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ABSTRACT. We construct new t-structures on the derived category of coherent sheaves on
smooth projective threefolds. We conjecture that they give Bridgeland stability conditions
near the large volume limit. We show that this conjecture is equivalent to a Bogomolov-
Gieseker type inequality for the third Chern character of certain stable complexes. We
also conjecture a stronger inequality, and prove it in the case of projective space, and for
various examples.

Finally, we prove a version of the classical Bogomolov-Gieseker inequality, not involv-
ing the third Chern character, for stable complexes.
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1. INTRODUCTION

In this paper, we give a conjectural construction of Bridgeland stability conditions on the
derived category of any projective threefold X . The construction depends on a conjectural
Bogomolov-Gieseker type inequality for objects in the derived category that are stable with
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respect to “tilt-stability”, which is an auxiliary stability condition for two-term complexes
on X .

1.1. The existence problem. Spaces of Bridgeland stability conditions have turned out
to be extremely interesting. However, we do not know a single example of a Bridgeland
stability condition on a projective Calabi-Yau threefold, which is likely to be the most
interesting case. The main obstacle is the failure to solve the following question:

Problem 1.1.1. Given a projective threefold X , find a heart A ⊂ Db(X) of a bounded t-
structure, and a group homomorphism (called central charge) Z : K(Db(X))→ C defined
over Q, such that1

(1) 0 6= E ∈ A =⇒ Z(E) ∈
{
reiφ : r > 0, 0 < φ ≤ 1

}
.

We will restrict our attention to central charges Z that are “numerical”, i.e., Z factors
via the Chern character map ch: K(Db(X)) → NumQ(X) to the group NumQ(X) of
cycles up to numerical equivalence, tensored by Q.

Condition (1) is a highly non-trivial positivity property. For example, it cannot possible
be satisfied when X is projective of dimension ≥ 2, and A = CohX is the heart of
the standard t-structure (cf. [Tod09a, Lemma 2.7]). Further, the construction of stability
conditions for surfaces (see [Bri08, ABL07]) needs the Bogomolov-Gieseker inequality
for slope-stable bundles and the Hodge Index theorem. The methods of [BM11] imply
an even closer relationship: knowing the set of possible numerical central charges Z for
which skyscraper sheaves of points k(x) are stable is essentially equivalent to knowing the
set of Chern characters of slope-semistable bundles for any polarization of X .

Motivated by the construction of π-stability in string theory (see e.g. [Asp05]), and by
the case of curves and surfaces, one can be even more precise. Given an ample class
ω ∈ NSQ(X) and a “B-field” B ∈ NSQ(X), we define a central charge Zω,B by

Zω,B(E) = −
∫

X

e−B−iω ch(E)(2)

=

(
− chB3 (E) +

ω2

2
chB1 (E)

)
+ i

(
ω chB2 (E)− ω3

6
chB0 (E)

)
.

where chB denotes the twisted Chern character chB(E) = e−B ch(E).

Conjecture 1.1.2. There exists a heartAω,B ⊂ Db(X) of a bounded t-structure, such that
the pair (Zω,Aω) is a stability condition on Db(X) for which skyscraper sheaves k(x) of
points x ∈ X are stable.

1The assumption that Z is defined over Q is necessary, in practice, to prove the existence of Harder-
Narasimhan filtrations for the induced notion of Z-stability on A.
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For ω = mω0 and m � 0, these would be stability conditions near the “large-volume
limit”. As indicated above, the corresponding conjecture is known when dimX ≤ 2.
In fact when dimX = 1, we can take Aω,B to be CohX . When dimX = 2, we need
to tilt (cf. Section 2.3) the abelian category CohX to construct Aω. We will recall its
construction in Proposition 3.1.3. On the other hand, with very few exceptions (varieties
for which Db(X) admits a complete exceptional collection), the above conjecture is still
open in higher dimension.

1.2. Our approach. Given ω,B as above, we construct a candidate Aω,B for Conjecture
1.1.2 as a double tilt of CohX:

• We first use classical slope-stability on CohX to define Bω,B as a tilt of CohX
with respect to a torsion pair.
• We define an analogue of slope-stability on Bω,B, and then similarly define Aω,B

as a tilt of Bω,B.

We now give a sketch of our construction; the details will be given in Section 3. Consider
the classical slope-stability with respect to the polarization ω, twisted by B: here the
slope of a sheaf F is given by µω,B(F) = ω2 chB1 (F)

ω3 ch0(F) . Let Tω,B ⊂ CohX be the category
generated, via extensions, by slope-semistable sheaves of slope µω,B > 0 (where torsion
sheaves are considered slope-semistable of slope µω,B = +∞); and similarly, let Fω,B
the subcategory generated by slope-semistable sheaves of slope µω,B ≤ 0. Following
Bridgeland’s construction for K3 surfaces in [Bri08], we define Bω,B ⊂ Db(X) by

Bω,B := 〈Fω,B[1], Tω,B〉

where [1] denotes the shift and 〈 〉 the extension-closure; see Section 2.3 for alternative
descriptions of the tilted heart.

We then define the following slope-function on Bω,B:

νω,B(E) =
=Zω,B(E)

ω2 chB1 (E)
=
ω chB2 (E)− ω3

6
chB0 (E)

ω2 chB1 (E)
.

We show that this produces a notion of slope-stability on Bω,B, which we call tilt-stability.
Using tilt-stability, we can define a torsion pair T ′ω,B,F ′ω,B in the category Bω,B exactly as
in the case of slope-stability for CohX above. Tilting at this torsion pair produces a heart
Aω,B.

We also give a second construction of the same heart in Section 4, starting from a
category Cohp of perverse coherent sheaves, and using polynomial stability conditions
rather than slope-stability. It is less concrete, but is inherently well-behaved with respect
to the derived dualizing functor RHom( ,OX). In Section 5.1, we show that the two
constructions agree.
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1.3. Conjectures and Results. We propose the following conjecture.

Conjecture 3.2.6. Suppose that X is a smooth projective threefold over C. Then the pair
(Zω,B,Aω,B) is a stability condition on Db(X).

At this moment we are not able to show the above conjecture when X is a Calabi-Yau
threefold. As a first evidence for the conjecture, we prove:

Theorem 8.2.1. Conjecture 3.2.6 holds for X = P3, B = 0 and ω3 < 3
√

3.

Our method also works for other threefolds with complete exceptional collections.
By construction of Aω,B, it is immediate that =Zω,B(E) ≥ 0 for any E ∈ Aω,B. Thus,

to show that condition (1) holds, we only need to consider objects with Zω,B(E) ∈ R, and
have to show that in fact Zω,B(E) < 0 in this case. As in the case of surfaces, this comes
down to a Bogomolov-Gieseker type inequality for tilt-stable objects in Bω,B:

Conjecture 3.2.7. For any tilt-stable object E ∈ Bω,B satisfying νω,B(E) = 0, i.e.,

ω3

6
chB0 (E) = ω chB2 (E),

we have the following inequality:

chB3 (E) <
ω2

2
chB1 (E).

In fact, with Corollary 5.2.4 we show that Conjecture 3.2.6 and Conjecture 3.2.7 are
equivalent. The essential ingredient is Proposition 5.2.2, which shows that the abelian
category Aω,B is Noetherian.

Such a strong Bogomolov-Gieseker type inequality for ch3 is not available for slope-
semistable sheaves; in fact even for P3, the best possible results are much worse (see,
for example, [Sch80] for explicit examples). Thus Theorem 8.2.1 shows that such slope-
semistable sheaves become unstable with respect to tilt-stability.

In fact, we suggest an even stronger inequality:

Conjecture 1.3.1. Any tilt-stable object E ∈ Bω,B with νω,B(E) = 0 satisfies

(3) chB3 (E) ≤ ω2

18
chB1 (E).

Just as in the case of the classical Bogomolov-Gieseker inequality for slope-stability, we
have equality when ω and B are scalar multiples of the class of an ample line bundle L,
and E = L⊗n is a tensor power of L. We prove this conjecture in the following situations:

Section 8.2: For any complex on P3 when B = 0 and ω3 < 3
√

3.
Section 7.1: Restrictions of torsion-free sheaves to an ample divisor proportional to ω.
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Section 7.4: Slope-semistable vector bundles F with vanishing discriminant ∆(F) = 0
and c1(F) proportional to ω. (Such sheaves are also stable with respect to tilt-
stability.)

Example 7.2.4: Sheaves of the formOX(1)⊗IC for a curveC on a hypersurfaceX ⊂ P4,
in which case the inequality is related to Castelnuovo’s classical bound for the
genus of curves of fixed degree.

If true, the inequality (3) would be quite strong. For example, it would give strong
Hodge type inequalities for tilt-stable line bundles when the Néron-Severi group has rank
> 1. Moreover, in a forthcoming paper [BBMT11] we show that Conjecture 1.3.1 implies
a Reider-type theorem for threefolds, and a statement towards Fujita’s conjecture on very
ampleness of adjoint line bundles (including, for example, Fujita’s conjecture for Calabi-
Yau threefolds). The approach is based on ideas and questions in [AB11].

As a first step towards proving an inequality for ch3 in the general case, it seems worth-
while to generalize the classical Bogomolov-Gieseker for ch0, ch1, ch2 from sheaves to
complexes. Indeed, it is an ingredient in any proof of inequalities for ch3 of slope-stable
sheaves; see [Lan09a] for a survey of such inequalities. Theorem 7.3.1 and its Corol-
laries give various forms of inequalities for tilt-stable complexes similar to Bogomolov-
Gieseker; for example:

Corollary 7.3.4. Suppose thatX is a smooth projective threefold with Néron-Severi group
NS(X) of rank one. Then any tilt-semistable object E ∈ Bω,B satisfies

ω(ch1(E)2 − 2 rk(E) ch2(E)) ≥ 0.

Stability conditions at the large-volume limit had been previously constructed in [Bay09]
and [Tod09a] as “polynomial” or “limit” stability condition. As an additional confirmation
that the heart Aω,B seems to give the right construction, we prove:

Proposition 1.3.2 (Lemma 6.2.1 and Lemma 6.2.2). The limit of Amω,B for m → +∞
agrees with the heart of polynomial or limit stability conditions at the large-volume limit.

We also prove a compatibility of stability for large m and stability at the limit, see
Proposition 6.2.3.

1.4. Relation to existing work. Our construction ofBω,B is directly adopted from Bridge-
land’s construction of stability conditions on K3 surfaces in [Bri08]. To prove that νω,B
defines a slope function, we use the Bogomolov-Gieseker inequality and the Hodge Index
Theorem just as in the case of general projective surfaces treated by Arcara, Bertram and
Lieblich in [ABL07]. Our notion of tilt-stability on Bω,B is very similar to the notion of
“µs+it-stability” by Arcara and Bertram, see [AB11].

In Section 8.2, we rely on the construction of “algebraic stability conditions” for vari-
eties with complete exceptional collections (cf. [Mac04]). However, even in the case of
P3, our construction includes stability conditions that are not algebraic.
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For large ω, our conjectural stability conditions (Zω,B,Aω,B) should live in a neigh-
borhood of the large volume limit. Evidently, our approach is motivated by the string
theory construction of π-stability at the large-volume limit, see e.g. [Dou02, AD02, AL01,
Asp05]. In particular, our central charge (2) is borrowed from the mathematical physics
literature [AD02, equation (2.9)], with the modification that our formula omits quantum
corrections and a factor of

√
tdX . This change partly is motivated by the surface case,

where one obtains stability conditions for every ample class ω in this way.
We also refer to [DRY06] for a conjectural approach to sufficient rather than necessary

Bogomolov-Gieseker type inequalities on Calabi-Yau threefolds.
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1.6. Notation and Convention. We work over the complex numbers. For a set of objects
S in a triangulated category D, we denote by 〈S〉 the additive category generated by S via
extensions. If X is smooth and projective variety, we will denote by D the local dualizing
functor on its derived category Db(X) given by

D( ) := ( )∨[1] := RHom( ,OX [1]).

Given a coherent sheaf F , we write dimF for the dimension of its support. We write
Coh≤dX = {F : dimF ≤ d} ⊂ CohX for the subcategory of sheaves supported in
dimension ≤ d, and Coh≥d+1X ⊂ CohX for the subcategory of sheaves that have no
subsheaf supported in dimension ≤ d. Given a bounded t-structure on Db(X) with heart
A and an object E ∈ Db(X), we write Hj

A(E), j ∈ Z, for the cohomology objects with
respect to A. When A = Coh(X), we simply write Hj(E).

For a complex number z ∈ C, we denote its real and imaginary part by <z and =z,
respectively. We write m� 0 to mean “for all sufficiently large m”.

