QUANTUM COHOMOLOGY OF [CV/u,]

AREND BAYER AND CHARLES CADMAN

ABSTRACT. We give a construction of the moduli space of stable maps to the
classifying stackBu, of a cyclic group by a sequence efth root construc-
tions onMy... We prove a closed formula for the total Chern classupf
eigenspaces of the Hodge bundle, and thus of the obstruction bundeegsias
zero Gromov-Witten theory of stacks of the fof@" /i,.].

We deduce linear recursions for all genus-zero Gromov-Witten invatia

1. INTRODUCTION

This paper combines two notions of stable maps—twisted (JAV02]) and weighte
([Has03])—to produce a formula for the gendsGromov-Witten invariants of
[CN/u,]. More precisely, we derive a formula for the equivariant Euler cldss o
the obstruction bundle oi/y ,,([CY /u.]) as a pull-back of classes ddy ,,. Our
definition of weighted twisted stable maps is ad hoc, applying only to gémagps
with target[C" /u,.]. Nevertheless, there is a notion of obstruction bundle on each
of these spaces, and we have a wall-crossing formula relating theiaeiqnit/Eu-
ler classes. When all except one of the weights is small, the equivaritertdiass
is easy to compute, so we deduce in this way our formulazn, ([CV /.]).

The starting point of this work is our theorem 2.5.2, which provides an aiplic
construction o\ ,,([C" /u,]) from M, ,, via root constructions. This motivates
the generalization to weighted stable maps. They are defined by applyihg roo
constructions to the space of weighted stable curves.

1.1. Introduction to [CV/u.]. The quantum cohomology of stack quotients of
the form [CY /G] has recently seen a lot of interest due to the crepant resolu-
tion conjecture (see [BGO06]). However, they are also natural objéctidy by
themselves: whenever a smodthdimensional stack has a local orbifold chart
[U/G] whereG acts with an isolated fixed point, part of the quantum cohomology
of X will be described by the quantum cohomology[6f' /G]. Moreover, if X
has a torus action which restricts to the natural torus action on the [€Ha/(G],
then the equivariant quantum cohomology®f' /G] is relevant for computing the
guantum cohomology aX via localization.

The Chen-Ruan orbifold cohomology 6" /.,] has a natural basis. for
e € u,. Consider the moduli Spadgo,n((fl, ..., en; Bu,) of twisted stable maps

Date January 28, 2009.
The second author was supported by NSF grant No. 0502170.
1



2 AREND BAYER AND CHARLES CADMAN

to the originBy, = [0/u,] C [CV /u,] in the sense of [AV02], where the branch-
ing behavior at thé-th section is prescribed by, € .. The non-trivial equi-
variant Gromov-Witten invariants dic" /u,| are given by integrals over these
moduli spaces. The normal bundle to the originG§, understood as a vec-
tor bundle onBy, via the givenu,-action. If we write the universal curve as
7: C — Mopn(ei,...,eq; Bu,), and the universal map gs C' — By, the ob-
struction bundle of the moduli spacei8r, f*C~. The Gromov-Witten invariant
for he,, ..., he, is typically! given by the integral of the equivariant Euler class
(with respect to the canonical action of thedimensional torug” on CY) of the
obstruction bundle

(111)  (hey ® - ® he, )€ /0] = / er ([R'm. f*CN)).

]\/IO,n(elrnzen;B,u“r)
We call these integralgeneralized Hurwitz-Hodge integralgss the obstruction
bundle is a direct sum qf.-eigenspaces of the dual of the Hodge bundle, where
the moduli space is to be understood as a compactification of the Hurwitzajpace
u-covers ofP! by admissible covers

1.2. Our methods and results. The starting point of our work is the following
explicit description of this moduli space of stable maps3i@. via ther-th root
construction of [Cad07]. Given a divisdp on a schemeX, the r-th root con-
structionXp , is a stack overX that is isomorphic toX outside ofD, but whose
points overD are stacky with.,. as automorphism group. For every proper subset
T C [n—1] := {1,...,n — 1} having at least 2 elements, let be the order
[Ticr €, and letD” C M, be the divisor consisting of curves having a node
which separates the marking labels. ., n into 7" and[n] \ 7.

Theorem. Ho,n(eh ...,en; Bu,) is a u,-gerbe over the stack constructed from
M, by successively doing the--th root construction at the boundary divisor
DT c M, for all proper subsetd” C [n — 1] having at least 2 elements.

We prove this in theorem 2.5.2, and we also give an explicit description of the
universal curve and of the-torsion line bundle defining the morphism 8y,
see definitions 2.3.1 and 2.5.1. The root constructions along the boutislEsgr
introduce the additional automorphisms of curves with stacky nodes, cgilest
automorphisms

Now assume that,. is acting linearly onCY with weightsw,,...,wy. To
determine a formula for the Chern class of the obstruction bundle, we askie-r
tion guided by the notion of weighted stable curves in [Has03] and weigtabtks
maps in [MM08, AG08, BM06]. Weighted stable curves wittmarked points de-
pend on weight data, . .., a,,, and yield many birational models of the moduli
spaceM . Particular choices of weight data lead to an explicit presentation of
the moduli spacé/ ,, by a series of blow-ups starting wittt'—3, such that each
intermediate blow-up step has an interpretation as a moduli space.

1The formula needs an additional factor in case there is a coordinatéiaiirea which every;
acts trivially.
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Motivated by this work and guided by theorem 2.5.2, we make an ad-hoc defi
nition of a “moduli space of weighted stable mapsig,.” in section 3.3. When
the weights are chosen such that all fibers of the universal curweedacible, the
obstruction bundle can easily be computed from general facts abouittheoot
construction; we do this in section 3.4 for the weight data that gives a mquhdées
isomorphic toP™ 3.

By a careful analysis of the wall-crossing for changing weights in sedtjon
we can lift this to a closed formula for the equivariant top Chern class iateu
(1.1.1) for the standard (non-weighted) stable maps. We will now state thsifa
in the case ofV = 1 and the standard representatiorupfwith weight one:

Forl <i <n,letd; € [0,1) be the age oé;, i.e. e2™di — ¢, For all subsets
T C [n], letor = > ,.pd;. Let(x) denote the fractional part of if = is not
an integer, and letz) = 1 if = is an integer. Fofl' C [n — 1],|T| > 2, let
Y be any class if{* (M) such that the restrictio®” - ¢ is the-class of
the node oveD” on the component corresponding®o e.g. we can sepp :=

~Un + 2 pn—1]2827 D?.

Theorem. The equivariant Euler class of the obstruction bundle [f6y x| is
given as

Sfn—1—1 or—1
er ([R'm.f*C]) = H (t = ptm) H H ( t+p¢T>

P={0[n—1]) TCln—1]p=
3<|T|

The case of different weight follows by adjusting the ages in the aboweufa,
and the case of N by multiplying the individual classes ifl*(My,,); the full
formula is given in theorem 5.1.1.

In the appendix, it is shown that this class can be expressed as a caostinuo
piece-wise analytic function from a re@ —1)-dimensional torus téf (Mo ,,, R)
that encodes equivariant top Chern classes for all stgtXg .| whereN, n and
the weightswy, ..., wy are fixed, and ande, . . ., ¢, are arbitrary. See the dis-
cussion after the proof of Lemma A.1.1.

By a generalized inclusion-exclusion principle, the Chern class formuéis lea
to linear recursions for all Gromov-Witten invariants |6 /1.,] by a sum over
partitions, where every partition corresponds to a moduli space of comiscu
They are particularly nice for local Calabi-Yau 3-folfis3/u,]. We deduce an
explicit formula for the non-equivariant invariants[6f /u3]. These invariants are
the integrals in equation (1.1.1) for whicth = r = 3, n is a multiple of3, and all
e; = e2™/3_ The recursion we discovered for these numbers is

5/ war (m—4 N1
<h§”>£§/“” = (5

1)lml+1 k 9 \3 3
§ :E : | | 2\ . @n—3p\[C? /3]
+ \Autm| (( 3)> M(n 17m)<hw >0,n ’

p=1 m
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where the second sum is over all partitions= (my, ..., my) of p, M(n —1,m)
is the multinomial coefficient

n—1
M(n—1,m) =
(n—1m) (3m1—|—1,...,3mk+1,n—1—Zj(ij—l—l)>7
andz! = [[;_,, p. The base case (&%3%(’:;/“3] =1/3.

1.3. Relation to other work. The construction of the moduli space and the uni-
versal curve viar-th roots has been described locally by Abramovich in [Abr05,
§3.5]. The global description along with the explicit description of the usiier
map toBu, seems to be new.

