectto Ax=0b x>0
Background
@ Fundamental model in optimal S
decision-making ‘Mi‘f;w::;
@ Solution techniques F—h -
o Simplex method (1947) e
o Interior point methods (1984) AN L\!_i«
o Novel methods '\\*T:\w;:;‘u
o Large problems have S *m!é‘
o 103-108 variables e
o 103-108 constraints M.

e Matrix A is (usually) sparse STAIR: 356 rows, 467 columns and 3856 nonzeros

Julian Hall Linear Programming solvers: the state of the art 3/59



Solving LP problems: Necessary and sufficient conditions for optimality

minimize f =c'x subjectto Ax=0b x>0

Karush-Kuhn-Tucker (KKT) conditions

*

x* is an optimal solution <= there exist y* and s* such that

Ax = b (1) x
ATy +s = ¢ (2 S

> 0 (3) xTs = 0 (5)
> 0 (4
e For the simplex algorithm (1-2 and 5) always hold

o Primal simplex algorithm: (3) holds and the algorithm seeks to satisfy (4)
o Dual simplex algorithm: (4) holds and the algorithm seeks to satisfy (3)

e For interior point methods (1-4) hold and the method seeks to satisfy (5)
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Solving LP problems: Characterizing the feasible region

X3
minimize f=c'x subjectto Ax=0b x>0

o Ac R™*" s full rank
@ Solution of Ax = b is a n — m dim. hyperplane in R”
@ Intersection with x > 0 is the feasible region K

o A vertex of K has

e m basic components, i € B given by Ax = b
e n — m zero nonbasic components, j € N/

where BU N partitions {1,...,n}
@ A solution of the LP occurs at a vertex of K
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Solving LP problems: Optimality conditions at a vertex

minimize f =c'x subjectto Ax=0b x>0

Karush-Kuhn-Tucker (KKT) conditions

x* is an optimal solution <= there exist y* and s* such that

Ax = b (1) x
ATy +s = ¢ (2 S

0 (3) xTs = 0 (5)

>
> 0 (4

e Given BU N, partition Aas [B NJ, x as [ﬁB], c as [EB} and s as [28}
N

N N

o If xy =0and x; = b= B1b then Bxs+ Nxy = b so Ax = b (1)

e For (2) olfy=B"Tcyand sy =0then BTy +s; =cp
BT Sk Cs o If sy =¢y=cy— Ny then (2) holds
[NT] y+ |:SN:| - |:CN:| e Finally, x"s = xIs; +x/sy =0 (5)

o Need b > 0 for (3) and ¢y > 0 for (4)
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Solving LP problems: Simplex and interior point methods

Simplex method (1947) Interior point method (1984)

e Given BUN so (1-2 and 5) hold @ Replace x > 0 by log barrier
@ Primal simplex method @ Solve n
Assume b>0 (3) maximize f=c'x+ “Z In(x;)

Force €y >0 (4) .

Dual simplex method subject to Ax =b

Assume &, >0 (4) o KKT (5) changes:
Force b>0 (3) Replace x"s = 0 by XS = pe

X and S have x and s on diagonal

=1

Modify BUN
° C° 'b¥ - ) o KKT (1-4) hold
o atorial approac
¢ -ombm .?l |-:)pr e Satisfy (5) by forcing XS = pe as
e Cost O(2") iterations 1w— 0
Practically: O(m + n) iterations .
o lterative approach
@ Practically: O(y/n) iterations
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Simplex method



The simplex algorithm: Definition

X3

~

At a feasible vertex x = {g] corresponding to BUN
@ If ¢, > 0 then stop: the solution is optimal

@ Scan ¢; < 0 for g to leave N/

Q Leta, =B !Ne,and d = {_eaq]
q

@ Scan E,-//a\,-q > 0 for a and p to leave B

© Exchange p and g between B and N/
Q@ Gotol
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Primal simplex algorithm: Choose a column