We write Num(X) for the group of cycles A(X) up to numerical equivalence, and
NS(X) = NS(X,Z) = Num1(X) for the Néron-Severi group of divisors up to numerical
equivalence. We also write NumQ(X), NSQ(X), NumR(X), etc. for Num(X)⊗Q, etc.
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We will use the terms “slope-stability” and “µω,B-stability”, as well as “tilt-stability”
and “νω,B-stability” interchangeably when the choice of ω,B is clear in context.

2. BACKGROUND ON STABILITY CONDITIONS

2.1. Motivation. The notion of stability condition on triangulated categories has been
introduced by Bridgeland [Bri07], motivated by Douglas’s work on Π-stability [Dou02].
We briefly recall the definition:

Definition 2.1.1. A (full numerical) stability condition on Db(X) is a pair (Z,A), where
A ⊂ Db(X) is the heart of a bounded t-structure and Z : K(Db(X))→ C a group homo-
morphism, satisfying the following properties:

(a) Z satisfies the positivity property of equation (1).
(b) For the induced notion of stability on A, every non-zero E ∈ A has a Harder-

Narasimhan filtration in semistable objects in A.
(c) Z factors via the Chern character ch: K(Db(X))→ NumQ(X).
(d) (A, Z) satisfies the “support property”.

The support property property will be discussed in the next section. The set Stab(X)
of stability conditions is a finite-dimensional complex manifold. In the case where X is
a Calabi-Yau threefold, it is expected to contain the stringy Kähler moduli space. More
precisely, it should contain an Aut Db(X)-invariant subspace N that is isomorphic to the
Teichmüller space of complex structures on the mirror X̂; the quotient N /Aut Db(X)

gets identified with the moduli space of complex structures on X̂ . Thus the notion of
stability conditions on Db(X) adds a very geometric picture to Kontsevich’s homological
mirror symmetry [Kon95].

The space Stab(X) has been explicitly studied in several situations. For instance,
see [Bri07, Mac07, Oka06] for dimX = 1, and [Bri08, HMS08] for K3 surfaces. The
space Stab(X) can also described when X is a local Calabi-Yau variety, e.g. the total
space of the canonical bundle of a surface. For instance, see [Bri06, BM11, IUU10, Tod08,
Tod09b]. The case of non-projective complex tori has been studied in [Mei07].

However, there is no known example of a stability condition on a projective Calabi-
Yau threefold, nor any candidate (Z,A) expected to be a stability condition. One of the
issues is that we have few methods or ideas to construct hearts of a bounded t-structures
A ⊂ Db(X) for which the positivity condition (1) could be satisfied.

In principle, one should expect Bridgeland stability conditions for any dimension. Con-
sider the following central charge, where X is a projective variety of any dimension:
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Zω,B(E) = −
∫

X

e−iω chB(E)(4)

=
∑

j≥0

(−1)j+1

(2j)!
ω2j chBd−2j(E) + i

(∑

j≥0

(−1)j

(2j + 1)!
ω2j+1 chBd−2j−1(E)

)
,

Conjecture 2.1.2. There exists a heart Aω,B ⊂ Db(X) of a bounded t-structure such that
(Zω,B,Aω,B) are a Bridgeland stability condition.

One could apply our method iteratively to constructAω,B as a (n−1)-fold tilt of CohX .
However, this would involve proving a Bogomolov-Gieseker type inequality at every step.

2.2. Support property. We require our stability conditions (Z,A) to satisfy the follow-
ing additional technical condition:
Support property: There is a constant C > 0 such that for any Z-semistable object

E ∈ A, we have

‖ch(E)‖ ≤ C|Z(E)|,
where ‖∗‖ is a fixed norm on NumR(X).

The support property for numerical stability conditions is equivalent (cf. [BM11, Proposi-
tion B.4]) to the notion of a “full” stability condition introduced in [Bri08]; in particular:

Theorem 2.2.1 ([Bri07, KS08]). There is a natural topology on Stab(X) such that the
map

Stab(X)→ Hom(NumQ(X),C), (Z,A) 7→ Z,

is a local homeomorphism.

The support property is also essential to ensure that there is a well-behaved wall-crossing
phenomenon for stability of objects under deformation of the stability condition:

Proposition 2.2.2. GivenE ∈ Db(X), the set of (Z,A) ∈ Stab(X) for whichE is (Z,A)-
stable is an open subset of Stab(X). Further, there exists a chamber decomposition of
Stab(X) by a locally finite set of walls, such that in the open part of every chamber, the
Harder-Narasimhan filtration of E is constant.

This statement is proved by the methods of [Bri08, Section 9].

2.3. Tilting. Our strategy for the construction of Aω,B on threefolds is to take a double
tilt starting from CohX or the category of perverse coherent sheaves on X .

Definition 2.3.1 ([HRO96]). Let A be the heart of a bounded t-structure on a triangu-
lated category D. A pair of subcategories (T ,F) is called a torsion pair if the following
conditions hold:
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(a) For any T ∈ T and F ∈ F , we have Hom(T, F ) = 0.
(b) For any E ∈ A, there is an exact sequence 0 → T → E → F → 0 in A, with

T ∈ T and F ∈ F .

Given a torsion pair (T ,F) as above, its tilt A† is the subcategory of D defined by

A† = 〈F [1], T 〉 ⊂ D.

If D = Db(A), then we can identify A† with the subcategory of two-term complexes
E−1

d−→ E0 with ker d ∈ F and cok d ∈ T . The following statements are all well-known:

Proposition 2.3.2. (a) The category A† defined above is the heart of a bounded t-
structure on D.

(b) Whenever the heart A† of a bounded t-structure on D satisfies A† ⊂ 〈A,A[1]〉,
then T = A∩A†,F = A∩A†[−1] is a torsion pair in A, and A† is obtained as
the tilt of A at (T ,F).

(c) Given two torsion pairs (T1,F1) and (T2,F2) in A, denote the corresponding
tilts by A†1 and A†2, respectively. If T2 ⊂ T1, then there is a torsion pair T =

〈F1[1], T2〉,F = F2∩T1 inA†1, andA†2 is obtained as the tilt ofA†1 at this torsion
pair.

The first statement is [HRO96, Proposition 2.1]. For the second, see e.g. [Pol07, Lemma
1.1.2], and the third statement follows directly from the second.

3. FIRST CONSTRUCTION

Let X be a smooth projective threefold over C. In this section, we give the first con-
struction of the heartAω,B of a bounded t-structure on Db(X) as a double tilt starting from
CohX , and state our main conjecture.

3.1. Tilt of CohX . First we start with the case of arbitrary dimension. Let X be a n-
dimensional smooth projective variety over C, and take B ∈ NSQ(X) and an ample class
ω ∈ NSQ(X). We use the twisted Chern character chB = ch ·e−B. Notice that, in particu-
lar, we have the following explicit expressions:

chB0 = ch0 = rk

chB1 = ch1−B ch0

chB2 = ch2−B ch1 +
B2

2
ch0 .
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The twisted slope µω,B on CohX is defined as follows. If E ∈ CohX is a torsion sheaf,
we set µω,B(E) = +∞. Otherwise we set

µω,B(E) =
ωn−1 chB1 (E)

chB0 (E)
.

The above slope function satisfies the weak see-saw property, i.e., for any exact sequence
0 → F → E → E/F → 0 in CohX with F,E/F 6= 0, one of the following conditions
holds,

µω,B(F ) ≤ µω,B(E) ≤ µω,B(E/F ),

µω,B(F ) ≥ µω,B(E) ≥ µω,B(E/F ).

(To prove this, observe that if chB0 (F ) = 0, then F is a torsion sheaf with ωn−1 chB1 (F ) =
ωn−1(ch(F )) ≥ 0, and similarly for E/F .)

We define µω,B-stability on CohX in the following way: E ∈ CohX is µω,B-(semi)stable
if, for any 0 6= F ( E, we have

µω,B(F ) < (≤)µω,B(E/F ).(5)

Remark 3.1.1. Classically, E ∈ CohX is defined to be µω,B-(semi)stable if E is torsion
free and we have the inequality µω,B(F ) < (≤)µω,B(E) for any subsheaf 0 6= F ( E with
E/F torsion free. Our definition coincides with the classical definition if E has positive
rank. An inequality similar to (5) is used to define weak stability conditions in [Tod10,
Section 2].

It is well-known that the µω,B-stability has the Harder-Narasimhan property, i.e., there
is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E,

such that each Fi = Ei/Ei−1 is µω,B-semistable with µω,B(Fi) > µω,B(Fi+1) for all i. We
set

µω,B;min(E) = µω,B(FN),

µω,B;max(E) = µω,B(F1).

Let (Tω,B,Fω,B) be the torsion pair on CohX defined by

Tω,B = {E ∈ CohX : µω,B;min(E) > 0}
Fω,B = {E ∈ CohX : µω,B;max(E) ≤ 0} .

Definition 3.1.2. We define the abelian category Bω,B to be the tilt of CohX with respect
to (Tω,B,Fω,B), namely

Bω,B = 〈Fω,B[1], Tω,B〉.
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Let Zω,B be a stability function given by (4). By [ABL07], we have the following result
(the case of K3 surfaces was proved earlier in [Bri08]).

Proposition 3.1.3 ([ABL07, Bri08]). If dimX = 2, then (Zω,B,Bω,B) is a stability con-
dition on Db(X).

The key fact in the proof of the above proposition is the following constraint on numer-
ical classes of slope-semistable sheaves, known as Bogomolov-Gieseker inequality (see
[Rei78, Bog78, Gie79] and [HL10, Section 3.4]).

Theorem 3.1.4 (Bogomolov, Gieseker). Let X be a n-dimensional smooth projective va-
riety over C and let ω be an ample divisor on X . For any torsion free µω,B-semistable
sheaf E, we have the following inequality:

ωn−2
(
chB1 (E)2 − 2 chB0 (E) chB2 (E)

)
≥ 0.

3.2. Tilt of Bω,B. From now on, we focus on the case dimX = 3; as stated in equation
(2), the central charge is then given by

Zω,B(E) =

(
− chB3 (E) +

ω2

2
chB1 (E)

)
+ i

(
ω chB2 (E)− ω3

6
chB0 (E)

)
.

The abelian category Bω,B satisfies the following property:

Lemma 3.2.1. For any non-zero object E ∈ Bω,B, one of the following conditions holds:
(a) ω2 chB1 (E) > 0.
(b) ω2 chB1 (E) = 0 and =Zω,B(E) > 0.
(c) ω2 chB1 (E) = =Zω,B(E) = 0 and −<Zω,B(E) > 0.

Proof. By the construction of Bω,B, we have ω2 chB1 (E) ≥ 0. Suppose that ω2 chB1 (E) =
0. Then H0(E) ∈ Coh≤1X and H−1(E) is µω,B-semistable torsion free sheaf with
µω,B(E) = 0. By the Hodge Index Theorem and the Bogomolov-Gieseker inequality,
we have

0 ≥ ω chB1 (H−1(E))2 ≥ 2ω chB0 (H−1(E)) chB2 (H−1(E)),

which implies ω chB2 (H−1(E)) ≤ 0. Since chB0 (E) ≤ 0 and ω chB2 (H0(E)) ≥ 0, we
obtain the inequality =Zω,B(E) ≥ 0. Finally suppose that ω2 chB1 (E) = =Zω,B(E) = 0.
Then the above argument shows that H−1(E) = 0 and E = H0(E) has zero-dimensional
support; hence the inequality −<Zω,B(E) > 0 holds. 2

Remark 3.2.2. The above lemma implies that the vector (ω2 chB1 ,=Zω,B,−<Zω,B) for
objects of Bω,B behaves like the vector (ch0, ch1, ch2) for coherent sheaves on a surface.
The subcategory of E ∈ Bω,B satisfying ω2 chB1 (E) = 0 is an analogue of the subcategory
of torsion sheaves; we can also describe it as the extension-closure

〈Coh≤1X,F [1] for all µω,B-stable F with µω,B(F ) = 0〉.(6)
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In case B = 0, the above category contains the heart of the category of D0-D2-D6 bound
states constructed in [Tod10].

We define a slope νω,B on Bω,B as follows. If E ∈ Bω,B satisfies ω2 chB1 (E) = 0, we set
νω,B(E) = +∞. Otherwise we set

νω,B(E) :=
=Zω,B(E)

ω2 chB1 (E)
=
ω chB2 (E)− 1

6
ω3 chB0 (E)

ω2 chB1 (E)
.(7)

By Lemma 3.2.1, the slope νω,B also satisfies the weak see-saw property. Therefore an
analogue of slope stability on Bω,B is defined in the following way:

Definition 3.2.3. An object E ∈ Bω,B is νω,B-(semi)stable if, for any non-zero proper
subobject F ⊂ E in Bω,B, we have the inequality

νω,B(F ) < (≤)µω,B(E/F ).

Similarly to µω,B-stability, we have the following result.

Lemma 3.2.4. The Harder-Narasimhan property holds with respect to νω,B-stability, i.e.,
for any E ∈ Bω,B, there is a filtration in Bω,B

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E,(8)

such that each Fi = Ei/Ei−1 is νω,B-semistable with νω,B(Fi) > νω,B(Fi+1) for all i.