Our approach is to describe mapsAq.,. by r-torsion line bundles, which is
particularly convenient in combination with theth root constructions. Of course,
one can instead work more geometrically with cyclic covers, which is the pbint o
view adopted in [ACV03, CCO07].

The Gromov-Witten theory ofC" /G] has recently generated a lot of interest
due to the “crepant resolution conjecture”; we refer to [BG06] for @roduction
to the conjecture and overview of the existing literature. WHhers an orbifold
that admits a crepant resolutian Y — X, Ruan first conjectured that the quan-
tum cohomology rings ot” and X are isomorphic [Rua02], and suggested that
the g-variables forr-exceptional divisor classes dhneed to be specialized to -1
[Rua06] to recover the orbifold cohomology ring &f. In [BGO06], the authors
extended this conjecture: their claim can be formulated as a local linear isomor
phism between the Frobenius manifolds of the quantum cohomologyaridY
(after analytic continuation). This isomorphism does not respect theahattir
gins of the two Frobenius manifolds, which corresponds to Ruan’s spetiafiz
of g-variables. When the action 6f on C" leaves the volume form invariant, the
stacks of the formiC" /(] yield many non-trivial test cases for the conjecture. In
this form it is only expected to hold for orbifolds satisfying the strong Lieétz
theorem; a more general formulation can be found in [CCITO6, section 5].

The results so far have been obtained by the use of one the following tho tec
niques: either a combination of localization computations and use of the WDVV-
equations, or by using Tseng’s computation of the Clobaracterof the obstruc-
tion bundle and Givental's framework for Gromov-Witten theory.

In [BGPO8], the authors explicitly determine the genus-zero Gromov-Witten
potential of[C?/u3] and verify the crepant resolution conjecture. In [BG06], the
case[C? /5] is derived from the Hodge integral computations of [FP0O].

More generally, the case of,,-singularities[C?/ ,,+ 1] is shown in [CCITO7a,
CCITO7b] based on the Chern character computation. Various othdtsrésve
been announced in [BG06]. F&€3/us3], part of the potential is computed in
[CCITO7a], up to the problem of inversion of the “mirror map”. While theirttec
nigue is completely different to ours, our results are surprisingly clesexlained
in section 3.5 and 6.4; our recursion can be interpreted as a combinategiadion
of the mirror map.
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Different recursions for invariants ¢€3 /3] have been established by the sec-
ond author and R. Cavalieri in [CCO07], using localization on the spaceisfe
stable maps tp3-gerbes oveP!.

While our results are quite general, we make no attempt at verifying thertrepa
resolution conjecture.

1.4. Acknowledgements. This project owes special thanks to R. Cavalieri; his
explanations of [BGP08] got us started on the direction of this work. Tisé fi
author would like to thank A. Bertram, Y. lwao, Y.-P. Lee and G. Todoraw f
discussions about Givental’s formalism and [CCIT07a] that helpeénstahding
the relation to our results.

1.5. Notations and conventions.We write[n] for the sefn] = {1,2,...,n}. We
write (z) = . — [x] + 1 € (0, 1] for the fractional part of;, set to 1 ifz is integral.
At various places we will write}—[;f;:(‘,]ﬁ> f(p) for the producll"[oq)gm@)Z@> f(p).

If z <0, the notation[[,,_,, f(p) means]_[fg;&l L) (which is consistent with

fp
[ f(p) = f(2) - T[;Z(, f(p) forall z € R).

Forx > 0, we writex! for the fractional factoriak! = ngm P.

We identify the rational Chow groups of the moduli stacks of twisted stable
mapsMo (e, ... ,en; Buy) with that of its coarse moduld ,, via pull-back,
and similarly for all other moduli stacks we construct. In the appendix, we in-
troduce and explain a few non-standard notations for divisord/en, that are
particularly well-suited for our setting; most of it is only used in section 5.2, the
exception being

Yr = —thp + Z DS
[n—1]252T
foranyT C [n — 1].

2. MODULI SPACE OF STABLE MAPS TOBu, VIA r-TH ROOTS

In this section, we show how to construct a component of the moduli sgace o
genus zero stable maps £y, from the moduli spacé/ , of stable curves of
genus zero by a series ofth root constructions.

2.1. User’s guide to ther-th root construction. Given an effective Cartier divi-
sor D of a Deligne-Mumford stack, and a positive integer which is invertible
on X, ther-th root construction of [Cad07] produces a DM-staXk , with the
following properties:

(1) Thereisacanonicalmap Xp, — X thatis anisomorphism ovef\D.

(2) Every pointinXp . lying overD C X has stabilizey,.

(3) The preimage oD is an infinitesimal neighborhood of the.-gerb& D

over D parameterizing-th roots of the fibers o®©x (D)|p: this is the

A gerbe overD is a stackD over D which étale locally admits a section and has the property
that any two local sections are locally 2-isomorphic. A gefbe~ D is apu.-gerbe ifu, acts as the
2-automorphism group of every section in a compatible way.
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stack whose objects are tripleg: S — D, L, ¢) wheref is a morphism,
L is aline bundle orf, and¢: L" — f*Ox(D)|p is an isomorphism.
(Only whenOx (D)|, is ther-th power of a line bundle i® isomorphic
to D x Bu,.)

(4) On Xp,, there is a line bundl®x, (D) with a sectionsp and an iso-
morphism¢: O(D)" — n*(O(D)) such thatp(sh,) = 7*(sp). (Here
sp € O(D) is the tautological section vanishing alohy)

The universality of the data in (4) is the defining property: giving a morphis
f: S — Xp, is equivalent to giving a quadruple, L, s, ¢) whereg = 7o fisa
morphism toX, L is a line bundle ort, s a section, and: L" — ¢*O(D) is an
isomorphism sending’ to g*(sp).

Locally, whenX = Spec A is affine and the divisobD is given by an equation
(z = 0), ther-th root construction is given by stack quotiéf$pec A[u]/(u" —
m))/ur] of the cyclicu,--cover branched ab, but of course globally such a cover
may not exist.

To the best of our knowledge, theth root construction is originally due to A.
Vistoli and spread as a rumor for quite some time. His notatiofy {s(, D).

We call Ox,, . (D) the tautological line bundle of theth root construction at
D. The zero stackl C Xp, of sJ, is the preimage oD C X. The zero stack of
sp is the gerbeD. To simplify notation we write?(1 D) to refer toO(D). More
generally, ifd € 17, we write O(dD) for O(D)®?". This notation is particularly
nice to describe the push-forward of line bundles along

(2.1.1) 7.0(dD) = O(|d| D)

(This follows from [Cad07, Theorem 3.1.1].)

If X is an algebraic space, then the coarse moduli spaggofis X. WhenX
is smooth and C X is smooth, theX p ,. is smooth. The construction commutes
with base change for a morphisfa Y — X such thatf ~!(D) is a Cartier divisor.
(The construction can be generalized a little to make it compatible with arbitrary
base change: se¥; . in [Cad07].)

If D = (Dy,...,D,) is ann-tuple of Cartier divisors and’ = (ry,...,7,),
we can iterate the root constructions to obtain a stack den®tge This stack
can also be realized as thefold fiber product overX of the root stacksXp, .

If X is smooth, each individuaD; is smooth and thé; have normal crossing,
then Xy, i is smooth, too. Iid; € %Z we extend the above notation by writing
O(3_, d; D;) for the tensor product of the line bundI€XD; )%™, whereO(D;) is
the tautological bundle corresponding to the root construction algang

It is instructive (and important for the constructionﬂo,n(BuT) later on) to
compare the stack&p ~ and Xp . in the case where = 2, r = r; = rp, and
D = Dy U D,. On Xy, the line bundled(1(D; + D,)) with sectionsp, - sp,
defines anr-th root of D, and thus there is a natural map

(212) X]D),'F’ — XDJ‘.
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However, this is not an isomorphism if the divisors intersect, and one wageo
this is by looking at stabilizer groups of points of the two stacks. & D, N Do,

then the stabilizer group of the point Xy, » lying overz is p, x p,. On the other
hand, the stabilizer group of any point in the preimagéah Xp . is p,. If X

is smooth andD,, D, are smooth with normal crossings, then these stacks are also
distinguished by the fact thafy, » is smooth, whileXp ,. is singular overD N D».

2.2. Stable maps toBp,. Consider the moduli spack/,,,(Bpu,) of balanced
twisted stable maps of genQgo By, in the sense of [AV02], where we work over
C. Such a map over a scherfiecan be described by the following data:

e A stacky nodal curve€ over S, with n divisorsXy, ..., X, in the smooth
locus ofC, and
e aline bundlelL onC together with an isomorphisg: L™ — Oc.