Assume b >0 Seek €y >0 N RHS

Scan ¢; < 0 for g to leave N
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Primal simplex algorithm: Choose a row

Assume b >0 Seek €y >0 N RHS

Scan ¢; < 0 for g to leave N
Scan B,-/é\,-q > 0 for p to leave B B
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Primal simplex algorithm: Update cost and RHS

N RHS

Assume b >0 Seekcy>0
Scan ¢; < 0 for g to leave N

Scan /I:\J,-/é\,-q > 0 for p to leave B B
AT
a
Update: Exchange p and g between B and N/ .
Update b := b — apa, ap = by/apq . en

~T . ~T ~T o~y
Update ¢, :=¢, +apad, ap=—C4/ap,
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Primal simplex algorithm: Data required

N RHS

Assume b >0 Seekcy>0

Scan ¢; < 0 for g to leave N
Scan B,-/é\,-q > 0 for p to leave B B

Update: Exchange p and g between B and N/

Update b := b — apaq ap = bp/apq . /c\%
Update ¢, :=¢, +apa, ap=—C4/apq

Data required
o Pivotal row 3; = e;,rB_lN
e Pivotal column @, = B_laq
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Primal simplex algorithm

N RHS

Assume b >0 Seekcy>0
Scan ¢; < 0 for g to leave N

Scan B,-/é\,-q > 0 for p to leave B B
AT
a
Update: Exchange p and g between B and N/ .
Update b := b — apa, ap = by/apq . en
Update €, = ¢, + aDIipT ap = —Cq/3pq

Why does i work?

~

o ~T Tp-—1 ~
@ Pivotalrow a, =e.: B *N . b, X ¢ . .
2 2 Objective improves by ——2-——2 each iteration

. o~ _ _1
@ Pivotal column ag = B~ "aq apg
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Simplex method: Computation

Standard simplex method (SSM): Major computational component

N RHS Update of tableau: N:=N-— a—AqA;-
Pq
B N b where N = B~1N
- @ Hopelessly inefficient for sparse LP problems
CN

@ Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via B™m,=e, BIRAN and @, =w]N  PRICE
Pivotal column via Ba, = a; FTRAN Represent B~!  INVERT
Update B~ exploiting B = B + (aq — Bep)e[ UPDATE
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Serial simplex: Hyper-sparsity



Serial simplex: Solve Bx = r for sparse r

e Given B = LU, solve
Ly=r;, Ux=y
@ In revised simplex method, r is sparse: consequences?

o If B is irreducible then x is full
e If B is highly reducible then x can be sparse

@ Phenomenon of hyper-sparsity

o Exploit it when forming x
e Exploit it when using x
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Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r

Optimal B for LP problem stair B~ has density of 58%, so B~ !r is
typically dense

o
4
N
BN
B
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. YT o
300 N N
. e we NS
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Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r

Optimal B for LP problem pds-02 B! has density of 0.52%, so B~1r
is typically sparse—when r is sparse
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Serial simplex: Hyper-sparsity

@ Use solution of Lx = b

e To illustrate the phenomenon of hyper-sparsity
e To demonstrate how to exploit hyper-sparsity

@ Apply principles to other triangular solves in the simplex method
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Serial simplex: Hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)
r=b When b is sparse

forall j € {1,...,m} do o Inefficient until r fills in
for all i: L; # 0 do
ri=r — L,JFJ
xX=r
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Serial simplex: Hyper-sparsity

Better: Check r; for zero

function ftranL(L, b, x) When x s sparse
e Few values of r; are nonzero

r=>b
for all j € {1,...,m} do @ Check for zero dominates
if rj # 0 then @ Requires more efficient identification
forall i: L;#0do of set X' of indices j such that rj # 0
ri=1r — L,JI’J
X=r
Gilbert and Peierls (1988)

H and McKinnon (1998-2005)
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Serial simplex: Hyper-sparsity