Proof. First we note that Bω,B is a noetherian abelian category. This is essentially proved
in [Bri08] when X is a K3 surface, and almost the same proof works in the general case.
Indeed, we only need to modify the argument of [Bri08, Prop. 7.1] in the following way.
In the notation of [Bri08, Prop. 7.1], the sheaves H0(Li) turned out to be the finite length
sheaves in the K3 surface case. In our 3-fold situation, the sheaves H0(Li) are at most
one dimensional, so may not be of finite length. However, since the codimensions of the
supports of H0(Li) are at least two, we obtain a chain

H−1(E1) ⊂ H−1(E2) ⊂ · · · ⊂ Q∗∗,

in the notation of [Bri08, Prop. 7.1]. Instead of bounding the length of H0(Li), we can
terminate the above chain as Coh(X) is noetherian. This proves that Bω,B is noetherian.

Since B and ω are rational, we can then apply the same arguments as in [BM11, Prop.
B.2] to show the Harder-Narasimhan property. 2

For an object E ∈ Bω,B with Harder-Narasimhan filtration (8) we set

νω,B;min(E) = νω,B(FN),

νω,B;max(E) = νω,B(F1),
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and the torsion pair (T ′ω,B,F ′ω,B) on Bω,B is defined by

T ′ω,B = {E ∈ Bω,B : νω,B;min(E) > 0}
F ′ω,B = {E ∈ Bω,B : νω,B;max(E) ≤ 0} .

Definition 3.2.5. We define the abelian category Aω,B to be the tilt of Bω,B with respect
to (T ′ω,B,F ′ω,B), namely

Aω,B = 〈F ′ω,B[1], T ′ω,B〉.

By the construction of Aω,B, it is obvious that =Zω,B(E) ≥ 0, for all E ∈ Aω,B. We
propose the following conjecture.

Conjecture 3.2.6. The pair (Zω,B,Aω,B) is a stability condition on Db(X).

The above conjecture in particular implies that, for any νω,B-semistable objectE ∈ Bω,B
with νω,B(E) = 0, we have <Zω,B(E) > 0. More precisely, Conjecture 3.2.6 immediately
implies the following conjecture.

Conjecture 3.2.7. For any νω,B-semistable object E ∈ Bω,B satisfying

ω3

6
chB0 (E) = ω chB2 (E),

we have

chB3 (E) <
ω2

2
chB1 (E).

In Section 5.2 we will show that the two conjectures are equivalent, by showing that
Aω,B is Noetherian.

3.3. Support property for tilt-stability. To show that there is a well-behaved notion of
wall-crossing for tilt-stability of objects E ∈ Db(X), we need some form of bounded-
ness of potentially destabilizing subobjects. This boundedness follows from a form of
the “support property” discussed in Section 2.2. To set this up, define a central charge
Zω,B : K(Db(X))→ C corresponding to the slope function νω,B:

Zω,B(E) =
1

2
ω2 chB1 (E) + i=Zω,B(E).

Remark 3.3.1. By (6), we have Zω,B(E) ∈
{
reiπφ : r > 0,−1

2
< φ ≤ 1

2

}
for every non-

zero E ∈ Bω,B except if E is a zero-dimensional torsion sheaf. As, for such objects, the
slope induced by Zω,B agrees with νω,B, an object k(x) 6= E ∈ Bω,B is tilt-stable if and
only if Hom(k(x), E) = 0 and there are no destabilizing subobjects with respect to Zω,B.
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Lemma 3.3.2. Fix a norm ‖·‖ on NumQ(X). There exists a constant C > 0 such that, for
every tilt-stable object E ∈ Db(X), E 6= k(x)[n], we have

(9) ‖ch(E)‖ ≤ C|Zω,B(E)|
Proof. We give a sketch of the argument; the complete proof is in [Tod12, Sections

3.6 & 3.7]. Using the same methods as in the proof of the support property for sur-
face, given in [BM11, Section 4], we will show (9) only for the semi-norm ‖ch‖′ :=
‖(ch0, ω

2 ch1, ω ch2, ch3)‖, which will be enough for all applications (in particular in sec-
tion 7.3). The full statement can then be deduced from Theorem 7.3.1.

For any torsion-free slope-stable sheaf F , define xω,B(F), yω,B(F) ∈ R by

xω,B + iyω,B =
Zω,B(F)

rkF .

Using the classical Bogomolov-Gieseker inequality and the Hodge inequality as in the
proof of Lemma 3.2.1, one shows that

yω,B = −ω
3

6
+
ω chB2 (F)

rk(F)
≤ −ω

3

6
+
ω chB1 (F)2

2 rk(F)2
≤ −ω

3

6
+

2x2

ω3
=: fω(x)(10)

We define a function Smin of ω,B by

Smin(ω,B) = inf {|x+ ifω(x)| : x ∈ R}
The function Smin is continuous, and by (10) it satisfies

0 < Smin(ω,B) ≤ inf

{∣∣∣∣
Zω,B(F)

r(F)
− it

∣∣∣∣ : t ∈ R≥0, F torsion-free slope-stable sheaf
}
.

Using exactly the same arguments as in [BM11, Lemma 4.5] one then deduces the claim
for objects where either H0(E) or H−1(E) have positive rank. Using the openness of the
ample cone, the claim also follows for torsion sheaves. 2

We could also formulate tilt-stability completely in the formalism of weak stability con-
ditions introduced in [Tod10]. Then the support property would be satisfied for every sta-
ble object, including k(x). Since we are not interested in deforming the slope of skyscraper
sheaves of points, the above Lemma is sufficient for our purposes:

Corollary 3.3.3. Denote by U ⊂ NSR(X) × NSR(X) the set of pairs (ω,B) where ω is
ample. The notion of tilt-stability can be extended to all pairs (ω,B) ∈ U . For every
object, the set of (ω,B) ∈ U for which E is tilt-stable is an open subset of U . Further,
there is a chamber decomposition of U , given by a locally finite set of walls, such that the
Harder-Narasimhan filtration of E is constant on every chamber.

Proof. The first claim follows from Bridgeland’s deformation result recalled in Theorem
2.2.1. As in Proposition 2.2.2, it follows that there is a chamber decomposition for stability
with respect to Zω,B. Combined with Remark 3.3.1, this implies the claim. 2
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4. SECOND CONSTRUCTION

The second construction of the heart Aω,B starts from perverse coherent sheaves rather
than sheaves, and uses polynomial stability conditions rather than slope-stability. We will
compare the two constructions in Section 5.1.

4.1. Polynomial stability conditions. The notion of polynomial stability condition has
been introduced in [Bay09]. We refer to loc. cit. for all basic definitions. We will repeat-
edly construct polynomial stability conditions by using the following proposition/definition
- which is stated slightly differently in [Bay09], but the proof is the same.

Proposition and Definition 4.1.1. LetD be a triangulated category. Giving a polynomial
stability condition on D is equivalent to giving a heart of a bounded t-structure A ⊂ D,
and a central charge Z : K(D)→ C[m] such that

(a) For every 0 6= E ∈ A, and for some fixed a ∈ R, the leading coefficient of Z(E)
is contained in the semi-closed half plane

R>0 · eiπ(a,a+1].

(b) Harder-Narasimhan filtrations exist for the stability condition on A induced by
Z.

We say that Z is a stability function with respect to the interval (a, a + 1] if it satisfies
condition (a). In this case, we can define a “polynomial phase function” for every E ∈ A:
it is a continuous function germ φ(E) : (R ∪+∞,+∞)→ R defined by

φ(E)(m) =
1

π
argZ(E)(m)

for sufficiently large m, such that

lim
m→+∞

φ(E)(m) ∈ (a, a+ 1].

For two such functions φ, φ′ we say φ � φ′ if φ(m) > φ′(m) for m � 0. This defines a
notion of stability for objects in A, by comparing its polynomial phase function with that
of its subobjects, and condition (b) of Definition 4.1.1 refers to HN-filtrations with respect
to this notion of stability.

For a polynomial stability condition (Z,P), the slicing P gives the set of semistable
objects for every polynomial phase functions φ. We let P̂ be the induced R-valued slicing
given by

P̂(φ) = 〈{P(φ(m)) : φ(+∞) = φ}〉.
More concretely, in the setting of Proposition 4.1.1, and for φ ∈ (a, a+1], the subcategory
P̂(φ) ⊂ A is extension-closure generated by Z-semistable objects E with

lim
m→+∞

1

π
argZ(E)(m) = φ.
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The key input of polynomial stability conditions is that, having constructed a polynomial
(Z,P) from a heart A as above, we get new t-structures by setting A′ := P̂((b, b+ 1]) for
any b ∈ R. The category A′ could also be described as (the shift of) a tilt of A.

We will repeatedly use the following lemma, which is established in the proof of [Tod09a,
Theorem 2.29]. We refer to [Bri07, Section 4] for the notion of quasi-abelian categories.

Lemma 4.1.2. Let T ,F be a torsion pair in A, and Z a polynomial stability function for
A. Write φ(E) for the polynomial phase functions induced by Z on A. Assume that

(a) If T ∈ T , F ∈ F , then φ(T ) � φ(F ).
(b) HN-filtrations exist for Z on the quasi-abelian categories T ,F .

Then HN-filtrations exist for Z on A.

In this situation, an object E ∈ A is Z-stable if and only if E ∈ T or E ∈ F , and it is
Z-stable in the respective quasi-abelian category with respect to strict inclusions.

Finally, we recall the notion of “dual stability condition”: We say that the polynomial
stability conditions (Z ′,P ′) and (Z,P) are dual to each other if P ′(φ) = D(P(−φ)), and
if Z ′(D(E)) is the complex conjugate of Z(E). Recall that we included a shift by one in
the definition D(E) = E∨[1] of our dualizing functor. Hence if skyscrapher sheaves k(x)
are stable with respect to P of phase 1, then the corresponding statement holds for P ′:

D(k(x)) = k(x)[−2] ∈ P(−1) = P ′(1).

4.2. Perverse stability. The starting point is a polynomial stability condition on the cat-
egory of perverse coherent sheaves:

Definition 4.2.1. We define the category of perverse coherent sheaves Cohp to be

Cohp = 〈Coh≥2X[1],Coh≤1X〉,
and the central charge Zω,B

p : K(X)→ C[m] to be

(11) Zω,B
p (E) := − chB3 (E) +miω chB2 (E) +m2

(
ω2

2
chB1 (E)− iω

3

6
chB0 (E)

)
.

Our strategy, also indicated in Figure 1, is as follows: first we show that (Zω,B
p ,Cohp)

gives a polynomial stability condition whose heart corresponds to the upper half plane.
The central charge is dominated by the chB0 and chB1 -terms; in other words, this stability
condition is a refinement of slope-stability. In the next step, we rescale the contribution of
chB2 to have the same weight of m2; as this only changes the imaginary part of the central
charge, this is done after switching to the tilt Bω,B of Cohp, which is the heart correspond-
ing to the right half-plane. The resulting stability is closely related to tilt-stability.

In the final (and conjectural step), we rescale the contribution of chB3 ; since that only
changes the real part of the central charge, we first switch to the tiltAω,B that corresponds
to the upper half plane.
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c̃h3(E)

ωc̃h2(E) · m

ω2c̃h1(E) · m2

ω3c̃h0(E) · m2

Cohp

(A) (Zp,Coh
p)

c̃h3(E)

ωc̃h2(E) · m2

ω2c̃h1(E) · m2

ω3c̃h0(E) · m2

Bω,B

(B) (ZB,B)

FIGURE 1. The auxiliary polynomial stability conditions

To show (Zω,B
p ,Cohp) is a stability condition, we follow the method of [Tod09a, Theo-

rem 2.29]; more precisely, we will use the following results about a torsion pair in Cohp:

Lemma 4.2.2 ([Tod09a, Lemma 2.16, Lemma 2.17 and Lemma 2.19]). There exists a
torsion pair (Ap1,Ap1/2) in Cohp defined as follows:

Ap1 = 〈F [1], k(x) : F is pure two-dimensional, x ∈ X〉,
Ap1/2 = {E ∈ Cohp : Hom(Ap1, E) = 0} .

Each of the quasi-abelian categories Ap1 and Ap1/2 is of finite length with respect to strict
inclusions and strict epimorphisms.

Additionally, they satisfy D(Ap1) = Ap1[−2] and D(Ap1/2) = Ap1/2[−1].

Proposition 4.2.3. Zω,B
p is a stability function for Cohp, and HN-filtrations exist.

Proof. If H−1(E) for an object E ∈ Ap1/2 does not vanish, then H−1(E) is purely three-
dimensional; hence E has negative rank, and the leading term of Zω,B

p (E) has positive
imaginary part. Similarly, if H−1(E) = 0, then H0(E) is purely one-dimensional, and
the same conclusion holds. On the other hand, for an object E ∈ Ap1 the leading term
evidently has a negative real coefficient.