These have to satisfy various properties:

e The stacky curvé is a scheme away from its nodes and the divisors
and its nodes arealanced

e Eachy; is a cyclotomic gerbe ovef.

e If C is the coarse moduli space 6f then the image of every divisor
3; C Cin C is isomorphic to the image of a sectiap: S — C, so
that(C, z1, ..., x,) becomes a stable curve of genus zero witmarked
points.

e The mapC — By, induced by(L, ¢) is representable.

The line bundleL is the pull-back of the line bundle oBu, given by the
canonical one-dimensional representationuof Every pointz € 3; has an au-
tomorphism group isomorphic t@, for somep dividing r. This identification is
canonical if the representation pf, corresponding to the fiber of the normal bun-
dle Oy, (X;) atz equals the standard representation. b.die the primitiver-th

root of unityw = e, Thenw'/? acts on the fibel,, as multiplication bye;

for somee; € . Equivalently, the map of stabilizer groupg — ., (which is
injective by representability af — By,) sends the canonical generator.gfto

e;. These group elements, ..., e, are constant on every connected component
of M(]’TL(BIU,,«).

From now on, we assume we are given...,e, € u, and restrict our atten-
tion to the connected componeht ,,(e1, . .., e,; Bu,). There is a natural map
Mon(et, ..., en; Buy) — My, induced by the coarse moduli space of the uni-
versal curve. Our theorem will describe this map explicitly via a series @f ro
constructions. One explanation for these root constructions is that tvasteds
have ghost automorphisms for each twisted node (cf. [Abr05, sectipn 3.5

2.3. Construction of the moduli space via root constructions.Let r ande; €
ur1=1,...,r begiven. For convenience we allew= 1, i.e. untwisted points;
then the universal curve is given by the forgetful morphism

T0,(e1,.mmem) - Mo (e, .-y en, 1;Buy) — Mop(e, ..., en; Buy).
The component is empty unlepg, e; = 1.
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Consider the universal stable curve of genus zep: Mo ,+1 — Mo,. The
boundary divisors of\/,,, are indexed by subsefs C [n] such tha < |T| <
n —2andn ¢ T (see Appendix A). For every such, let rp be the order of

HieT €i-

Definition 2.3.1. Let 37" be the stack constructed froid ,, by doing therr-th

root construction at every boundary divisdr’. We construcﬁ(l) from M ;41

in the same way after setting 1 = 1.

(In particular, we take the;-th root construction at every sectisp= D®"+1
wherer; is the order ok;.)

Lemma 2.3.2. There is a canonical map®): ¢ — a7,

Proof. Equivalently, we construct a map to the fiber product

—(0) —(
" = Mo X Mo '

then C'”) will be the relative coarse moduli space. Singg, (DT) = DT U

DTY{n+1} and ther-th root construction is compatible with such a base change,
this fiber product can be constructed fram, ,, .1 by ther-th root constructions

at all divisorsD” U DTU{n+1} for T ¢ [n]. To construci'", we instead took
the rp-th root construction ab” and DTY{"+1} separately, hence the morphism

5(1) — 5(0) is given by forgetting the root construction along all sections, fol-
lowed by a composition of morphisms as in (2.1.2) above. O

Note tha@(l) has additional automorphisms along the nodes of the curves lying

over DT. When we restrict this family to thg,...-gerbe ina7 lying over DT,
the fibers become stacky curves with a twisted node. The node is balastaase
after base change to a scheme over the base, the remaining automorgiupnsgr
the kernel of the multiplicatiop,.,. < ., — g, Which acts with opposite weight
on the two branches. The so—called “ghost automorphisms” are acddontey
the additional automorphism introduced in the moduli space. We have theesipro

Proposition 2.3.3. The morphismr() : oV - uVisa family of balanced
twisted curves.

Note that we adapted [AV02, Definition 4.1.2] to a family over a Deligne-
Mumford stack: all conditions have to be checked aftele base change to a
scheme coverinﬂ(l).

Each fiber ofr() admits a morphism td ., having the correct restrictions to
Y; (given byes, ..., e,). However, these morphisms do not in general glue to a
morphismé(l) — Bu,. They will glue precisely when the,.-gerbe of Definition
2.5.1is trivial.

2.4. The universal line bundle. ForT C [n], we will write alwaysT¢ = [n] \ T
for its complement.



QUANTUM COHOMOLOGY OF [CV /1, ] 9
Lemma 2.4.1. LetC be a geometric fiber of(!) and let

1
L= 05(1) (EDT’nJrl).

(1) If there is no node: € C such that one of the two connected components
of C'\ {z} contains exactly the markings ®f(and the other those @),
then L| is trivial.

(2) Otherwise, leCs, C4 be the two connected componentg’adfter normal-
ization atx, such thatCs contains all the markings &f, andC, those of
T¢, and letC; c C3 andCy C Cy4 be the two irreducible components of
C meeting atc. Then

(2.4.1) Llg, = Oc¢(—mw)
(2.4.2) Llg, = 0w
(2.4.3) Loy & O

whereC" is any irreducible component éf other thanC1, Cs.

Proof. The first statement is obvious @sdoes not meet the divisdp” in that
case.

In the second cas€s = C N DTt and so equation (2.4.2) is obvious, as
is (2.4.3) for allC’ c C4. The claim then follows by symmetry and the fact that
the restriction o0 (- (D™ + DT*1)) to C s trivial, as it is the pull-back of the

tautological line bundl® (.- D) on Y, |
Now choosel; € 1-Z such that?™% = ¢; and)_} ; d; = 0 (which is possible
sincel[]\", e; = 1). ForT C [n], letdy = 3, o d;.

Lemma 2.4.2. Define the line bundlé.; on 5(1) as

i=1 TCn]
2<|T|<n—2
ngT

ThenL," is the pull-back of a line bundle ARR
Ly" = (rM)*(Ly)

We writen ¢ T to stress that this is for now just an arbitrary way to pick exactly
one of T, T¢ for all subsetg".

Proof. First note thatl} is pulled back from the coarse moduli spac® ;1
sincedr € %Z for all T. A line bundle on a family of nodal curves of genus zero
over a smooth scheme is pulled back from the base if and only if its degregyon a
irreducible component of every fiber is zero (in which case it is the puklodits
own push-forward to the base). Hence it is sufficient to check thatebesd of
Ly" (or, equivalently, the degree @f;) is zero on any irreducible componef
of any fiberC of ! (in which casel} is even pulled back from/ ,,).
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Letxy,...,z,, be the nodes of contained inCy. LetT; C {1,...,n},1 <
i < m be the markings contained in the irreducible components which are con-
nected ta’ via the noder;, and letTy be the markings contained iry). For every
jwith 1 < j < m exactly one ofO(dy, DTim+1) andO(dTgDTJ‘C’”+1) will ap-
pear in the right-hand side of equation (2.4.4) defining byJ the previous lemma
anddr = —dyc, both restrict toO(dr,x;) on Cp. By the same lemma, all other
O(dp DT restrict trivially toCy. Hence

Ll’CO = O(Z d;s; + Z de:Bj).
i€Tp 1<j<m
This line bundle has degrée ZZETJ_ d; = 0 since[n] is the disjoint union of
all Tj. 0

2.5. Base change to the gerbe.

Definition 2.5.1. Let 17> be theu,-gerbe overd™ of rth roots of L. Let

7. 0® _ ® be the base change of): Y — 37 via 37 — 31,
1/r

and letL," " be the universal line bundle that is arth root of L.
By abuse of notation, we writé; also for the pull-back of.; to 5(2). The line
bundleL = L; @ 7" L, '/ together with the obvious isomorphishi — O

defines a morphis@@) — B,
Theorem 2.5.2. The following diagram

6(2) _— B,U'T

,r<2>i

M(Q)

(2)

is a family of twisted stable maps ov&f“’ which defines an isomorphism

72 —_
m: ' Mon(e1,...,en; Buy).

Proof. We already showed that(!) (and thusr(?) is a family of balanced
twisted curves.

The morphisnﬁ(z) M x By, is representable: away from the sections
and nodes, the map? is already representable, and since all nodes and sections
do not intersect each other, we can treat them separately. At a sectioarelative
inertia group ofr(? is isomorphic toBy,,; since that group acts faithfully ab;
and thus orl, the map on inertia groups is injective. A similar argument holds for
all nodes.

We thus get a morphisrm as claimed in the theorem. By lemma 2.5:3,
is an isomorphism if both stacks are smooth and the morphism is birational and a
bijection of C-valued points which induces isomorphisms of their stabilizer groups.