Recall: major computational components
e FTRAN: Form a, = B~la,
@ BTRAN: Form 7, = B*Te,,

@ PRICE: Form 3[ =n]N

BTRAN: Form 7, = B~ e, PRICE: Form @, = w[ N

@ Transposed triangular solves T
P
° LTx:bhasx,-:b,-—I,-Tx

o Hyper-sparsity: I,-Tx typically zero

o Also store L (and U) row-wise and .
use FTRAN code rows of N for nonzeros in 7

@ Hyper-sparsity: 7, is sparse
@ Store N row-wise

@ Form QI,T as a combination of

T
p

H and McKinnon (1998-2005)
COAP best paper prize (2005)
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Interior point methods



Interior point methods: Traditional

Replace x > 0 by log barrier function and solve

n
maximize f=c’x+ MZ In(x;) such that Ax=b
j=1
@ For small p this has the same solution as the LP
@ Solve for a decreasing sequence of values of u, moving through interior of K
@ Perform a small number of (expensive) iterations: each solves

o A (A <[] = car=n

where Ax and Ay are steps in the primal and dual variables and G = AGAT

o Standard technique is to form the Cholesky decomposition G = LLT and perform
triangular solves with L
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Interior point methods: Traditional

Forming the Cholesky decomposition G = LL' and perform triangular solves with L
o G=A0AT = Z QjajajT is generally sparse
J
So long as dense columns of A are treated carefully
@ Much effort has gone into developing efficient serial Cholesky codes

o Parallel codes exist: notably for (nested) block structured problems
- 9 .
00PS solved a QP with 10° variables Gondzio and Grothey (2006)

o Disadvantage: L can fill-in
Cholesky can be prohibitively expensive for large n
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Interior point methods: Matrix-free

Alternative approach to Cholesky: solve GAy = h using an iterative method

e Use preconditioned conjugate gradient method (PCG)

.\ . L D LL LT
e For preconditioner, consider G = | ;1! L =2
Loy S /
o L= [Ln] contains the first k columns of the Cholesky factor of G
21
e Dy is a diagonal matrix formed by the k largest pivots of G
e S is the Schur complement after k pivots

T T
@ Precondition GAy = h using P = L1 Dy Ly Ly
Loy 1 Ds /

} where

] where
e Sp is the diagonal of S
e Avoids computing S or even G!

Gondzio (2009)
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Interior point methods: Matrix-free

Can solve problems intractable using direct methods

Only requires “oracle” returning y = Ax Gondzio et al. (2014)

Matrix-free IPM beats first order methods on speed and reliability for

o (1-regularized sparse least-squares: n = O(10%?)
o (1-regularized logistic regression: n = O(10* — 107)

e How?

e Preconditioner P is diagonal
o AOAT is near-diagonall

@ Says much about the “difficulty” of such problems!
Fountoulakis and Gondzio (2016)

e Disadvantage: Not useful for all problems!
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Linear Programming solvers: software



Solvers

Commercial Open-source

o Xpress o Mosek e Clp (COIN-OR) @ Soplex (ZIB)
@ Gurobi @ SAS e HiGHS e Glpk (GNU)
@ Cplex @ Matlab @ Glop (Google) @ Lpsolve

Simplex solvers
Solver | Gurobi Xpress Clp Cplex Mosek

: Mittelmann (25 April 2018)
Time 1 1.0 19 1.9 5.1

Solver | Clp Mosek SAS HiGHS Glop Matlab Soplex Glpk Lpsolve
Time 1 28 3.2 5.3 6.4 6.6 10.1 26 112

Interior point solvers
Solver | Mosek bpmpd SAS Matlab Clp
Time 1 26 35 36 9.7
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Parallel simplex for structured LP problems