This shows that Zω,B
p is a stability function on Cohp with respect to the interval (0, 1],

and at the same time that (Ap1,Ap1/2) satisfies the condition (a) in Lemma 4.1.2. Since
Ap1 and Ap1/2 are of finite length, the existence of HN-filtrations for each of them is also
satisfied, and the conclusion follows from Lemma 4.1.2. 2

Let Pω,Bp be the induced slicing with values in “polynomial phase functions”, and P̂ω,Bp

the induced R-valued slicing as defined above.
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Proposition 4.2.4. The stability condition (Zω,B
p ,Pω,Bp ) is dual to the stability condition

(Zω,−B
p ,Pω,−Bp ).

Proof. The Chern characters of E and D(E) differ by a sign in ch0 and ch2, and agree
for ch1 and ch3; the same holds for ch(E)eB and ch(D(E))e−B. Thus

(12) Zω,−B
p (D(E)) = Z−ω,−Bp (D(E)) = Zω,B

p (E).

Furthermore, in the proof of Proposition 4.2.3, we identified Ap1 with P̂ω,Bp (1) and Ap1/2
with P̂ω,Bp ((0, 1)). Combined with the last statement of Lemma 4.2.2, this implies that

D(P̂ω,Bp (1)) = P̂ω,−Bp (−1), D(P̂ω,Bp ((0, 1)) = P̂ω,−Bp ((−1, 0)).

As the D turns strict inclusions in these quasi-abelian categories into strict epimorphisms,
and vice versa, equation (12) also implies that E is Zω,B

p -stable if and only if D(E) is
Zω,−B
p -stable. 2

4.3. Surface-like stability. We use polynomial stability condition (Zω,B
p ,Pω,Bp ) to define

the heart Bω,B.

Definition 4.3.1. Let Bω,B := P̂ω,Bp ((−1
2
, 1
2
]) and

Zω,B
B := − chB3 (E) +m2

(
1

2
ω2 chB1 (E) + i

(
ω chB2 (E)− 1

6
ω3 chB0 (E)

))
.

In other words, Bω,B[1] is the tilt of Cohp at the torsion pair P̂ω,Bp ((1
2
, 1]), P̂ω,Bp ((0, 1

2
]).

Proposition 4.3.2. Zω,B
B is a stability function for Bω,B with respect to the interval (−1

2
, 1
2
]

and HN-filtrations exist.

To prove Proposition 4.3.2 we need a more detailed understanding of the cohomology
sheaves for objects in Bω,B (a more precise result will be Lemma 5.1.2):

Lemma 4.3.3. The cohomology sheaves of anyZω,B
p -stable objectE ∈ Bω,B either vanish,

or satisfy the following conditions:
(a) H1(E) is a zero-dimensional torsion sheaf.
(b) H−1(E) is a slope-stable torsion-free sheaf of slope µω,B ≤ 0.
(c) H0(E) is either a slope-semistable torsion-free sheaf of slope µω,B > 0, or a

torsion sheaf. Moreover, ifH0(E) has a zero-dimensional subsheaf, thenH−1(E)
is also non-zero.

Proof. This follows from the following statements about Zω,B
p -stable objectsE ∈ Cohp:

• If H0(E) has one-dimensional support, then E ∈ P̂ω,Bp ((0, 1
2
]).
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• IfH−1(E) 6= 0, then eitherE ∈ P̂ω,Bp (1) andH−1(E) is a purely two-dimensional
sheaf, orH−1(E) is slope-semistable. Its slope µω,B satisfies µω,B ≤ 0 if and only
if E ∈ P̂ω,Bp ((0, 1

2
]).

Indeed, there is a surjection E � H0(E) in Cohp, which destabilizes E unless the first
claim holds. To show the second claim, first assume thatH−1(E) ∈ Coh≥2 is purely three-
dimensional but not slope-semistable, and let A ⊂ H−1(E) be a destabilizing subsheaf.
Then the composition A[1] ↪→ H−1(E)[1] ↪→ E is an inclusion in Cohp that destabilizes
E. The same argument deals with the case whereH−1(E) is not purely three-dimensional.
This shows directly (a) and (b). To prove (c), we only need to observe that, if H0(E) has
a torsion subsheaf of dimension zero, then this destabilizes E unless H−1(E) is also non-
zero. 2

Proof. (Proposition 4.3.2) To prove that Zω,B
B is a stability function first note that

<Zω,B
B = <Zω,B

p , and that if the leading coefficient of Zω,B
p (E) has positive real part,

then the same holds for Zω,B
B (E). In particular, if E ∈ P̂ω,Bp ((−1

2
, 1
2
)), then Zω,B

p (E) has
leading coefficient with positive real part, and so Zω,B

B (E) satisfies the required property.
In the remaining case we have E ∈ P̂ω,Bp (1

2
). If H−1(E) 6= 0, then it is a slope-

semistable sheaf of slope µω,B = 0. From the Bogomolov-Gieseker inequality it follows
that ω · chB2 (H−1(E)) ≤ 0. Additionally, for any E ∈ Cohp with chB0 (E) = chB1 (E) = 0,
we have that ω ·chB2 (E) ≥ 0. It follows that the leading coefficient of Zω,B

B (E) is a positive
imaginary number.

To prove the existence of HN-filtrations, first note that the torsion pair given by T =

P̂ω,Bp (1
2
),F = P̂ω,Bp ((−1

2
, 1
2
)) satisfies condition (a) of Lemma 4.1.2. Due to the rationality

of ω and of t, the imaginary part of Zω,B
B is discrete, and thus P̂ω,Bp (1

2
) has finite length.

By the following Lemma, the quasi-abelian category F = P̂ω,Bp ((−1
2
, 1
2
)) is also of finite

length, and thus our claim follows from Lemma 4.1.2. 2

Lemma 4.3.4. The quasi-abelian category P̂ω,Bp ((−1
2
, 1
2
)) has finite length.

Proof. As above, we denote this category by F . By Proposition 4.2.4, the dual D(F)
is of the same form as F itself (with B replaced by −B); thus, it is enough to check that
there are no infinite chains . . . ↪→ E3 ↪→ E2 ↪→ E1 of strict subobjects in F . By the
rationality of ω and s, we may assume that the real part of the m2-coefficient of Zω,B

B (Ej)
is constant. But then the imaginary part of the m2-coefficient must also be constant, as
the quotient Qj of Ej+1 ↪→ Ej could otherwise not lie in P̂ω,Bp ((−1

2
, 1
2
)). In particular,

Zω,B
B (Qj) is a constant polynomial.
From the proof above of the fact that Zω,B

B is a stability function it follows that this is
only possible if Zω,B

p (Qj) already was a constant polynomial, which means that Qj is the
shift T [−1] of a zero-dimensional skyscraper sheaf. Hence the long exact cohomology
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sequence induces a sequence of inclusions H1(Ej+1) ↪→ H1(Ej) of zero-dimensional
torsion sheaves, which must terminate. 2

For later use, we also show a partial converse to Lemma 4.3.3:

Lemma 4.3.5. If T is a torsion sheaf of dimension zero, then T [−1] ∈ Bω,B. Moreover, if
E ∈ Bω,B, then the exact triangle

(13) Q→ E → H1(E)[−1]

gives an exact sequence in Bω,B, where Q is the extension

H−1(E)[1]→ Q→ H0(E).

Proof. Let T be a torsion sheaf of dimension zero. Then T [−1] belongs to Bω,B since it
is stable of phase 0 with respect to Zω,B

p .
By Lemma 4.3.3, by looking at the long exact sequence for the cohomology sheaves,

an object M ∈ Bω,B is a subobject of T [−1] if and only if M [1] is a torsion sheaf of
dimension zero and M [1] ↪→ T in Coh(X): for an exact sequence in Bω,B

0→M → T [−1]→ N → 0,

we have

0→ H0(N)→ H1(M)→ T → H1(N)→ 0,

and H−1(N) ∼= H0(M), which is impossible unless

H−1(N) = H0(N) = H−1(M) = H0(M) = 0.

To show that (13) gives an exact sequence in Bω,B it is enough to observe that, if the non-
zero map E → H1(E)[−1] is not surjective in Bω,B, then, by what we just proved, it must
factorize through a torsion subsheaf of H1(E), which is clearly a contradiction. 2

We write (Zω,B
B ,Pω,BB ) for the induced polynomial stability condition, and P̂ω,BB for the

corresponding R-valued slicing.

Proposition 4.3.6. The stability condition (Zω,B
B ,Pω,BB ) is dual to the stability condition

(Zω,−B
B ,Pω,−BB ).

Proof. Observe that, by the construction of Bω,B, we have

P̂ω,BB
(
±1

2

)
= P̂ω,Bp

(
±1

2

)
,

P̂ω,BB
((
−1

2
,
1

2

))
= P̂ω,Bp

((
−1

2
,
1

2

))
.
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Also by Lemma 4.2.4, we have

D
(
P̂ω,Bp

(
1

2

))
= P̂ω,Bp

(
−1

2

)
,

D
(
P̂ω,Bp

((
−1

2
,
1

2

)))
= P̂ω,Bp

((
−1

2
,
1

2

))
.

Then the claim follows with the same arguments as Proposition 4.2.4. 2

4.4. The threefold heart.

Definition 4.4.1. We define Aω,B to be the heart

Aω,B := P̂ω,BB ((0, 1])

of the slicing P̂ω,BB .

Note that since Bω,B = P̂ω,BB ((−1
2
, 1
2
]), one could also define Aω,B as the tilt of Bω,B at

the torsion pair T = P̂ω,BB ((0, 1
2
]), F = P̂ω,BB ((−1

2
, 0]).

Let Zω,B be the central charge defined by (2). By construction, the imaginary part of
Zω,B and 1

m2Z
ω,B
B agree; thus we automatically have

=Zω,B(E) ≥ 0, E ∈ Aω,B.
To show that Zω,B is a stability function on Aω,B, we would have to show that objects
E ∈ Aω,B with =Zω,B(E) = 0 satisfy <Zω,B(E) < 0; equivalently, if E ∈ Bω,B is Zω,B

B -
stable of phase 0, then <Zω,B(E) > 0. In the next section, we will prove that Aω,B equals
Aω,B, and so this claim is equivalent to Conjecture 3.2.7.

Remark 4.4.2. Let E ∈ Bω,B be a Zω,B
B -stable object of phase 0, which is not isomorphic

to k(x)[−1]. Then E is quasi-isomorphic to a two-term complex E−1 → E0 of vector
bundles. Indeed, as k(x)[−1] is stable of the same phase, we have Hom(E, k(x)[n]) = 0
for n ≤ −1 and (using Serre duality) for n ≥ 2; then the claim follows by [BM02,
Corollary 5.6].

Remark 4.4.3. If the stability condition (Aω,B, Zω,B) exists, then it is dual to (Aω,−B, Zω,−B);
the proof is the same as for Proposition 4.3.6.

5. COMPARISON AND NOETHERIAN PROPERTY

5.1. Comparing the two constructions. The goal of this section is to prove the following
result:

Proposition 5.1.1. We have Aω,B = Aω,B.
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The proof consists of a detailed analysis of the various steps in the two constructions.

Step 1. (Cohp versus CohX) By definition, Cohp is the tilt of CohX with respect to the
torsion pair

T0 = Coh≤1X

F0 = Coh≥2X.

Step 2. (Bω,B versus Bω,B) By Lemma 4.3.3 and Lemma 4.3.5, the skyscraper sheaves
k(x)[−1] ∈ Bω,B and, for all E ∈ Bω,B, H1(E) is torsion of dimension 0. Define a torsion
pair in Bω,B by

T1 =
{
E ∈ Bω,B : H1(E) = 0

}

F1 =
{
E ∈ Bω,B : E ∼= H1(E)[−1]

}
.

Notice that, by its own definition, F1[1] = Coh≤0X consists of zero-dimensional sheaves.
The fact that this is a torsion pair follows immediately from Lemma 4.3.5. Let B1 be the
tilt with respect to this torsion pair, i.e.,

B1 = 〈F1[1], T1〉.
Lemma 5.1.2. We have B1 = Bω,B.