Since 7" is étale overd'", which is a root construction on/y , at smooth
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divisors with transversal intersection, it follows thH(Q) is smooth. The first
order deformations of an-marked, genu$ twisted stable map t&u, are the
same as those of the marked twisted curve, which has dimension equal &
(see [ACV03, section 3]). As this equals the dimensiod&f,(e1, . . ., en; Buy),
it is also smooth.

For bijectivity, it suffices to show for eactrmarked genu$ curveC, there is
a unique twisted stable map By, with coarse moduli spaag@ and contact types
e1,...,ey. ForC irreducible, this uniqueness is shown in [CCO08, 2.1.5]. Other-
wise, one can show by induction that the contact types at the nodesigteiyn
determined by those at marked points. So the morphism is unique over eaeh co
ponent ofC', and it suffices to show that it glues uniquely over the nodes. Since the
morphism toB ., is equivalent to a line bundlé and a non-vanishing section of
L™, the gluing is clearly unique up to isomorphism.

It remains only to check the map on automorphism groups induced. by x is
a closed point OW(Q), the automorphism grou@,,, ,,y of m(x) in the moduli stack
Mo,n(el, ..., en; Bu,) can be identified with the group @f,.-automorphisms of

theur—cover@ of the fiberC), of 5(2) overz. If S is the set of irreducible com-
ponents ofC;, this identifies7,, ;) with the subgroup ofS that acts compatibly

over every node; since the preimage of a negec C, in C, is isomorphic to
por/ ey, W can identifyGy,,, .y with the kernel of the map

S=1[Sr:w — ||
T

TC[n—1]|zeDT

whereXr is given by the quotient of the group elements corresponding to the two
irreducible components meetingsiy.

The p,.- -coverC, is given by ther-th roots of unity inside the line bundl| ;
hence to understand the méR — G,,,(,) it is sufficient to look at how the auto-

morphism groug=,. of z acts onL. By the construction afr®

group ofz is

, the automorphism

Gz = py X H oy

TC[n—1]|zeDT

By the definition ofL, the first factor acts vid, and thus diagonally, whereas,,
acts diagonally on the irreducible componentsidf”+1 N C,, (and trivially on
all others), by its induced action af(D7>"*1). Let C; be the component af’,
which contains the:-th marking.

Before showing thatn : G, — G,,,(,) is an isomorphism, we introduce some
notation. Forg € G, write go for the projection ofy onto u,., and writegy for its
projection ontqu,.,.. For each irreducible componetifof C, letC},, C;,,Cj,, ..., Cj,
be the unique shortest path frathto Cy. Thatis to sayjo = 4, ji, = 0, C;, meets '
Cj,., inanode foreach < ¢ < k; — 1, and there are no repetitions;ig . . ., jx, .

For0 < /¢ < k; — 1, letTy be the subset di. — 1] determined by the node joining
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Cj, t0 Cj,, .. Thenm(g) acts on the restriction af to the component’; by

ki—1
(2.5.1) 90 [[ 9m-
=0

Letg € G,, and suppose that(g) is trivial. Sincem(g) acts onCy by go, it
follows thatgy is trivial. By inducting on the number of nodes separating a given
node fromCy, and using (2.5.1), it follows thagt is trivial for eachT'. Therefore,

g is trivial.

Now supposé: € G,,(,)- Let gy be the element of.,, by whichh acts onCp.

By inducting over the nodes as in the previous paragraph, and usingdhehét
the irreducible components 6f, form a tree, we can now defirg for eachT in
such a way thatn(g) = h. Thereforem : G, — G, () is anisomorphism. O

We remark that [ACV03, section 7] contains a careful treatment of automor

phism groups for7-covers.

Lemma 2.5.3. Let X and ) be normal, separated, integral, Deligne-Mumford
stacks of finite type over an algebraically closed fieldf characteristic zero. Let

f: X — Y be a birational morphism which induces an equivalence of categories
between objects oveipec k. Thenf is an isomorphism.

Proof. Let V' — Y be anétale surjective morphism from a schefvieand let
U=V xyX. ThenU — V is separated and quasi-finite, hence quasi-affine by
[LMBO0O, A.2]. ThereforeU is a scheme. Ldt/’ C U be a connected component
and letV/’ C V be itsimage. The hypotheses of the lemma imply tHandV’ are
normal varieties and thdf’ — V" is a birational morphism which is bijective on
k-points. By Zariski's birational correspondence theorem, it follows tHat> V'
is an isomorphism. Applying the argument to each connected componens show
thatU — V is an isomorphism. It now follows from [LMBOO, 3.8.1] that — Y
is an isomorphism. O

2.6. Comments on the construction. The pull-back of a one-dimension&l,.-
representation is a power éf Hence, in order to understand the Chern class of
the obstruction bundI®' 7, C" it is sufficient to understand the Chern classes of
the higher direct imag®&' ., L™ of powers ofL, and their products.

It is worth pointing out that while the ghost automorphism groups are isomor-
phic to x,,., this isomorphism is not natural, the ghost automorphism group is
naturally isomorphic to the relative stabilizer group of the twisted node, and by
choosing one of the two componen® "+! or DT“n+1 (and identifying the
stabilizer group by its action on the corresponding tangent bundle) dseage
isomorphism tqu,,, whose sign depends on this choice. In our construction, this
choice shows up in the definition @f;, for which we had to choose one dfand
TC for all divisors DT of My, As Ly depends on that choice only up to aith

power, neithedZ*) nor the universal line bundié depend on this choice. The

mapm: m? My (e1,...,en; Bu,) does depend on it, however. Different
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choices can be related by a composition with a ghost automorpbistine moduli
stack.

3. WEIGHTED STABLE MAPS TOB,

3.1. Weighted stable maps.Let g be a genus, andl = (aq,...,a,) beweight
data which means,; € Q N [0, 1] satisfy2g — 2+ > . a; > 0.

In [Has03], Hassett introduced the notion of weighted stable curvesighted
stable curve of typég,.4) over S is a nodal curver: C' — S with n sections
s;: S — C such that

(1) every section; with positive weights; is contained in the smooth locus of
T,
(2) the rational divisoK /s + ) _; a;s; is m-relatively ample, and
(3) for anyI C [n] such that the intersection), s; is non-empty, we have
Zi a; < 1.
We will summarize a few of his results, and refer to [Has03] for details.

If a; = 1 for all 7, then these are stable curves in the usual sense. The difference
is that when points;, i € I, collide, then only wher} ", a; > 1 does a new rational
component bubble off. This is enough to make the new rational compotade s
according to condition (2).

All the moduli spaced?, 4 with |A| = n are birational. More precisely, assume
that the weight datal = (ay,...,a,) @andB = (by,...,b,) satisfya; > b; for all
i, anda; > b; for at least one (we will write A > 5 from now on). Then there
is a birational reduction morphispg 4: M, 4 — M,g. (Itis induced byB-
stabilizing the family of curves over/, 4.) There is a chamber decomposition of
[0, 1]" by a finite number of walls such that the moduli spadg 4 only depends
on the chamber in which the weight daddies: the walls are associated to subsets

T C [n] and given as
(311) wr = {ai ZieT a; = 1} .

Further, the contraction morphism for crossing a single wall is given aso@th
blow-up.

It is somewhat convenient to allow at least one weight to be zero, becaus
M, auqoy is by definitionthe universal curve oveVl, 4.

This notion has been extend to weighted stable maps in [MMO08], [BM06] and
[AGO08]. In particular, in [BM06] and [AGO08] it was shown that GromuVitten
invariants can be computed for any choice of weights, yielding identical GW-
invariants, and [AG08] gave wall-crossing formulae for the full Grormditen
potential including gravitational descendants.

3.2. My, as a blow-up of P"~3. As an example that will be important later,
consider for givem the weights4;, = (3,...,#,1) (with n — 1 entries of})
fork =1,...,n — 2. The moduli spacé/, 4, , is isomorphic taP"~3, and the
universal curve is the blow-upl, P"~2 of P"~2 at a pointz; the universal map

3by which we mean an automorphism covering the identity on the coarselinspeae
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is the projection o2 to P*—3 =~ PT, from z. If we pick = away from the
coordinate hyperplanes, then the image of the special section with weigthd. is
exceptional divisor, while the remaining sections can be given as thelinate
hyperplanes. (The special section cannot intersect with any othée, thb only
condition on the remaining sections is that they mayatiotoincide.)