PIPS-S

Overview

e Written in G+ to solve stochastic MIP relaxations in parallel

@ Dual simplex
@ Based on NLA routines in Clp

@ Product form update

@ Exploit data parallelism due to block structure of LPs

@ Distribute problem over processes

Paper: Lubin, H, Petra and Anitescu (2013)

@ COIN-OR INFORMS 2013 Cup
@ COAP best paper prize (2013)
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PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize ¢/xo + ¢/x1 + €lxo + ... + cxn
subject to Axg = by
Tixo + Wix, = b
T2X0 + W2X2 = b2
TNXO + WNXN = bN

x0>0 x1 >0 x>0 xy >0

@ Variables xg € R™ are first stage decisions

@ Variables x; € R" for i =1,..., N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

@ The objective is the expected cost of the decisions

@ In stochastic MIP problems, some/all decisions are discrete
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PIPS-S: Stochastic MIP problems

Power systems optimization project at Argonne
Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

e Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)
e Solve nodes using parallel dual simplex solver PIPS-S
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PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

minimize ¢{x1 + €Jx2 + ... + ¢cixn + €fxo
subject to  Wix; + Tixg = by
W2X2 + T2X0 = b2
Wyxy + Tuxo = by
AXO = bo

x1 >0 x>0 xy >0 x0>0
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PIPS-S: Exploiting problem structure

@ Inversion of the basis matrix B is key to revised simplex efficiency
B B
Wi T
B B
Wy Ty
AB
e W? are columns corresponding to n? basic variables in scenario i
B
T
; . B e .
° are columns corresponding to ng basic first stage decisions

Ty
A B
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PIPS-S: Exploiting problem structure

@ Inversion of the basis matrix B is key to revised simplex efficiency

B B
B= :
We TE wg i
AB
wg | T
AB

@ B is nonsingular so

o WP are "“tall”: full column rank
o [WE TF] are “wide”: full row rank
o A®fis “wide": full row rank

@ Scope for parallel inversion is immediate and well known
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PIPS-S: Exploiting problem structure

e Eliminate sub-diagonal entries in each W# (independently)

wg | 1

A

@ Apply elimination operations to each T/ (independently)

@ Accumulate non-pivoted rows from the W? with A® and
complete elimination
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PIPS-S: Overview

Scope for parallelism

@ Parallel Gaussian elimination yields block LU decomposition of B

@ Scope for parallelism in block forward and block backward substitution

@ Scope for parallelism in PRICE

Implementation

@ Distribute problem data over processes
@ Perform data-parallel BTRAN, FTRAN and PRICE over processes
@ Used MPI
Lubin, H, Petra and Anitescu (2013)

COIN-OR INFORMS 2013 Cup
COAP best paper prize (2013)
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PIPS-S: Results

On Fusion cluster: Performance relative to Clp

Dimension Cores Storm SSN UC12 UC24

1 0.34 0.22 0.17 0.08
32 85 6.5 2.4 0.7

m+n=0(10") 256 299 45 67 68

On Blue Gene

Instance of UC12

o
= O(108
°m+n (10°) 1024 Exceeded execution time limit
o
o

m+ n = 0(10°)

Cores Iterations Time (h) Iter/sec

resgulives & TE el Rl 2048 82,638 6.14  3.74
Runs from an advanced basis 4096 75,732 5.03 4.18

8192 86,439 4.67 5.14
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Parallel simplex for general LP problems



HiGHS: Past (2011-2014)

Overview

@ Written in G+ to study parallel simplex

@ Dual simplex with standard algorithmic enhancements
o Efficient numerical linear algebra

@ No interface or utilities

@ High performance serial solver (hsol)
@ Exploit limited task and data parallelism in standard dual RSM iterations (sip)

o Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H
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HiGHS: Single iteration parallelism with sip option

o Computational components appear sequential
@ Each has highly-tuned sparsity-exploiting serial implementation

@ Exploit “slack” in data dependencies

FTRAN BFRT

ar
FTRAN DSE (T = B~'¢,)