Proof. We only need to show that Bω,B ⊆ B1. Let M ∈ Bω,B. By construction of
Bω,B, both of its cohomology sheaves H0(M) and H−1(M)[1] belong to Bω,B. By further
using their Harder-Narasimhan filtrations with respect to µω,B-stability, it is sufficient to
consider the following cases:

(a) M = Γ is a torsion sheaf.
(b) M = Γ is a torsion-free slope-stable sheaf with slope µω,B(Γ) > 0,
(c) M = Γ[1] is the shift of a torsion-free slope-stable sheaf Γ with slope µω,B(Γ) ≤

0,
For case (a), we can assume Γ is pure and so we can distinguish three sub-cases, ac-

cording to the dimension of the support of Γ:
dim(Γ) = 0: In this case, Γ[−1] ∈ F ⊂ Bω,B and Γ ∈ B1 by construction of B1.
dim(Γ) = 1: The limit phase with respect to Zω,B

p is 1
2
. Assume, for a contradiction, that

Γ /∈ P̂ω,Bp ((0, 1
2
]). Then there exists an exact sequence in Cohp

A→ Γ→ B

where A is Zω,B
p -semistable with limit phase φp(A) > 1

2
. Passing to cohomology,

we have

0→ H−1(B)→ H0(A)→ Γ→ H0(B)→ 0.
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Since dim(H−1(B)) ≥ 2 and dim(H0(A)) ≤ 1, we have H−1(B) = 0. Hence
A ∼= H0(A) must be pure of dimension 1 and its limit phase φp(A) is precisely 1

2
,

a contradiction.
dim(Γ) = 2: The limit phase of Γ[1] ∈ Cohp with respect to Zω,B

p is 1. If A ↪→ Γ[1] � B
is an exact sequence in Cohp, then the long exact cohomology sequence shows
that B[−1] is a sheaf, and in fact that it is a sheaf with 2-dimensional support.
Thus any quotient of Γ[1] also has limit phase 1, and so Γ[1] ∈ P̂ω,Bp (1). But then
Γ ∈ Bω,B ∩ CohX ⊂ B1.

In case (b) we have Γ[1] ∈ Cohp = P̂ω,Bp ((0, 1]). Assume that Γ[1] /∈ P̂ω,Bp ((1
2
, 1]).

Then there exists an exact sequence in Cohp

A→ Γ[1]→ B

where B is Zω,B
p -semistable and has limit phase φp(B) ≤ 1

2
. Passing to cohomology, we

have
0→ H−1(A)→ Γ

φ−→ H−1(B)→ H0(A)→ 0.

Hence B ∼= H−1(B)[1]. By Lemma 4.3.3, H−1(B) is torsion-free and µω,B-semistable
with slope µω,B(H−1(B)) ≤ 0. But then φ = 0 and H−1(B) ∼= H0(A) = 0.

This contradiction proves that Γ[1] ∈ P̂ω,Bp ((1
2
, 1]). Hence, Γ ∈ P̂ω,Bp ((−1

2
, 0]) ⊂ Bω,B,

and clearly it is contained in T1 ⊂ B1.
Finally we treat case (c). Consider the exact sequence in Cohp

(14) A→ Γ[1]→ B

with A ∈ P̂ω,Bp ((1
2
, 1]) and B ∈ P̂ω,Bp ((0, 1

2
]). Passing to cohomology, we have

0→ H−1(A)→ Γ
φ−→ H−1(B)→ H0(A)→ 0.

If H−1(A) is non-zero, then its slope satisfies µω,B(H−1(A)) ≤ µω,B(Γ) ≤ 0. Since
H0(A) is a torsion sheaf of dimension ≤ 1, we have φp(A) = φp(H

−1(A)) ≤ 1
2
, which

is a contradiction; hence A = H0(A). If H0(A) has dimension 1, its limit phase is
φp(H

0(A)) = 1
2
, which is again a contradiction. Hence T0 := H0(A) is a 0-dimensional

torsion sheaf. Thus the exact sequence (14) becomes

T0 → Γ[1]→ Λ[1],

where Λ is a sheaf; in particular, Λ[1] ∈ P̂ω,Bp ((0, 1
2
]) ⊂ Bω,B is contained in the torsion-

part of Bω,B and thus Λ[1] ∈ B1. We already proved that T0 ∈ B1 in part (a), and thus we
also have Γ[1] ∈ B1. 2

Step 3. (Aω,B versus Aω,B) It will be enough to show that Aω,B ⊆ Aω,B. Of course, the
key point will be that the slope of the m2-coefficient of Zω,B

B is, up to normalization, given
by νω,B.
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By Step 2 and Lemma 4.3.5, there is a torsion pair (T2,F2) in Bω,B where T2 = F1[1] =
Coh≤0X consists of zero-dimensional skyscraper sheaves; thenF2 = Bω,B∩Bω,B is given
as the right-orthogonal

F2 = {E ∈ Bω,B : Hom(k(x), E) = 0, for all x ∈ X}
Evidently T2 ⊂ Aω,B. Recall that νω,B(k(x)) = +∞. Hence if E ⊂ Bω,B is tilt-
semistable, then either νω,B(E) = +∞ and the short exact sequence T ↪→ E � E ′

with T ∈ T2 and E ′ ∈ F2 has E ′ also tilt-semistable with νω,B(E ′) = +∞, or E itself is
already in F2. It follows that it is sufficent to show for every tilt-stable object E ∈ F2:

(a) If νω,B(E) ≤ 0, then E ∈ P̂ω,BB ((−1
2
, 0]).

(b) If νω,B(E) > 0, then E ∈ P̂ω,BB ((0, 1
2
]).

Indeed, by definition, Aω,B = P̂ω,BB ((0, 1]), and thus the claim implies T ′ω,B ⊂ Aω,B and
F ′ω,B[1] ⊂ Aω,B.

Consider such an E. By Step 2, we have E ∈ T1 ⊂ Bω,B. Consider any short exact
sequence

A ↪→ E � B

in Bω,B that destabilizes E with respect to Zω,B
B . Consider the short exact sequence T ↪→

A � A/T given by the torsion pair (T1,F1) in Bω,B. If T is non-trivial, then the limiting
phases of Zω,B

B (T ) and Zω,B
B (A) agree (as Zω,B

B (A/T ) is a constant polynomial). On the
other hand, consider the induced short exact sequence

T ↪→ E � E/T.

As T,E ∈ T1, and as T1 ⊂ Bω,B is closed under quotients, this is also a short exact
sequence in Bω,B. By the tilt-stability of E we have νω,B(T ) < νω,B(E). This is a contra-
diction unless T = 0.

Hence either E is stable with respect to Zω,B
B , or its Harder-Narasimhan filtration has

just two steps 0 ↪→ E1 ↪→ E2 with E1 ∈ F1 = Coh≤0[−1] being the shift of a zero-
dimensional skyscraper sheaf.

In case (a), the limiting phase of ZB(E)(m) satisfies φ(E)(+∞) = φ(E2/E1)(+∞) ∈
(−1

2
, 0]; together with φ(k(x)[−1]) = 0 this shows our claim. In the other case (b),

we have φ(E)(+∞) ∈ (0, 1
2
]. In particular, φ(E) � φ(E1) = φ(k(x)[−1]) = 0, a

contradiction unless E1 = 0. Thus E is Zω,B
B -stable with E ∈ P̂ω,BB ((0, 1

2
]).

This finishes the proof of Proposition 5.1.1. We also have the following more precise
result, which will be used in [BBMT11]:

Proposition 5.1.3. (a) Assume E ∈ Bω,B ∩ Bω,B satisfies either νω,B(E) ≥ 0 or
Hom(k(x)[−1], E) = 0. Then E is νω,B-semistable if and only if it is Zω,B

B -
semistable.
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(b) Assume E ∈ Bω,B satisfies νω,B;max(E) < +∞. Then D(E) fits into an exact tri-
angle Ẽ → D(E)→ T0[−1] for an object Ẽ ∈ Bω,−B and a zero-dimensional tor-
sion sheaf T0. Further, E is νω,B-semistable if and only if Ẽ is νω,−B-semistable.

Proof. The first claim follows from the proof of Step 3. For the second claim, first note
that νω,B;max(E) < +∞ implies Hom(k(x), E) = 0 and thusE ∈ Bω,B∩Bω,B. Combined
with the first part, this gives the even stronger statement E ∈ P̂ω,BB ((−1

2
, 1
2
)). Proposition

4.3.6 then implies D(E) ∈ P̂ω,−BB ((−1
2
, 1
2
)) ⊂ Bω,−B, and Lemma 5.1.2 implies the exis-

tence of an exact triangle as stated above.
If E is not νω,B-stable, then it has a destabilizing quotient E � B with νω,B;max(B) <

+∞. Applying the same construction to B produces an injection B̃ ↪→ Ẽ in Bω,−B. As
νω,B(E) = −νω,−B(Ẽ) etc., this will destabilize Ẽ with respect to νω,−B. So E unstable
implies Ẽ unstable, and the converse follows similarly. 2

5.2. Noetherian property. The goal of this section is to show that the heart of our t-
structure is Noetherian.

Lemma 5.2.1. There is a torsion pair (T 1,F (0,1)) in Aω,B whose torsion part is given by

E ∈ T 1 ⇐⇒ =Zω,B(E) = 0.

The category T 1 is an abelian category of finite length which is closed in Aω,B under
subobjects and quotients.

Proof. Using the second construction Aω,B = P̂ω,BB ((0, 1]), we can define a torsion pair
T 1 := P̂ω,BB (1) and F (0,1) = P̂ω,BB ((0, 1)). Evidently E ∈ T 1 if and only if the leading
coefficient of Zω,B

B (E) is real, which happens if and only if Zω,B(E) is real.
To prove the second assertion, notice that T 1 is by definition a subcategory of the quasi-

abelian category P̂ω,BB ((1
2
, 3
2
)). By construction of (Zω,B

B ,Pω,BB ), we have P̂ω,BB ((1
2
, 3
2
)) =

P̂ω,Bp ((1
2
, 3
2
)), and the latter is of finite length by Lemma 4.3.4. 2

Proposition 5.2.2. The abelian category Aω,B is Noetherian.

Proof. Suppose that there is an infinite sequence of surjections in Aω,B
E1 � E2 � · · · .(15)

We are going to show that the above sequence terminates. Since ω and B are rational and
=Zω,B(E) ≥ 0 for any E ∈ Aω,B, we may assume that

=Zω,B(E1) = =Zω,B(Ei),(16)

for all i. Consider the exact sequence

0→ Li → E1 → Ei → 0
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in Aω,B. By equation (16) we have =Zω,B(Li) = 0 and so Li ∈ T 1. Thus every Li is a
subobject of the torsion part T of E1. Replacing E1 by T and Ei by the quotient T/Li, we
get an infinite sequence (15) with Ei ∈ T 1. This sequence terminates by the second part
of Lemma 5.2.1. 2

Remark 5.2.3. If (Zω,B,Aω,B) is a stability condition, then Aω,B must be Noetherian
as shown in [AP06, Proposition 10.1]. Hence Proposition 5.2.2 gives some evidence for
Conjecture 3.2.6.

Corollary 5.2.4. Conjecture 3.2.6 and Conjecture 3.2.7 are equivalent.

Proof. It is obvious that Conjecture 3.2.6 implies Conjecture 3.2.7. Suppose that Con-
jecture 3.2.7 is true. Then Zω,B is a stability function on Aω,B. Since Aω,B is Noetherian
by Proposition 5.2.2, we can apply [BM11, Prop. B.2] to conclude that (Zω,B,Aω,B) has
the Harder-Narasimhan property. 2

6. LARGE VOLUME LIMIT

In this section we show that if the stability conditions (Aω,B, Zω,B) exist, then their limit
as ω goes to infinity is exactly given by the notion of “polynomial stability condition at
the large-volume limit” of [Bay09, Section 4] or “limit stability” of [Tod09a]. The precise
statement is given in Proposition 6.2.3.

6.1. Stability condition at the large volume limit. Let Z∞ω,B : K(X) → C[m] be a
polynomial valued central charge, given by

Z∞ω,B(E)(m) = Zmω,B(E).

(Note that the only difference to Zω,B
p of equation (11) is given by the chB0 (E)-term, which

has weight m3 rather than m2.) Let Cohp be the category of perverse coherent sheaves,
given in Definition 4.2.1. Recall that, as in Section 4.2, by [Bay09] the pair (Z∞ω,B,Cohp)
defines a polynomial stability condition on Db(X). Let Qp be the associated slicing de-
pending on polynomial phase functions. The central charge Z∞ω,B is a stability function
on Cohp with respect to the interval (1/4, 5/4) (see [Tod09a, Lemma 2.20]), hence we
have Cohp = Qp((1/4, 5/4)).

Definition 6.1.1. We define Cp := Qp((0, 1]).

We give a precise description of the abelian category Cp. Note that there is an analogue
of slope stability on Coh≤2X . Namely, for an object E ∈ Coh≤2X , we set µ̂ω,B(E) =
+∞ if E ∈ Coh≤1X , and otherwise we set

µ̂ω,B(E) =
ω chB2 (E)

ω2 chB1 (E)
.(17)
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FIGURE 2. Relating the various t-structures

The µ̂ω,B-stability on Coh≤2X is defined in a similar way to µω,B-stability. We define the
torsion pair (T p,Fp) on Coh(X) to be

T p =
{
E ∈ Coh≤2X : µ̂ω,B;min(E) > 0

}

Fp = {E ∈ CohX : Hom(T p, E) = 0} .
Lemma 6.1.2. The abelian category Cp is the tilt of CohX with respect to (T p,Fp),

Cp = 〈Fp[1], T p〉.
Proof. It is enough to show that the RHS is contained is the LHS. To see this, it is

enough to check that
(a) Any µ̂ω,B-stable sheaf E ∈ Coh≤2X with µ̂ω,B(E) > 0 (resp. µ̂ω,B(E) ≤ 0)

satisfies E ∈ Cp (resp. E[1] ∈ Cp).
(b) Any torsion free sheaf E ∈ CohX satisfies E[1] ∈ Cp.