The moduli spacé/ 4, . is the blow-up ofM 4, , atthen — 1 points that
are the images of the intersectionsrof- 2 of then — 1 coordinate hyperplanes.
When we successively increase the fitst 1 weights fromﬁ to 1, one gets a

description of)M,, by successive blow-ups froff*~3. This is also explained in

[Has03, section 6.2]; the descriptionf, ,, as a blow-up o™ 3 is equivalent to
the description by De Concini and Procesi in [DCP95].

3.3. The moduli spaces of weighted stable maps t®u, via r-th roots. We
sidestep the question of defining a moduli problem of weighted stable maps to a
stack in general. Instead we give a direct construction of the modulisstaak-th
root constructions, guided by the construction in the non-weighted caseiion
2.

Givenr, weight datad > 0, and€ = (ey,...,e,) € pu)', we want to construct
a stack which would resembl& 4(e1, ..., en; Bu,) if it were to exist. Choose
d; € 17 with e™% = ¢; and}_" | d; = 0 as before. Boundary divisors dd_4
are given asD,, for A-stable 2-partitionsr = (7, 7¢) of [n]; .A-stable means
that the conditionT'|, |T¢| > 2 is replaced byy ", a; > L and),cpc a; > 1.
(This of course means that a corresponding rational curve with two coemt®is
A-stable.)

Let Méﬂ be the stack obtained from/, _4 by taking thery-th root at every
divisor DT such that(T, T¢) is .A-stable (wherer is defined as before as the
order of[[,.r €;). To obtaina()& from Co 4 = M _auq0}, We start with the same
construction, but additionally construct theth root at every sectios.* The same
proof as in lemma 2.3.2 shows:

Lemma 3.3.1. There is a canonical maﬁé& — M(()li‘

This is a stacky curve with balanced nodes, but it can have points (in thieeela

smooth locus of the coarse moduli space) with automorphism nghpior curves
wheres;,i € I, are identical; so this is not a twisted stable curve in the sense of
[AV02].

Proposition 3.3.2. Let L; 4 be the line bundle o6’ defined by
(3.3.1) Ly g = ® O(s))% @ ®O<DT,n+1)dT
=1 T

where the second tensor product goes over all subiBets [n] with n ¢ T' such
that(7,7¢) is A-stable. Therl] o = 7" Lo 4 for some line bundlés, 4 onart.

4n the case ofo,., the sectiors; is equivalent to the boundary divisor givenBy= {i,n+1};
however, this does not yield a#-stable 2-partition, hence we need to list them separately.
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Again, this has the same proof as before.
Let M{4 ¢ be they,-gerbe over/, élil of r-th roots of Ly 4, and letC}y", be

the base change @834 to My . The line bundlel 4 == L1 4 ® W*L;%T on

C 4 has trivialr-th power and thus defines a m,ﬁpﬁg‘:4 — B,

However, againf: Ung — By, is not a twisted stable map in the sense of
[AV02]; most importantly, / is not representable (not representable even after a
base change to a scheifie— MﬁfAf).

3.4. Pn—3-weight data. For any weightv of a one-dimensional,.-representation,
we call

HY = R'm. LY

the generalized dual Hodge bundleHﬁ;‘,g for the weight data4.
Our computation of the Chern class builds up from a direct computation for the
weight datad = (15, ..., 15, 1), which yieldsM, _4 = P"~3 (see section 3.1).

Givenw, let 6} € [0,1) be the age of the line bundle” at thei-th section; it is
determined by?™" = ¢¥. For any subsef’ C [n], we lets¥ = 3., 6¥.

Proposition 3.4.1. The generalized dual Hodge bundig] has the following class
in the K-group?

Ofp—1)~

[Hil= Y [O(—pH)]

p:<6ﬁ}1_1]>

1

Proof. The moduli space is a,-gerbe ovel” 3, and the universal curve is
constructed fronBl, P"~2 by ther;-th root construction at the sectiepfor all 4,
and the base change to the-gerbe.

We choosel; such thaid; € [0,1) fori = 1,...,n — 1 andd, = — Y7~/ d.
ThenL;y 4 can be computed b§, = s, (L1,4)" = O(—rd,,), and so by projection
formulaHY = O(wd,)® R'm.LY 4. To compute the higher directimage®f 4,
we break upr into the compositionr = w5 o 7r; of the mapry, forgetting the roots
along the sections, with the map that is the base change of the natural projection
Bl P"~2 — P"=3 to theu,-gerbe.

The push-forward along; follows easily from equation (2.1.1). Usirgwd,, =
5{;’1_1] + Zf‘:‘f |wd; |, we get (where we writé? for the exceptional divisor of

Bl, P"2);

n

(M) LYy = O <thdlj Si> = O ((~wdy = %) H + |wd, |E)

=1

5See 1.5 for other notation conventions used in this formula.
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The relative canonical bundle @f is — H — F, and the pull-back of the hyperplane
class orP" 3 is H — E. Hence

R (m2)o(m1)e L4 = ((72)-0 (i + 8y = DH + (~|wda] ~DE) )
=0

({0t — wdn) ® ((m2).0 (158 ~2)H) ),

where we usedvd,, — |wd,| = {wd,} = 1 - (—wd,) = 1 — <5f5171}> and
5%;;_1] — (5{2_10 = (5[%_1}1 — 1. Applying (m2). to the short exact sequences
O((a—1)H) — O(aH) — O(aH)|u, and using(m2).O = O, implies that in
the K-group,
|—6n 1]1 -2
(R (m2)u(m1)s LY 4) = [O(= (0 —1)) — wdn — p)].
p=0

Tensoring this withO(wd,,) and re-indexing yields the statement of the proposi-
tion. O

Since the hyperplane classBf— agrees with the)-class of then-th marking
(which is special by having weight one), this implies:
Corollary 3.4.2. In the situation of the previous proposition, the Chern class of
H? is given as

s -1
cHY) = [ (—pin)

p:<6E‘;L,1]>

(Note thaty,, denotes the pull-back of the corresponding clas&fifn 4 by our
convention for the rational Chow groups of the moduli stacks.)

3.5. Relation to the twisted /-function. In Givental’'s formalism for Gromov-
Witten theory [Giv01, Giv04, CGO07, CCITQ7a], the so-calléegunction plays
an essential role. LeK = [C"/u.], whereyu, acts diagonally with weights
w1, ..., wy. The orbifold cohomology ofX' is H = H*(X) = @P,c,, C - he,
and theJ function is a map — H|[z][[z!]] defined by the following formula:

1 h
T t)=z+t+) > E(t,...,t,z%%fm_l-rheq

n>0ecur w

(3.5.1) =zt > Y > n‘zkﬂ R )Ny - The

n>0 eCpr k>0

For example, by the results of [JK02], thHefunction ofBW is given as

k=(ko,k1,....kr—1) j=0
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where we wrote = Z;;é tjh,;. The idea of [CCITO7a] (and Givental’s formal-
ism in general), specialized to our setting, is to determine/tfienction X from
the J-function of Bp,.; the former is called thewvisted./-functionin [CCITO7a].

As an approximation to the twistefifunction, Coates, Corti, Iritani and Tseng
define atwisted I-functionin [CCITO7a, section 4]; specialized to our case, and
translated into our notation, it is given by

(e1,.-r€n)
Here
J(ermen) — zf"”él’l-h ei Pt
is the part of theJ-function of By, that comes from invariants computed on
Mon(er, ... en; Buy), andM,, . (z)is defined by

N 671 1]

Mel” H H (1 —pz).

a=1p= <[n 1]>

To show that'*™ has the desired propertighey use Tseng's Grothendieck-Riemann-
Roch-computation of the Chern character of the obstruction bundle i@%].se
We can define aveighted/-functionof X by

X;weigh X;weighted
grweighted, 4y =z 443 bt _6¢>07an1'9 . hy-1,
n>0e€ur
where the invariant with superscript “weighted” denotes the invariamipeted by
the moduli of weighted stable ma;MffA’g considered in the previous section,

ie. forA = (-15,...,-15,1). Then the result of the previous section can be
formulated as

JXweighted , 4y — 2 +¢ + Z Jleren). ]\7(61,”,76,1)(2)

(ela-"7e’n)

where]\Ai(ehwen)(z) is the truncation oV, .,.)(z) by 2"~2 = 0: When the

Euler class of the obstruction bundle for,...,e,) is given as a polynomial
P(¢y) in ¥y, then the contribution to thd-function is they”3-coefficient of
P(tpy) 7 This coefficient is given by~ n+2 times the truncation oP(z).

Independently of,, this shows thatXWeightedis obtained from/*™™ by remov-
ing all terms of non-negative degree irexcept the first two; such terms would
correspond geometrically to a negative numbepgfinsertions.

4. WEIGHT CHANGE

The goals of this section are the wall-crossing theorems 4.3.1 and 4.3.2.