T

UPDATE WEIGHT
ﬁ.T

UPDATE DUAL

UPDATE PRIMAL
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HiGHS: Single iteration parallelism with sip option

Parallel PRICE to form éz = 71';—/\/

@ Other computational components
serial

Overlap any independent calculations

Only four worthwhile threads unless

CHUZC1 ‘ ! ’ PRICE + CHUZC1

(Logical) (Structural) n>=>> m so PRICE dominates
FTRAN @ More than Bixby and Martin (2000)
" :D;ﬁlé) @ Better than Forrest (2012)

Huangfu and H (2014)

UPDATE
DUAL

‘ FTRAN ‘ ! ’

i
N [ Pl

J T G J aq ap.:
UPDATE UPDATE
WEIGHT PRIMAL
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HiGHS: Clp vs HiGHS vs sip

100

80 |
60 |
40 -
20 |

0 v : ;
1 2 3 4 5
— Clp — hsol —— sip (8 cores)

Performance on spectrum of 30 significant LP test problems
@ sip on 8 cores is 1.15 times faster than HiGHS
@ HiGHS (sip on 8 cores) is 2.29 (2.64) times faster than Clp

Julian Hall Linear Programming solvers: the state of the art 45 /59



HiGHS: Multiple iteration parallelism with pami option

@ Perform standard dual simplex minor iterations for rows in set P (|P| < m)
@ Suggested by Rosander (1975) but never implemented efficiently in serial

N

RHS

a7
ap

G
CN

@ Task-parallel multiple BTRAN to form 7wp = B~ Tep
e Data-parallel PRICE to form 3;_ (as required)
@ Task-parallel multiple FTRAN for primal, dual and weight updates

Julian Hall

Huangfu and H (2011-2014)
COAP best paper prize (2015)
MPC best paper prize (2018)

Linear Programming solvers: the state of the art

46 /59



HiGHS: Performance and reliability

Extended testing using 159 test problems
@ 98 Netlib
@ 16 Kennington

@ 4 Industrial
@ 41 Mittelmann

Exclude 7 which are “hard”

Performance

Benchmark against c1p (v1.16) and cplex (v12.5)
@ Dual simplex
@ No presolve
@ No crash
Ignore results for 82 LPs with minimum solution time below 0.1s
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HiGHS: Performance

100 1 F
-—l"_'_'—
I [—
80 1
60 1
40 1
20 1
0 ,
1 2 3 4 5
— clp —— hsol —— pami8 —— cplex
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HiGHS: Reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

— clp —— hsol —— pami8 —— cplex
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HiGHS: Impact

100 - —
I I'_II I |I

80 1

60 f

40

20 1

0 ; . :

1 1.25 1.5 1.75 2
— Cplex — Xpress —— Xpress (8 cores)

@ pami ideas incorporated in FICO Xpress (Huangfu 2014)
@ Xpress has been the fastest simplex solver for most of the past five years
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HiGHS: an open-source high-performance linear optimizer



HiGHS: Present (2016—date)

Features

@ Model management: Add/delete/modify problem data

@ Interfaces

Presolve

@ Presolve (and corresponding postsolve) has been implemented efficiently

Remove redundancies in the LP to reduce problem dimension
Galabova

@ Dual simplex “triangular basis” crash

@ Alternative crash techniques being studied H and Galabova

Interior point method

@ Reliable “Matrix-free” implementation: Solve normal equations iteratively Schork
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HiGHS: The team

What's in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

@ Julian Hall: Reader (1990—date)
@ lvet Galabova

e PhD (2016—date)
o Google (2018)

@ Qi Huangfu

e PhD (2009-2013)
e FICO Xpress (2013-2018)
e MSc (2018-date)

o Lukas Schork: PhD (2015-2018)
@ Michael Feldmeier: PhD (2018-date)
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HiGHS: Access

Avaiabirty

@ Open source (MIT license) o Existing
o GitHub: ERGO-Code/HiGHS G+ HiGHS class

- Load from .mps
@ COIN-OR: Replacement for Clp? Load from .1p

OSI (almost!)
SCIP (almost!)