Let (Ap1,Ap1/2) be the torsion pair on Cohp, defined in Lemma 4.2.2. It is shown in [Tod09a,
Lemma 2.27] that an objectE ∈ Cohp is Z∞ω,B-semistable if and only ifE ∈ Api for i = 1
or 1/2 and it is Z∞ω,B-semistable in the quasi-abelian category Api .

Suppose that E ∈ Coh≤2X is µ̂ω,B-stable with µ̂ω,B(E) > 0. If E has two-dimensional
support, then E[1] ∈ Ap1 and it is Z∞ω,B-stable in Ap1. Since =Zmω,B(E[1]) < 0 for
m � 0, we have E[1] ∈ Qp(> 1), hence E ∈ Cp. If E is pure of dimension one, then
E ∈ Ap1/2 ⊂ Cp; and if E ∼= k(x) is the skyscraper sheaf of a point x ∈ X , then it is
Z∞ω,B-stable of phase 1. A similar argument shows that if µ̂ω,B(E) ≤ 0, then E[1] ∈ Cp.

Next, take a torsion free sheaf E ∈ CohX . Then E[1] ∈ Ap1/2, and its Harder-
Narasimhan factors with respect to the polynomial stability function Z∞ω,B are contained
in Ap1/2. Since any object in Ap1/2 has limit phase 1/2, we have E[1] ∈ Cp. 2

The diagram in Figure 2 schematically shows the relations between the different t-
structures. Each heart in the figure is the extension-closure of the corresponding blocks.

6.2. Comparison of Aω,B and Cp.
Lemma 6.2.1. For an object E ∈ Db(X), suppose that E ∈ Amω,B for m � 0. Then
E ∈ Cp.
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Proof. Note that we have Bω,B = Bmω,B for m ∈ R>0. We denote by H i
B( ) the i-th

cohomology functor with respect to the t-structure Bω,B. Also, for simplicity, we write
T ′mω,B, F ′mω,B and Amω,B as T ′m,F ′m and Am respectively. Suppose that E ∈ Db(X)
satisfies E ∈ Am for m� 0. This implies that

H−1B (E) ∈ F ′m and H0
B(E) ∈ T ′m,(18)

for m� 0. We have the following exact sequences in Bω,B:

0→ E1[1]→ H−1B (E)→ E2 → 0,

0→ E3[1]→ H0
B(E)→ E4 → 0,

for Ei ∈ CohX . By the construction of Bω,B, we have E1, E3 ∈ Fω,B and E2, E4 ∈ Tω,B.
Since (T ′m,F ′m) is a torsion pair on Bω,B, (18) implies that E1[1] ∈ F ′m and E4 ∈ T ′m for
m � 0. In particular we have νmω,B(E1[1]) ≤ 0 and νmω,B(E4) > 0 for m � 0, which
imply that

−1

6
m3ω3 chB0 (Ei) +mω chB2 (Ei) ≥ 0,

for i = 1, 4 and m� 0. This implies that chB0 (E1) = chB0 (E4) = 0, hence E1 = 0 and E4

is a torsion sheaf.
From what we have proved above, the object E is concentrated on [−1, 0]. Since E3 ∈
Fp, it is enough to check that

E2 ∈ Fp and E4 ∈ T p,

to conclude E ∈ Cp. Let E2,tor ⊂ E2 be the torsion part of E2, and F ⊂ E2,tor be the
µ̂ω,B-semistable factor of E2,tor with µ̂ω,B maximum. Then F ∈ F ′m for m � 0, as F is
a subobject of H−1B (E) in Bω,B, therefore νmω,B(F ) ≤ 0 for m � 0. This implies that
F is a pure two-dimensional sheaf with µ̂ω,B(F ) ≤ 0, hence E2 ∈ Fp follows. Similarly
for a µ̂ω,B-semistable factor E4 � F ′ such that µ̂ω,B is minimum, we have F ′ ∈ T ′m for
m� 0, hence µω,B(F ′) > 0 and E4 ∈ T p follows. 2

Lemma 6.2.2. For an object E ∈ Cp, we have E ∈ Amω,B for m� 0.

Proof. Let us take an object E ∈ Cp and an exact sequence in Cp

0→ H−1(E)[1]→ E → H0(E)→ 0.

The sheaf H−1(E) fits into the short exact sequence of sheaves

0→ T1 → H−1(E)→ T2 → 0,
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with T1 ∈ Tω,B and T2 ∈ Fω,B. By the above two sequences, we obtain the exact sequences
in Cp

0→ T1[1]→ E → U → 0,(19)

0→ T2[1]→ U → H0(E)→ 0,(20)

for some U ∈ Cp. Since T1 ∈ Bω,B and U ∈ Bω,B by the sequence (20), the sequence (19)
implies

H−1B (E) = T1 and H0
B(E) = U.

In order to conclude E ∈ Amω,B for m� 0, it is enough to show that

νmω,B;min(T1) ≤ 0 and νmω,B;min(U) > 0,

for m � 0. We only show that νmω,B;min(U) > 0. The inequality νmω,B;min(T1) ≤ 0 is
similarly proved, and we omit the proof.

Let Um ∈ Bω,B be the νmω,B-semistable factor of U such that

νmω,B;min(U) = νmω,B(Um).

We have the exact sequence in Bω,B
0→ U

′m → U → Um → 0,

and the long exact sequence of coherent sheaves

0→ H−1(U
′m)→ T2 → H−1(Um)

→ H0(U
′m)→ H0(E)→ H0(Um)→ 0.

(21)

Since H0(E) ∈ T p, the sheaf H0(Um) also satisfies H0(Um) ∈ T p. This implies the
inequality

νmω,B(H0(Um)) > 0, m > 0.(22)

Next we see that νmω,B(H−1(Um)[1]) is positive for m� 0. The sequence (21) gives rise
to two short exact sequences of coherent sheaves

0→ K → H−1(Um)→ K ′ → 0,

0→ K ′ → H0(U
′m)→ K ′′ → 0.

Note that there is a surjection T2 � K, hence µω,B;min(K) is bounded below, i.e., there
is a constant c which does not depend on m such that µω,B;min(K) ≥ c. Also since K ′′ is
a subsheaf of H0(E), it is a torsion sheaf and its first Chern class is bounded above. This
fact, together with µω,B;min(H0(U

′m)) > 0, easily implies that µω,B;min(K ′) is bounded
below. Therefore µω,B;min(H−1(Um)) is also bounded below.



30 AREND BAYER, EMANUELE MACRÌ, AND YUKINOBU TODA

Let A1, · · · , AN be the set of µω,B-semistable factors of H−1(Um). From what we have
proved above, there is a constant c > 0, which does not depend on m such that

0 ≥ µω,B(A1) > · · · > µω,B(AN) ≥ −c.
By replacing c if necessary, the Hodge Index Theorem and the Bogomolov-Gieseker in-
equality imply the following bound:

ω · chB2 (Ai)

chB0 (Ai)
≤ ω · chB1 (Ai)

2

2 chB0 (Ai)2
≤ c.

Hence we have

ω · chB2 H
−1(Um)

chB0 H
−1(Um)

≤ c.(23)

Now we have

=Zmω,B(H−1(Um)[1])

chB0 (H−1(Um))
=

1

6
m3ω3 −mω chB2 H

−1(Um)

chB0 H
−1(Um)

,

which is positive for m� 0 by (23). This implies the inequality

νmω,B(H−1(Um)[1]) > 0, m� 0.(24)

By the inequalities (22) and (24), we obtain νmω,B(Um) > 0 for m� 0. 2

Let us denote σm = (Zmω,B,Amω,B). We have the following proposition.

Proposition 6.2.3. Suppose that σm are stability conditions. If an object E ∈ Db(X) is
σm-semistable for m � 0, then E is semistable with respect to the polynomial stability
condition (Z∞ω,B, Cp).

Proof. We may assume that E ∈ Amω,B for m� 0. By Lemma 6.2.1, we have E ∈ Cp.
Suppose that E is not semistable w.r.t. Z∞ω,B. Then there is an exact sequence in Cp

0→ E ′ → E → E ′′ → 0,(25)

such that argZmω,B(E ′) > argZmω,B(E ′′) for m � 0. However, by Lemma 6.2.2, the
sequence (25) is also an exact sequence in Amω,B, for m � 0. This implies that (25)
destabilizes E w.r.t. σm for m� 0, which is a contradiction. 2

7. BOGOMOLOV-GIESEKER TYPE INEQUALITIES

In this section we discuss bounds on the set of numerical classes of νω,B-semistable
objects in Bω,B.
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7.1. Torsion sheaves. We consider Conjecture 3.2.6 in the case of torsion sheaves. For
simplicity, we assume that

Pic(X) = Z[OX(H)],

for an ample divisor H . We denote d = H3 ∈ Z>0 and ω = αH for α ∈ Q>0. We take a
smooth divisor

S ∈ |mH|,
for m ∈ Z≥1 and consider semistable sheaves on S. Notice that

CohS ⊂ Bω,B,
is an abelian subcategory, and for E ∈ CohS, we have νω,B(E) = µ̂ω,B(E), where µ̂ω,B
is as defined in equation (17). Hence if E ∈ CohS is νω,B-(semi)stable in Bω,B, then it is
also µ̂ω,B-(semi)stable in CohS. Let us discuss Conjecture 3.2.6 for objects in CohS.

Let E ∈ Coh(S) be a µ̂ω,B-semistable sheaf with

chB(E) = (r, l, s) ∈ H0(S)⊕H2(S)⊕H4(S),

where chB on S is nothing but ch ·e−B|S . Let i : S ↪→ X denote the inclusion. By the
Grothendieck Riemann-Roch formula, we have

chB(i∗E) =

(
0, rS,−r

2
S2 + i∗l,

r

6
S3 − 1

2
S · i∗l + s

)

∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).

The condition νω,B(i∗E) = 0 is equivalent to i∗l = rS2/2; hence we have

chB(i∗E) =

(
0, rS, 0, s− 1

12
rS3

)
.

On the other hand, the Bogomolov-Gieseker inequality l2 ≥ 2rs implies the inequality

s ≤ 1

8
rS3 =

1

8
drm3.(26)

Therefore we have

<Zω,B(i∗E) = −s+
1

12
rS3 +

1

2
α2rH2S

≥ rdm

24

(
12α2 −m2

)
.

If m > 2
√

3α, we cannot conclude that <Zω,B(i∗E) is positive. This implies that µ̂ω,B-
stability and the Bogomolov-Gieseker inequality on S are not sufficient to conclude Con-
jecture 3.2.6, and we need to investigate νω,B-stability in more detail.
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Suppose, for instance, that there exists a µω,B-semistable torsion free sheaf F onX such
that F |S ∼= E. For example, when E = OS(mH/2) for an even number m, we can take
F = OX(mH/2). We have

µω,B(F ) =
α2

2
md > 0, µω,B(F (−S)) = −α

2

2
md < 0.

Then the sequence

F → E → F (−S)[1]

is an exact sequence in Bω,B. If E is νω,B-semistable, we have νω,B(F ) ≤ 0. Therefore we
have

s ≤ 1

6
rdmα2.(27)

Note that, when m is big, (27) is a stronger inequality than (26). Using (27) instead of
(26), we obtain

<Zω,B(i∗E) ≥ rdm

12
(4α2 +m2) > 0.

By considering at the same time the two inequalities (26) and (27), we obtain the in-
equality of Conjecture 1.3.1 in this case:

Proposition 7.1.1. Let X be a smooth projective threefold with Pic(X) = Z[OX(H)]. Let
S ∈ |mH| be a smooth divisor, i : S ↪→ X . Let E ∈ Coh(S) be such that:

• i∗E is νω,B-semistable with νω,B(i∗E) = 0, and
• there exists a torsion-free µω,B-semistable sheaf F ∈ Coh(X) with F |S ∼= E.

Then

(28) chB3 (i∗E) ≤ ω2

18
chB1 (i∗E).

Proof. First of all, when 3m2 ≤ 4α2, we use (26), and we have

chB3 (i∗E) = s− 1

12
rm3d ≤ rm3d

24
≤ rα2md

18
=
ω2

18
chB1 (i∗E).