The formula on page 9 ibid. defining the “modification factddy (z) has to be applied with
s, specialized such thaf (¢ for the Chern charactes of some bundle? gives the Euler class of
—[E].

7It has the same image as the twistefunction, namely Givental’'s Lagrangian cods; .
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4.1. Preparations. We begin with several lemmata we will need in the proof.

Lemmad4.1.1.Let D¢, D5 be two smooth divisors with transversal intersection on
a smooth Deligne-Mumford stack. Let X be the blow- v-up of{ at their intersec-
tion, with exceptional divisoF’ and proper transform&); and D,. On the other
hand, consider the-th root constructionXp, ) (p,,» and its blowupZ at the
intersection of the two gerbd3; andD, lying overD; and Dy, respectively. Then
Z is isomorphic to the-th root constructlonX(D (Do) (B
2,7),(E,r)

Proof. Let D and¢& be the gerbes |LK(D1 ) (Dai)(Bor) lying over D; and E,

respectively. The line bundle@( ; ® &) with their canonical sections areth
roots of the pull-backs ab; C X, determining a morphism

f: X(Bll,rﬁ(béﬂ’),(E,r) - X(D1,T),(D2,r)'

The pull-back of the ideal sheaf of the intersectidnn D, along f is the ideal
sheaf of: this is easy to see locally, where we can assumeZhas cut out by
an equatior(s; = 0); its pull-back f*s; cuts out€ U D Since€ is Cartier, the
universal property of blow-ups yields a map

9° X By ) (Do) (Br) — 2

To go the other way, we first show th&t — X lifts to X. The preimage of
Dy N Dyin X(p, r),(Ds,r) 1S D] N D5. One can check aftétale base change to a
scheme that the preimage of this4his r times the exceptional divisor, hence is
Cartier. So the universal property of blowups gives us a morplism X. The
preimage ofF’ under this morphism is times the exceptional divisor df, and it
follows that the preimage oﬁ is r times the proper transform @;. This gives
us a lifting to

hiZ = X5 0 (Bar(Ba)

As neitherZ nor X(E,T),(DNQ,T),(EJ‘) have nontrivial automorphisms over the

identity of X, bothgh andhg must be (2-isomorphic to) the identity.
O

Lemma 4.1.2. Let X, Y be Deligne-Mumford stacks, and I¢t X — Y be a
composition of-th root constructions and blow-ups at regularly embedded centers
(i.e. the normal sheaf of the center is a vector bundle). TREA. f*F = F for

any quasi-coherent she#fonY'.

Proof. By the projection formula, it is enough to prolef.Ox = Oy. For
r-th root constructions, it is obvious that the higher direct images vanshbg
[Cad07] f,Ox = Oy. For blow-ups, this is well-known in the case of schemes.
Since blow-ups are representable, one can reduce to the casemesdhetaking
anétale base change to a scheme coveying a
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Lemma 4.1.3. (Base change) Let

Yli)Y

f’l o lf
X'—X

be a 2-cartesian square of Deligne-Mumford stacks whérns quasi-compactf

is quasi-compact and quasi-separated, &hdnd X’ are tor-independent ovexX .

Let€ € Db(Y) be a complex having quasi-coherent cohomology. Suppose either
that g has finite tor-dimension or that has flat, finite amplitude relative tb. Then
there is a natural isomorphism

Lg*Rf.E — Rf/LI*E.

We will apply this in the case whetrgis flat and€ is a line bundle orY".

Proof. The existence of a natural morphishy*R f,.£ — Rf/Lh*E follows
from the adjointness of pullback and pushforward. Indeed, the natumgohism
& — Rh,LA*E determines a morphism

Rf.& — R(fh)Lh*E = R(gf")Lh*E,
which is equivalent to the morphism above by adjointneskg@fandLg*.

For schemes, the proposition is the same as [SGA71, IV, 3.1.0], and the redu
tion to the case of schemes is identical to the proof of [LMBO0O, 13.1.9]. O

Lemma 4.1.4. Let 7: X — X be the blow-up of a smooth Deligne-Mumford
stack X at a smooth centeZ C X of codimension two, with normal bundlé
and exceptional divisoE. Then forn > 0

n—2

[R'7.0(n- E)] =Y [A*N @ Sym* N].
k=0
Proof. As a blow-up is representable, it is sufficient to check this for schemes.

Due to the short exact sequenc@§n — 1) - E) — O(nE) — Op(—n) on X, it
follows from induction if we showR!'7,Op(—n) = [A’N ® Sym™ 2 N]. This is
easily checked by Serre duality, since

R, Op(n) = Sym™(NV)
and the relative dualizing sheaf ofg is O(—2) ® 7*(A2N) 1. O

4.2. Constructing the reduction map. Consider two weight datal > B; then
there is a reduction morphispy 4: Mo 4 — Mg p. Further, we assume the
following property:

(*) There is exactly one 2-partition = (Tp, T{) of [n] such thatr is A-stable

but B-unstable.

In other words, there is just one wall betwedrand 5 in the chamber decomposi-
tion of the set of weight data discussed in section 3.1. Specifically, this nieans
> ier, @i > 1butd . b <1, and thatly is the only such subset ¢f].
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Thenpg a: Mo a — M s is the blow-up ofA 5 at the locusZy;, of curves
where alls;, i € T, agree; the exceptional divisor I3’°. The universal curve’ 4
is obtained fronCz in two steps:
(1) Blowing up at the preimage ' Z7;, of Zr,, i.e. taking the base change for
pB,A; We denote the resulting family ovéd, 4 by 6B/A-
(2) Blowing up at the preimage (with respect to the previous blow-up) of the
common image; (Zz,) for any: € Ty. (See [BM06, Remark 3.1.2].)

There is a canonical map

D570 71
ng,)Ai Moy — Mg .
This follows from the fact that the pull-back of any boundary divigbor C My
is just the corresponding divisd® c M, 4, and that the -th root construction
commutes with such base change.

A matching ma@ﬁ) — ﬁg)ijoes not existin general, for the following reason:
the preimage of a section C Cz with i € Tj is the union of the corresponding
sections; € C 4 with the exceptional divisob™0:"+1 of the second blow-up step
in the construction o’y 4 above. However, for example whdt,., e; = 1,

there is no root construction along the divigof>"*! in the construction oﬁi)
at all, and so am;-th root of the pull-back of; C C 5 does not exist.

In order to compare the Hodge bundles, we will later construct some ayxiliar
spaces to overcome this problem.

For simplicity, we make the following additional assumption:

(**) We assume that foff} as in (*), we haver ¢ Ty.
(This simplifies the computation with respect to our choice.@fs in definition
3.3.1 and, on the other hand, always holds when we start witfPthé-weight
data used in section 3.4.)

Lemma 4.2.1. Assuming (*) and (**), we havey 4 L2 s = L2 4

This is immediate fromLy 4 = s} (L1,.4)", ass, does not meet any of the
divisors appearing in the definition (3.3.1)of 4, except itself. As a consequence,
it follows that:

Corollary 4.2.2. There is a well-defined reduction map

PB.A* Mgﬁa\,s - Mg,%,a
4.3. Weight change and Hodge bundlesWe continue with the assumptions (*)
and (**) from the previous section. We want to compaje, Hg and H'j in the

K-group ofﬂng’g, where due to projection formuld?; can be computed by

HY = R\ LY 4 ® (Laa) " .

We will introduce several auxiliary spaces; the goal is to have a reductam
as a smooth blow-up between spaces that are very close to the univangzs.
This is achieved in the mapbelow.
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Let A4 be the intermediate space obtained frﬁﬁu by forgetting the root
construction along all sections. In other words, it is constructed fromrthersal
curveC 4 by therr-th root construction for every divisdd? whereT C [n + 1]

andT is AU {0}-stable, followed by the base change alddy’, » — Méﬂ Let
VA 5‘0‘:4 — A4 be the induced map, and,: A4 — Mg‘;\vg the projection to
the moduli space.