@ Prototypes

Python
o FORTRAN
e GAMS

o Julia

@ Planned

/N, O
Cargill  yeamertora - warae

e R
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A novel method: Fast approximate solution of LP problems



Fast approximate solution of LP problems

@ Aim: Get an approximate solution of an LP problem faster than simplex or
interior point methods
o What for?

e Advanced start for the simplex method
e Fast approximate solution may be good enough!

“Idiot” crash (Forrest)
For j =1,...,n (repeatedly)

m

m
Solve ming;(d) = p(cj + Z ajjAi)d + Z(r,- + a;6)? where r; = a] x — b;
i=1 i=1

Set  xj := max(0, x; + J)
Modify p and A “intelligently” and hope that x converges to something useful!
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Idiot crash: Application to quadratic assignment problem linearizations

Results: Performance after (up to) 200 Idiot iterations

Model Rows Columns Optimum Residual | Objective Error | Time
NUG05 210 225 50.00 | 9.4 x 107° 50.01 1.5x10%| 0.04
NUG06 372 486 86.00 | 7.8 x 107° 86.01 1.2x107% | 0.11
NUGOT | 602 931 148.00 | 7.9 x 107° 148.64 43 x1073 | 0.25

NUGOS8 912 1613 203.50 | 7.0 x 107° 204.41 45x1073 | 0.47
NUG12 | 3192 8856 522.89 | 8.8 x 107° 523.86 1.8x1073| 258
NUG15 | 6330 22275  1041.00 | 8.9 x 1072 | 1041.38 3.7 x107*| 5.13
NUG20 | 15240 72600 2182.00 | 7.5 x 1079 | 2183.03 4.7 x 107* | 14.94
NUG30 | 52260 379350  4805.00 | 1.1 x 1078 | 4811.41 1.3x10°3 | 82.28

@ Solution of NUG30 intractable using simplex or IPM on the same machine

o Idiot crash consistently yields near-optimal solutions
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Fast approximate solution of LP problems

Idiot crash: Performance

For a few problems, notably QAP linearizations, x — x¢ =~ x*
@ No proof of near-optimality when x¢ ~ x*

o Great advanced start for simplex (Clp) H and Galabova (2018)

Future aims

@ Apply to dual LP to give confidence interval for x¢ ~ x*

@ Aim to develop more successful algorithms for fast approximate solution of LPs
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To close

@ I. L. Galabova and J. A. J. Hall.

A quadratic penalty algorithm for linear programming and

C | its application to linearizations of quadratic assignment
Y usions problems.

Technical Report ERGO-18-009, School of Mathematics,
University of Edinburgh, 2018

@ LP solvers crucial to decision-making B 5 A . balland K. | M. MeKinnon

Hyper-sparsity in the revised simplex method and how to

@ Classical methods very highly oy

Computational Optimization and Applications,
developed 32(3):259-283, December 2005

@ Look for alternative algorithms for fast [8 Q Huangfu and J. A J. Hall
. | . f LP Parallelizing the dual revised simplex method.
(apprOXImate) solution o S Mathematical Programming Computation, 10(1):119-142,
2018.
R @ M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.
Slldes: Parallel distributed-memory simplex for large-scale
stochastic LP problems.
http//WWW mathsed .acC. Uk/ha”/TOkyolg Computational Optimization and Applications,
55(3):571-596, 2013.
COde: @ L. Schork and J. Gondzio.

. . Impl. tati f an interi int method with basi
https://github.com /ERGO-Code/HiGHS orevanditioning, o, POt MEEhod with basi
Technical Report ERGO-18-014, School of Mathematics,
University of Edinburgh, 2018
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