Similarly, when 3m2 ≥ 4α2, we use (27), and (28) is proved. 2

7.2. Semistable objects in Bω,B. Here we fix B ∈ NSQ(X) and use the twisted Chern
character chB(E) = ch(E) ·e−B. For an ample divisor ω ∈ NSQ(X), let D ⊂ Bω,B denote
the set of objects E ∈ Bω,B satisfying one of the following conditions:

(a) H−1(E) = 0 andH0(E) is a pure sheaf of dimension≥ 2 that is slope-semistable
with respect to ω.

(b) H−1(E) = 0 and H0(E) is a sheaf of dimension ≤ 1.
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(c) H−1(E) is a torsion-free slope-semistable sheaf and H0(E) ∈ Coh≤1X . If
µω,B(H−1(E)) < 0, we have

(29) Hom(Coh≤1X,E) = 0.

Lemma 7.2.1. If an object E ∈ Bω,B is νmω,B-semistable for m� 0 then E ∈ D.

Proof. The proof is given by the same argument as in [Bay09, Lemma 4.2]. 2

The set of objects D is also obtained as νω,B-semistable objectsE with small ω2 chB1 (E).
Because of the rationality of B and ω, we can take c ∈ Q>0 to be

c := min
{
ω2 chB1 (E) > 0 : E ∈ Bω,B

}
.(30)

Lemma 7.2.2. For an object E ∈ Bω,B, suppose that ω2 chB1 (E) ≤ c. Then E is νω,B-
semistable if and only if E ∈ D.

Proof. The assumption implies that ω2 chB1 (E) = 0 or c, and the first case is obvious.
So assume ω2 chB1 (E) = c. Given any short exact sequence

(31) A ↪→ E � B

in Bω,B, we always have either ω2 chB1 (A) = 0 or ω2 chB1 (B) = 0. In the former case, we
have νω,B(A) = +∞ > νω,B(E) 6= ∞ and thus E is unstable. In the latter case, we have
νω,B(E) = +∞ > νω,B(E), and thus the short exact sequence (31) cannot destabilize E.

So E is stable if and only if there is no subobject A ↪→ E with ω2 chB1 (A) = 0, i.e A is
contained in the subcategory described in (6). This condition is invariant under replacing
ω by a scalar multiple mω for m ∈ R. In particular, if E is νω,B-semistable, then it is
νmω,B-semistable for m� 0, and E ∈ D by Lemma 7.2.1.

Conversely, assume E ∈ D has a subobject A with ω2 chB1 (A) = 0. If H−1(A) 6= 0,
then it has slope µω,B(H−1(A)) = 0. Also, H−1(E) is non-trivial, and thus E satisfies
condition (c) in the definition of D. As ω2 chB1 (E) > 0, we have µω,B(H−1(E)) < 0; but
H−1(A) is a subobject of H−1(E), in contradiction to the slope-semistability of E.

On the other hand, if H−1(A) = 0, then A ∈ Coh≤1X , in contradiction to (29). 2

In particular, Conjecture 1.3.1 includes the following conjecture for µω,B-stable sheaves:

Conjecture 7.2.3. Let X be a smooth projective threefold and take B,ω ∈ NSQ(X) with
ω ample. Let E be a µω,B-stable sheaf satisfying ω2 chB1 (E) = c, where c is defined by
(30). Suppose that E satisfies

ω chB2 (E)

ω3 chB0 (E)
=

1

6
.(32)

Then we have
chB3 (E)

ω2 chB1 (E)
≤ 1

18
.(33)
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Example 7.2.4. In the situation of Conjecture 7.2.3, suppose that Pic(X) is generated by
an ample line bundle L on X with D = L3. Setting ω = tL for t ∈ Q>0 and B = 0, we
have c = Dt2. For a curve C ⊂ X of degree d = L.C, let IC be the ideal sheaf of C. Then
the object E = L⊗ IC is µω,0-stable with ω2 chB1 (E) = c, and satisfies (32) if d < D

2
and

t2

6
=

1

2
− d

D
.

Then the Conjecture states that

ch3(E) =
D

6
− d− ch3(OC) ≤ t2D

18
=
D

6
− d

3

or, equivalently,

− ch3(OC) ≤ 2

3
d.(34)

For instance, if X ⊂ P4 is a hypersurface of degree D, Hirzebruch-Riemann-Roch relates
ch3(OC) to the arithmetic genus g of C by

1− g = χ(OC) = ch3(OC) +
d

2
(4−D).

Thus the inequality (34) becomes g ≤ d
2
D − 4

3
d + 1. Since d < D

2
, this follows from

Castelnuovo’s classical inequality g ≤ 1
2
(d− 1)(d− 2), which does hold in our situation:

it has been shown for for singular curvesC ⊂ P3 in [OS85] and [Har94]; and sinceC ⊂ X
is contained in a smooth hypersurface in P4, the curve C will map isomorphically into P3

under a generic projection.
On the other hand, already when X ⊂ PN+3 is a complete intersection of codimension

N , the inequality (34) seems stronger than known Castelnuovo inequalities: it becomes

g ≤ D1 + · · ·+DN

2
d− N + 3

2
d+

2

3
d+ 1

for any curve of genus g and degree d < 1
2
D1 · D2 · · ·DN on a complete intersection of

degree (D1, . . . , DN). The statement would be similar to the case of space curves lying on
a surface of given degree, treated e.g. in [Har80].

7.3. Bogomolov-Gieseker type inequality without ch3. In this section we establish a
Bogomolov-Gieseker type inequality for νω,B-semistable objects in Bω,B which does not
involve ch3. For a, b ∈ R, we set fa,b : NSQ(X)→ R to be

fa,b(x) := aω3 · x2ω + b(xω2)2.
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Recall that the discriminant ∆(E) ∈ A2
Q(X) of an object E ∈ Db(X) is defined by

∆(E) = ch1(E)2 − 2 ch0(E) ch2(E)

= chB1 (E)2 − 2 chB0 (E) chB2 (E).

We have the following result.

Theorem 7.3.1. For a smooth projective threefold X and ω ∈ NSQ(X), take a ∈ R≥−1
and b ∈ R such that fa,b satisfies the following conditions:

(a) fa,b(x) ≥ 0, for any x ∈ NSQ(X).
(b) fa+1,b(x) ≥ 0, for any effective class x ∈ NSQ(X).

Then, for any νω,B-semistable object E ∈ Bω,B, we have the following inequality:

ω3 · ω∆(E) + fa,b(chB1 (E)) ≥ 0.(35)

Proof. We prove the inequality (35) by induction on ω2 chB1 (E). Observe that the
Bogomolov-Gieseker inequality and the condition (a) imply (35) for torsion free slope-
semistable sheaves. Also, condition (b) implies the inequality (35) for torsion sheaves.
Therefore (35) holds for any object E ∈ D; hence it also holds if ω2 chB1 (E) ≤ c, by
Lemma 7.2.2.

Assume that (35) holds for all νω,B-semistable F ∈ Bω,B with ω2 chB1 (F ) < ω2 chB1 (E).
By the previous argument, we may assume that E /∈ D. Then, by Lemma 7.2.1, the object
E is not νmω,B-semistable for sufficiently large m. Hence we can take m0 ∈ R>0 to be

m0 = sup{m ∈ R>0 : E is νmω,B-semistable }.
By Corollary 3.3.3, there is a filtration in Bω,B

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E,

such that the following holds.
• E• is a Harder-Narasimhan filtration of E with respect to ν(m0+ε)ω,B-stability for

0 < ε� 1. In particular, subquotients Fi = Ei/Ei−1 satisfy

ν(m0+ε)ω,B(F1) > ν(m0+ε)ω,B(F2) > · · · > ν(m0+ε)ω,B(FN).(36)

• The subquotients Fi are νm0ω,B-semistable with

νm0ω,B(F1) = νm0ω,B(F2) = · · · = νm0ω,B(FN).(37)

We set ai, bi and ci as follows:

ai =
ω3 chB0 (Fi)

ω2 chB1 (Fi)
, bi =

ω chB2 (Fi)

ω2 chB1 (Fi)
, ci =

chB1 (Fi)

ω2 chB1 (Fi)
.
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Note that we have ω2 chB1 (Fi) < ω2 chB1 (E); hence Fi satisfies the inequality (35) by the
inductive assumption. The inequality (35) for Fi is written as

(a+ 1)ω3 · ωc2i − 2aibi + b ≥ 0.(38)

By setting c = m2
0/6 > 0, the equality (37) implies

−ca1 + b1 = −ca2 + b2 = · · · = −caN + bN .(39)

Combined with (36), we obtain the inequalities

a1 < a2 < · · · < aN .(40)

Then (39) and (40) imply the following inequalities:

b1 < b2 < · · · < bN .(41)

We can calculate as

ω3 · ω∆(E) + fa,b(chB1 (E))

= ω3 · ω



(

N∑

i=1

chB1 (Fi)

)2

− 2

(
N∑

i=1

chB0 (Fi)

)(
N∑

i=1

chB2 (Fi)

)


+ aω3 · ω
(

N∑

i=1

chB1 (Fi)

)2

+ b

(
N∑

i=1

ω2 chB1 (Fi)

)2

=
N∑

i=1

ω3 · ω∆(Fi) + fa,b(chB1 (Fi))

+ 2
∑

i<j

ω2 chB1 (Fi) · ω2 chB1 (Fj)
(
(a+ 1)ω3 · ωcicj − aibj − ajbi + b

)
.

The first term of the last equation is non-negative by the inductive assumption. As for the
second term, note that (38) implies

b ≥ −1

2
(a+ 1)ω3 · (ωc2i + ωc2j) + aibi + ajbj.

Therefore we have

(a+ 1)ω3 · ωcicj − aibj − ajbi + b

≥ (aj − ai)(bj − bi)−
1

2
(a+ 1)ω3 · ω(ci − cj)2.(42)

Note that since ω2(ci − cj) = 0, the Hodge Index Theorem implies ω(ci − cj)
2 ≤ 0.

Combined with a ≥ −1, (40) and (41), we conclude that (42) ≥ 0. By induction, we
obtain the desired inequality (35). 2
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Corollary 7.3.2. Let X be a smooth projective threefold and take B,ω ∈ NSQ(X) with ω
ample. Then, for any νω,B-semistable object E ∈ Bω,B, we have

∆ω(E) := (ω2 chB1 (E))2 − 2ω3 chB0 (E) · ω chB2 (E) ≥ 0.

Proof. We take a = −1 and b = 1 in Theorem 7.3.1. The condition (a) is satisfied by
the Hodge Index Theorem, and (b) is obvious. Therefore the result follows from Theo-
rem 7.3.1. 2

Corollary 7.3.3. Under the previous assumptions, there is a constant Cω ∈ R≥0, which
depends only [ω] ∈ P(NSQ(X)), such that any νω,B-semistable object E ∈ Bω,B satisfies
the following inequality:

ω3 · ω∆(E) + Cω(ω2 chB1 (E))2 ≥ 0.

Proof. We set a = 0 and want to find b = Cω ≥ 0 such that the conditions (a) and (b)
are satisfied. The condition (a) is obviously satisfied for any b ≥ 0, so it is enough to deal
with (b): it requires that for any effective divisor D, we have

ω3 ·D2ω + Cω(Dω2)2 ≥ 0(43)

holds for any effective divisor D.
Fix a norm ‖∗‖ on H2(X,R). Then there is a constant Aω such that

ω3 · ωD2 ≤ Aω‖D‖2

for every D ∈ H2(X,R). On the other hand, due to the openness of the ample cone, there
is a constant Bω such that

ω2D ≥ Bω‖D‖
for every effective divisor class D. Setting Cω := Aω

B2
ω

, we obtain (43) as required. 2

Corollary 7.3.4. Let X be a smooth projective threefold such that NS(X) has rank one.
Then for any νω,B-semistable object E ∈ Bω,B, we have

ω∆(E) ≥ 0.

Proof. If NS(X) is of rank one, then we can take a = b = 0 in Theorem 7.3.1. 2

7.4. Stability of vector bundles with trivial discriminant. As an application of Corol-
lary 7.3.2, we have the following result which generalizes [AB11, Prop. 3.6].

Proposition 7.4.1. Let E be a µω,B-stable vector bundle on X with ∆ω(E) = 0. Then E
is νω,B-stable.

Proof. By Proposition 4.3.6 and Section 5.1, we may replace E by its dual, and thus
may assume ω2 chB1 (E) ≤ 0; in particular, E[1] ∈ Bω,B. Assume, for a contradiction, E[1]
is not νω,B-stable. Then ω2 chB1 (E) < 0, and there exists a destabilizing sequence

M → E[1]→ N [1],
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with N a νω,B-semistable sheaf such that

(44) νω,B(N [1]) ≤ νω,B(E[1]).

Expanding (44), by using the assumption that ∆ω(E) = 0, we deduce the inequality

2ω chB2 (N)

ω2 chB1 (N)
− ω3 rk(N)

3ω2 chB1 (N)
≤ ω2 chB1 (E)

ω3 rk(E)
− ω3 rk(E)

3ω2 chB1 (E)
.