Then

n

(4.31) vy, (LfA) =0 thdij s; + Z wdyp - DT
i=1 TC[n—1]
(T, TC) is A-stable

Now let Ay, 4 be the base change dfs — M’O‘;"B,g alongpp 4. While a map
Aa — Apja eXists, we prefer not to use it and instead consider two more addi-
tional spaces: Pick any sectiep, with jo € Ty and letd’, = (AA)% - DE the
stack obtained fromi 4 by adding the-p-th root construction at thg)-th section.
We defineA’B/A analogously.

hy AT Ay Tl
N e e
AA AB/A PB,A AB

\ lﬂJB/.A lw'B
TA

=y PB,A ——up
Mo e —= Mype

Applying lemma 4.1.1 to the divisoks, andz—! DT on the coarse moduli space
of Ag, 4, we see that the mapis the blow-up at the intersection of the tautological

gerbes oves;, and <7r,’5/A> D™ in Ay 4.
SettingLY's, , = pp av5«LY 3, We have
(pi.4) HE =(p5.4)" R (vf)-vs.Li's © Ly
=R (7 )P AVB L5 ® (La.a) "7 (lemma 4.1.3)
(4.3.2) =R (g )« L3/ a © (Loa) ™7
=R (7 4€5/47)+(€5/4T) LY 34 @ (Lo,a)" 7 (lemma4.1.2)
on the other hand,
HY =R'(w)wwa LY @ (Loa) "

=R! (WQGA)*GQVA*L%)’A & (L27A)

w
s

(lemma 4.1.2)
(4.3.3) =R (7 48/ AT) €4V A LY A @ (Lo a) " 7.
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Now for anyT C [n — 1] such tha(T, T%) is B-stable, it is also4-stable, and

DT,n—l—l) DT,n—Q—l).

= eal

The pull-back of the divisor class of sections is given by

(pB,A€B/AT)(

S; if ¢ Q TO
s; + DTontl if € T,

(pB.A€B/AT)" (81) = {

Using these formulae and equation (4.3.1)fband B, respectively, yields

(6A>*VA*L111},.A = (GB/AT)*LKB/A ® O Z (wdz — I_’LUd»LJ) . DT07n+1
i€To

Note thaty$, = 3,4, (wd; — [wd;]). The projection formula yields
(4.3.4) R(eB/AT>*(6A)*VA*L1ﬁA = Lqu,B/.A ® R(EB/AT)*O((S%O . DTo,n-‘rl).

Combining equations (4.3.2, 4.3.3, 4.3.4), and usgifig 4 7). O (6%, - Do 1) =
O, it follows that
(4.3.5)

() = [0 4 HE)+ [ (s )+ (B (/7). O(63, D7) @ Ly ) @ L 4

Write 6}"0 as the fraction%, wherery = rg,. The exceptional divisor of is
Dlontl — %DTW“; so by lemma 4.1.4

po—2
(4.3.6) [R'70(5%, - D™ = Y " [A’N @ Sym"* N,

k=0
where N is the normal bundle to the center of the blow-tip To compute the
right-hand side, we introduce additional normal bundles. gt be the normal
bundle of the gerbe;, overs;, in A’B/A, let Npr, be the normal bundle to the
gerbeD™ over D™ in My’ ¢, and letN,, be the normal bundle te), in Az 4
(equivalently,st0 is the relative tangent bundle of; /A restricted tos;,). Then

N, is the restriction of the tautological bundle of theth root constructior, 4
at the section, to the gerbe, and

k.
o .
(4.3.7) (6B/A)*ijo _ JNsp  ifrg dIYIdeSk,
0 otherwise.

The sections;, induces a splitting of the tangent bundle 4%, 4 alongs;, into

the relative tangent bundle and the push-forward of the tangent buhﬂTﬁfAf
alongs;,. This induces a splitting oV as

N = ((EB/AW/B/A)*NDTO ® Nﬁjo)

ZT,
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Applying this splitting to equation (4.3.6), we obtain
po—2

[R'7.0(3%, DO =3 0 > 0 NG @ (en/ams4) Nk
k=0 a+b=k

We can rewrite the summation 3&° ;% S-2° "2 or, equivalentlyy o ' SPo b2
By equation (4.3.7), only the terms withry = b+1 for somem € Z are surviving
the push-forward alongg, 4, which yields:

[6 ] 1p0 —rom—1
(R (e 47)O (0%, - DTom+1)] = Z Z NI @ (m5.4)" Noia]

Combining this with equation (4.3.5) ylelds the wall—crossmg theorem irfthe
group:

Theorem 4.3.1.The generalized dual Hodge bundlg$] and Hy can be related
in the K'-group ofMO ¢ as follows:

[0, 11 po—rom
(4.3.8) [HY] = [k 4 HE]+ Z Z o @S5 NI @55 L) 4@ Ly 4]

wheres;, is the sectior; : Mof}tz — Ap/a-

Let o be the first Chern class of the line bundlev, LY 3 © L, 5 onMy's ¢.
The first Chern class of; N. on M{f’g ¢ Is —;,, and so the first Chern class of

SJO
Tensorlng the short exact sequences
1 a
0 — (’)(TODT") — O(%DT‘)) — N, — 0
with K yields Chern classes for all summands of the right hand side of equation
(4.3.8), and thus the following formula relating the Chern classes of thd-thakgje
bundles:

"511/" 1 N
po—Tom | + & a DTo 4 /)B,A(a — maj,)

c(HY) = pp.alc a1 .
’— -|_1 w *
= pi 4(c(HY)) - Tlo_[ L+ (5To - m)DTO + pi, (a0 — mipj,)
= PB,A B 1L L+ p 4 (o — mabj,)

’—T()1 1 (6% —’I’)’L)DTO
= pk (& Hw : 1+ 3
pp.A(c(HE)) H ( 1—|—p;<37A(Oé—m7/}jo)>

Equation (4.3.8) implies that this formula does not depend. dself but only
on its restriction - Z7, to the center of the blowup-part pi 4. The Chern class

m=1



24 AREND BAYER AND CHARLES CADMAN

1
of Ly 3 on C{y's is by construction equal to the Chern classtgf.; . Henceo
can be computed as the difference of the Chern classes éf 5 andLﬁ“’B, which
is given by> """ | (lwd; | — wd;)s; = — >, 6%s;. Pulling this back vias;,, and
ignoring everything that restricts as zero4g,, givesa = — ZieTo 8 (=jy) =
5%01/@'0'

We claim that the restriction gfy; 4v, to DTo is they-class of the node on
the component corresponding to the complemeriffTo see this, note that the
irreducible component oveéd™® corresponding t@{’ is the pull-back of the family
over Zr,, with s;, being pulled back to the node.

Since in the final formula, after expanding the fraction using a geometi&sser
Pi,A%jo only appears in monomials that also have a factaPf, we can replace
P5,A%j0 by i1, ; hereyr, is for now any divisor on that restricts as theclass of

the node taD™ (but see (A.1.4) for a somewhat canonical global definition). So
the formula simplifies further:

Theorem 4.3.2. Assume that there is a single wall;, as defined in (3.1.1) be-
tween the two weight datal > B. The Chern classes of the generalized dual

Hodge bundles can be related MS:M as follows:
5% —1 -
* pD*o
() = piatctrrg) I (14120
—/Sw 1 + pwcr()
P—<6TO>

5. CHERN CLASS FORMULA

5.1. Main theorem. Theorem 4.3.2 and corollary 3.4.2 immediately give a closed

formula for the equivariant Euler class of the generalized dual Hodgdlb.
Assume thai, is acting diagonally orCY with weightswy, ..., wy. Given

€l,...,€n € Uy, let 5@ ¢ [0,1) be the age o#; acting on theu-th coordinate

7
direction, i.e.¢2m%" = e, For all subsetd C [n], lets\" = 3, 6.

Theorem 5.1.1.0n the connected componeW ,, (e1, . . ., en; Bu,) of the mod-
uli space of twisted stable mapd ,,(Bpu.), the equivariant Euler class of the
obstruction bundle is given as

(a) (a)
5y —1

N =yt pDT
r(@rre) =11 I Gepew- T T (1 5%50)
=1 (5 ) T%Tﬁ” p=(35")

Proof. If we start with weight datad = (-15,..., -1 1) as in section 3.4, we
can choose a path {9, 1]” leading toA = (1,1,...,1) such that we pass every
wall wy = {a; | Y;epai = 1} for T C [n—1],|T| > 2 exactly once, and only one
wall at atime. By theorem 4.3.2, we pick up exactly the factor in the aboveuptod
corresponding td” when we cross the wallr, after we set, = 1. To get the

equivariant Euler class from the total Chern class, we just have to multiplytth
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Chern class of the higher direct image of #¢h coordinate directiol© C cN
with ¢’ 7 as the torus is acting trivially on the moduli space, and linearly with
multiplication byt, on the fibers of the vector bundle. ]

5.2. Remarks on the formula. Using the notation®["~1 = —¢,,, D = —);
andyyp,_1) = 0 as explained in the appendix, the formula can be written in more
compact form:

(5.2.1)

N () o7 T
) . 5@ -1 ta + pYr + pD
er ([Rl'mf*CY] = [ROm. f*CY]) = [ [t 11 H ot W

a=1 0ATCIn—1] p—(5(2)) o« TR

Hereé[( ]) 1 is the virtual dimension of the contribution from theth coordinate

directionC c C" to obstruction bundle.
The convenience of this formulation is that it remains correct (up to arathver

2
¢279) (if we still

definedg?) = ier 6%). This is shown in the appendix, see lemma A.1.1.