Now, ω2 chB1 (N) < 0 and Corollary 7.3.2 give

ω2 chB1 (N)

ω3 rk(N)
− ω3 rk(N)

3ω2 chB1 (N)
≤ ω2 chB1 (E)

ω3 rk(E)
− ω3 rk(E)

3ω2 chB1 (E)
.

Therefore, we get the inequality

1

ω3
(µω,B(E)− µω,B(N)) ≥ ω3

3

(
µω,B(N)− µω,B(E)

µω,B(N)µω,B(E)

)
.

But µω,B(E) < µω,B(N): Indeed, otherwise, the µω,B-stability of E would imply that
Hom(H0(M), Q) 6= 0, where Q is a µω,B-stable quotient of N with slope ≤ µω,B(E),
violating Lemma 4.3.3. This gives a contradiction, since ω3 and µω,B(N)µω,B(E) are
both positive. 2

In particular, by Proposition 7.4.1, all (shifts of) line bundles with ∆ω = 0 are νω,B-
stable in Bω,B. When NS(X) is of rank one, this is true for all line bundles on X .

Proposition 7.4.1 gives also a further evidence for Conjecture 1.3.1 (and so for Conjec-
ture 3.2.6). More precisely, following Drézet (see e.g. [Lan09a, Sect. 3.5]), we introduce
the higher discriminants ∆ω,i as follows:

∆ω,1 = ω2 chB1

∆ω,2 = ∆ω

∆ω,3 = 2
(
3(ω3 rk)2 chB3 −3(ω3 rk)(ω2 chB1 )(ω chB2 ) + (ω2 chB1 )3

)
.

Notice that these higher discriminants are invariant under tensoring by line bundles whose
numerical class is a multiple of ω.

Proposition 7.4.2. Let E be a µω,B-stable vector bundle on X with ∆ω,2(E) = 0. Then
∆ω,3(E) = 0.

Proof. First of all, since E is µω,B-stable, we have ω∆(E) = 0 and so (ω2 chB1 (E))2 =
ω3(ω chB1 (E)2). Hence, by taking a finite cover and a tensor by a line bundle, we can
reduce to the case ω2 chB1 (E) = 0. Our assumptions then give ω chB2 (E) = 0 and

∆ω,3(E) = 6(ω3 rk(E))2 chB3 (E).
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We want to prove that chB3 (E) = 0. Again, by taking a finite cover, we can assume
that B is the numerical class of a line bundle L. Consider the µω-stable vector bundle
F = E ⊗ L∨. Then ch(F ) = chB(E). In particular, we have

ω2 ch1(F ) = ω ch2(F ) = 0.

By [Sim92, Thm. 2] (see also [Lan09b, Thm. 4.1] for an algebraic proof), ch3(F ) = 0,
and so chB3 (E) = 0, as wanted. 2

Let E be as in the Proposition, and assume =Zω,B(E) = 0 and ω2 chB1 (E) > 0. Then
Conjecture 3.2.7 is satisfied and the inequality of Conjecture 1.3.1 becomes an equality:

chB3 (E)− ω2

2
chB1 (E) < chB3 (E)− ω2

18
chB1 (E)

=
1

6(ω3 rk(E))2
(
∆ω,3(E)− 2∆ω,1(E)∆ω,2(E)

)
= 0.

8. EXAMPLES

In this section we discuss Conjecture 3.2.6 in some examples, focusing on the case of
the projective space.

8.1. A technical result. Let X be a smooth projective threefold and let B,ω ∈ NSQ(X)
with ω ample. We consider slightly more central central charges on Aω,B: for s ∈ Q,
define

Zω,B,s(−) :=
(
− chB3 (−) + sω2 chB1 (−)

)
+ i

(
ω chB2 (−)− ω3

6
chB0 (−)

)
.

We have Zω,B = Zω,B,1/2.

Proposition 8.1.1. Let C ⊂ Db(X) be a heart of a bounded t-structure with the following
properties:

(a) there exist φ0 ∈ (0, 1) and s0 ∈ Q such that

Zω,B,s0(C) ⊂ {r exp(πφi) : r ≥ 0, φ0 ≤ φ ≤ φ0 + 1} .
(b) C ⊂ 〈Aω,B,Aω,B[1]〉.
(c) for all x ∈ X , we have k(x) ∈ C and, for all proper subobjects C ↪→ k(x) in C,
=Zω,B(C) > 0.

Then the pair (Zω,B,s,Aω,B) is a stability condition on Db(X), for all s > s0.

Proof. To simplify the notation, we put Zs = Zω,B,s and A = Aω,B. By Corollary 5.2.4
and Lemma 5.2.1, to prove that (Zs,A) is a stability condition it will be enough to prove
that <Zs0(T 1) < 0, where T 1 is the abelian subcategory ofA, defined in Lemma 5.2.1, of
objects in A with =Zω,B = 0. Assume, for a contradiction, this is not the case. Then, by
Lemma 5.2.1, there exists a simple object F ∈ T 1 with <Zs0(F ) ≥ 0. If <Zs0(F ) = 0,



40 AREND BAYER, EMANUELE MACRÌ, AND YUKINOBU TODA

then, from ω2 chB1 (F ) < 0, we deduce that <Zs(F ) < 0, for all s > s0. Hence, we can
assume that there exists F ∈ T 1 with <Zs0(F ) > 0.

By Proposition 2.3.2, assumption (b) implies that C is a tilt of A. Consider the torsion
pair on A induced by C:

T := A ∩ C
F := A ∩ (C[−1]) .

By assumption (a), for all simple objects E ∈ T 1 with Zs0(E) 6= 0, we have

• E ∈ T if and only if <Zs0(E) < 0.
• E ∈ F if and only if <Zs0(E) > 0.

Indeed, by Lemma 5.2.1, a simple object in T 1 has no proper subobject in A, and so it
belongs either to T or to F .

Hence, F ∈ F ∩ T 1. Since F is simple, Hom(F, k(x)) = Hom(k(x), F ) = 0. By
Proposition 4.3.6 and Remark 4.4.2, up to replacing F with F∨[3] (and B with −B),
we can assume that Hom(k(x), F [1]) 6= 0, for all x ∈ D, where D is a divisor in X .
Consider a non-zero morphism f : k(x) → F [1] and ker(f), cok(f), im(f) ∈ C. By
assumption (c), if ker(f) 6= 0, then =Zs0(ker(f)) > 0. Hence, =Zs0(im(f)) < 0, and so
=Zs0(cok(f)) > 0. Since C is a tilt of A, A is a tilt of C as well. Consider the induced
torsion pair on C:

T ′ := C ∩ (A[1])

F ′ := C ∩ A.

Then F [1] ∈ T ′. But T ′ is closed under quotients. This gives cok(f) ∈ T ′, and so
=Zs0(cok(f)) ≥ 0, a contradiction.

Therefore, we have an exact sequence in C

0→ k(x)→ F [1]→ Q0[1]→ 0,

for some Q0[1] ∈ C. Since Q0 is then an extension of k(x) by F , it also belongs to A.
Hence, Q0 ∈ A ∩ (C[−1]) = F and Zs0(Q0) = Zs0(F ) − 1. But, for y ∈ D, y 6= x,
we have Hom(k(y), Q0[1]) 6= 0. We can repeat the previous argument and construct a
sequence of Qm ∈ F , m ∈ N, with

Zs0(Qm) = Zs0(Qm−1)− 1 = . . . = Zs0(F )−m− 1.

But, for m� 0, Zs0(Qm) < 0, a contradiction to Qm ∈ F . 2

In the next section, we will apply Proposition 8.1.1 together with Proposition 7.4.1 to
give some examples in which Conjecture 3.2.6 is verified.
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8.2. The projective space. Consider the projective space P3. For simplicity, let us fix
B = 0, so that chB = ch. Identifying NumQ(P3) with Q⊕4 in the obvious way, we define
the central charge Zs,t for s ∈ Q, t ∈ Q>0 by

Zs,t(−) = (− ch3(−) + s ch1(−)) + i (ch2(−)− t rk(−)) .

The central charge Zω,0 of equation (2) corresponds to the choices of t = ω2

6
s = ω2

2
, up

to an overall multiplication of the imaginary part of Zω,B by ω−1. (The last operation is
part of the G̃L2(R)-action on the set of stability conditions defined in [Bri07], and does
not affect the set of stable objects.)

Given t ∈ Q, consider the abelian category At = Aω,0 for t = ω2

6
constructed as

before—the only difference is that we only assume ω2 to be a rational number. Conjecture
3.2.6 then reads as follows: The pair (Zs,t,At) is a Bridgeland stability condition on
Db(P3) for s = 3t. Our goal is to use Proposition 8.1.1 to prove a strengthening of
Conjecture 3.2.6 in this case:

Theorem 8.2.1. Let s, t ∈ Q be such that 0 < t < 1
2

and

s >
7t− 2

6(t+ 1)
.

Then the pair (Zs,t,At) defines a stability condition on Db(P3).

Since s = 3t satisfies the above inequality for 0 < t < 1
2
, this proves Conjecture 3.2.6

for ω <
√

3. Moreover:

Remark 8.2.2. The strong Conjecture 1.3.1 for given ω and B = 0 holds if and only if
the pair (Zs,t,At) defines a stability condition for t = ω2

6
and s = t

3
. Indeed, with this

choice, a tilt-stable objects E ∈ Bω,0 with νω,0(E) = 0 satisfy Zs,t(E) > 0 if and only
if ch3(E) < s ch1(E) = ω2

18
ch1(E). Since t

3
> 7t−2

6(t+1)
for t < 1

2
, Theorem 8.2.1 actually

proves the strong Conjecture for ω <
√

3.

Notice that, for (s, t) = (1/6, 1/2), we have Z1/6,1/2(OP3(1)) = 0, and so, by Lemma
8.2.3 below, the function Z1/6,1/2 does not define a stability condition.

To prove Theorem 8.2.1, recall that, by a classical result of Beilinson, on Db(P3) we
have a bounded t-structure with heart given by

C := 〈OP3(−1)[3],OP3 [2],OP3(1)[1],OP3(2)〉.
An easy computation shows the following:

Lemma 8.2.3. Assume 0 < t < 1/2 and

(45)
7t− 2

6(t+ 1)
< s ≤ 1/6.
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Then the pair σQ := (Zs,t,PQ) = (Zs,t, C) defines a stability condition on Db(P3). The
skyscraper sheaves k(x), x ∈ P3, are σQ-stable of phase 1.

Proof. (Theorem 8.2.1) Let s0 be a rational number satisfying the inequalities (45). We
want to apply Proposition 8.1.1 to Zs0,t, At, and C. First of all, assumptions (a) and (c) in
Proposition 8.1.1 follow directly from Lemma 8.2.3, where φ0 := 1

π
argZs,t(OP3(1)) ∈

(0, 1) is the phase of OP3(1). Hence, we only need to show (b). But, as an easy conse-
quence of Proposition 7.4.1, we have that the following objects are in At:

• OP3(k), for k ≥ 1,
• OP3 [1],
• OP3(k)[2], for k ≤ −1.

Hence, since C is the category generated by extensions by OP3(−1)[3], OP3 [2], OP3(1)[1],
and OP3(2), we have

C ⊂ 〈At,At[1]〉,
as wanted (see Figure 3). 2

O(2)
O(−1)[2]

O[1]

k(x)

O(1)

O(2)[−1]

C[−1]

FIGURE 3. Tilting A.

Remark 8.2.4. Notice that, if Ãt denotes the tilt of C given by

Ãt := PQ((0, 1]),

then, for 0 < t < 1/2, we have At = Ãt. Moreover, this shows the existence of stability
conditions on Db(P3) for all irrational t and s satisfying inequalities (45).
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Remark 8.2.5. The proof given in this section is in principle generalizable to other three-
folds admitting a strong full exceptional collection. An example is the quadric threefold
iQ : Q ↪→ P4. Denote by S the spinor vector bundle of [Kap88], defined by an exact
sequence

0→ OP4(−1)⊕4 → O⊕4P4 → (iQ)∗S → 0.

Then, for example, we have a strong full exceptional collection

{OQ(−1), S(−1),OQ,OQ(1)} ,
where OQ(1) := OP4(1)|Q. Identify Pic(Q) ∼= Z with generator the hyperplane section
hQ, and set B = −1

2
hQ. By considering the heart

C := 〈OQ(−1)[3], S(−1)[2],OQ[1],OQ(1)〉,
we have, by Proposition 8.1.1, that Zω,B is a stability condition for ω3 < 1

12
√
3
. (Indeed,

all line bundles belong to Aω,B up to shift by Proposition 7.4.1 and S(−1)[1] ∈ Aω,B by
our choice of B. The rest is precisely the same argument as in Theorem 8.2.1.)
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