This version of the formula also gives the correct answer for the sape$o-
calization computation in case all act trivially on one of the coordinate direction,
that is ifel”* = 1 for somea and alli. In that caseM ,(e1, ..., en; Bu,) is the
fixed point locus ofV/ . (e1, . . ., en; [CV /p,]) (instead of being isomorphic to it).
The factor of;- L we getin the above formula is the contribution of théh coordi-
nate dlrectlon to the inverse of the equivariant Euler class of the normdldof
the fixed point locus.

power oft,) as long asSg;]? is any real number such thet® =

6. RECURSIONS FORGROMOV-WITTEN INVARIANTS

6.1. Inclusion-exclusion principle. The formula gives particularly nice recur-
sions when the invariants are (almost) non-equivariant. To expand tineilfn
we use the following fact, which we think of as a generalized inclusion-siau
principle:

Lemma 6.1.1. Let S be a partially ordered set. L€f (S) be the set of non-empty
subsetd C S such that no two elements ffare comparable. For every subset
I C S, letC(I) C S be the “ordered complement” af: the set of elements ¢f
that are not less than or equal to any element oT hen:

(6.1.1) [[a+zr) =1+ Z DI T 2r I A +20)

TeS IeU(S Tel TeC()

Proof. For any subsef C S, the monomiaHTG] x7 appears in the right-hand
side of the above product wheneveis a subset of the set of minimal elements of
J. Itis easily checked that it overall has coefficient one. O
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We use this forS being the set of subsefs C [n — 1] with2 < |T'| < n — 2,
ordered by inclusion, and

N 5(‘1) 1

=TT (25)

<5(a)
Ha,p(l — g prc> - Ha,p(l + tglpr)
I1.,(1+ta ' poor)

whereyc = —DT — 1 (see Appendix). Thenr is a class with support oR’',

Thus, ifT", T' are not comparable, than-z7 can only be non-zero if’ andT” are
disjoint; hence the expansion of lemma 6.1.1 reduces to a sum over a combination
of pairwise disjoint subsets,, ..., T C [n — 1]. Since everyl; has size at least

2, the datum of 71, . .., T}, } can be identified with a partitio® of [n — 1]; given

P, we write’ P>, for the sets irP that have size at least 2, recovering the list of the
T;. We can similarly simplify the second product of equation (6.1.1) to a product
overT which are either disjoint from or fully contaify, for all 4; in other words,

we can identifyT” with a subset of the quotient st — 1]/(P) having at leasg
elements. Thus:

I

(6.1.2) er(R'zm, f*CN) =

N iy~

1_|_Z ‘7)>2|Jrl H TT H 1+.7JT H H (ta_pwn)
TEP>2 TCn—-1]/(P) a=1 (5(a) )
2<|T] =l

where the sum goes over all non-trivial partitioRsof [n — 1] (excluding the
partitions of size 1 and — 1), and we identify a subsé&t C [n — 1]/(P) with its
preimage inn — 1].

The class associated to the partitiBnin the above expansion has support on
ﬂT€P>2 DT, which explains why we call it an inclusion-exclusion principle. This
intersection is a moduli space of comb curves as in the figure on page 29.

6.2. Non-equivariant recursions for [C3/u,]. Let u, act non-trivially onC? so
that it leaves the volume form @? invariant. Up to isomorphism qi,., we may
assume that the generator is acting with age 1; then the weights,, w3 of the
one-dimensional representations satisty+ w2 + ws = r. The age of the action
of a non-trivial group element; is given byage(e;, C3) = age(e{!) +age(e}’?) +
age(e;™). In this section we will develop recursions for invariants of the form

(621) <hel ® ® hen 1 ® wn en>[(c /MT]

whereeq, ...e,_1 € u, are group elements of age 1, angdis arbitrary, and also
the only element for which we allow insertion ofyaclass. (This implies that

oW 6 4 68 =T forall T  [n—1].)
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We want to determine the integral of a summand on the right-hand-side of equa
tion (6.1.2) related to a partitioR of [n — 1], after inserting an additional-class

at then-th marked point. Lef, . .., T}, be the elements @P>».
k 6(’1) 1
oy -eP) =5 [[ern [ (+ar H H — p¥n)
=1 T¢n-1]/(P ) p=(6{" )
2|7 =]

This term is supported on the intersectidh! N - -NDTk, isomorphic tdWO,Tlu{*} X

- X Mo g,u0 X Mo /0Py SO in order to determine the integral &fP) -
we will write it as a product oD - - - DT+ with factors that are pulled back from
one of the components above.

The numerator ofr; is the only factor that has terms coming frde,TjU{*},
while its denominator involvegr; , which is they-class of the node corresponding

to the markingl’; on HO,[n]/(P)- To examine the numerator more closely, we first
factor outD7i:

[0 - t§1P¢TJC) ~TJa+t pry) =D Br((— ch — )

a?p a7p k>0
k—1
—ph. _ k—1-€
Z Bk Z( d’TjC) T
k>0 =0
The largest power af.c which appears in the last expression is
J

3 3

SO — (610 — 1= 15— 1= S (o).

a=1 a=1
As the dimension of/, 7,u{=} 1S|T}j| — 2, the expression only has a term in the top

degreeifS2_ (8 ])) = 1, which means thaty, = ][y, e; acts with agd onC?
and acts nontrivially in each coordinate dlrectlon. By the balancing condition
is prescribing the monodromy of the node as seen from the componerdamce

ing to [n]/(P). As the integral oﬁb' Bl s one, the integral of the above product

16571
on M, T;u{+} IS Ha 1 ta (5%) — 1)!'if the condition orer, is satisfied, and 0
othenNEe
On Mg )/ (p), We are left with the following product:

s -1

3 (a) T T
14 to + pyr + pD
20 I Pk =
Uy, H a H H to + pr
=1 0ATCn—11/(P) p=(s{)

Here we used the same conventions as for formula (5.2.1), applied to the set
[n— 1]/(P) (so for exampleD{?} is identified with—1)7,;, which is they-class
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of a single markingthe term related td@; in the above product is the denomina-

tor of z7,); and we extendedéf‘) in the obvious way from subsets pf — 1] to
subsets of the quotient set — 1]/(P). Now by the remarks in section 5.2, based
on lemma A.1.1, this product computes the Chern class of the obstruction bun-
dle onMy 1 /(py ((€i)icin)/(p); Bur). Its integral is thus given by the equivariant
Gromov-Witten invariant

v [C3/MT']
< ® hei ® wnh€n>07[n}/(7)) :
i€n—1]/(P)

This proves the following recursion:

Proposition 6.2.1. For an equivariant Gromov-Witten invariant ¢€3 /..,.] as in
equation (6.2.1) with the assumptions above Sdde the set of non-trivial parti-
tionsP of [n — 1] such that for ever{’ € P, the group elementy, = HieTj e
acts with age 1 orC3, and non-trivial in every coordinate direction. Then the
following recursive formula holds:

3 3 wei
<he1 - ‘®hen—1 ®¢Zh€n>g?n/ur] = <h€1 - '®h6n—1 ®¢Zhen>gl,jn/ur]7welghte%

3
. Y C3/pr
+ 3P T TTE =0 Q) ke @ hhe )iy

Pes TEPy a=1 i€[n—1]/(P)

Here the invariant with superscript “weighted” means the invariant as atadp
by using the moduli space of weighted stable maps instead of the ordinaryimodu
space, with weight data chosen as in section 3.4. These invariants amne gjvto
a multiplication with a monomial in the,, by the(n — 3 — v)-th elementary sym-

metric function of the variablefsgl(é[(s)_l] - 1),t;1(6[(§)_1] —2),... ,t;1<6[(§)_1}>
fora =1,2,3.

6.3. Recursions for[C3/us3]. The recursion of proposition 6.2.1 simplifies further
in the casdC?/u3] for the diagonal representation @f. The only group element
ofage lisw = e’ . We have5§?) = @ forall T C [n — 1] anda = 1,2, 3. The
setS contains the partition® of [n — 1] so that everyl” € P has sizemr + 1 for
somemr € Z>o. The summand foP in the formula of proposition 6.2.1 depends
only on the sizes of the subsets, not on the actual subsets; if we=sét_, mr,
we can thus reduce the above sum to a sum over partitioas (m, . .., my) of

p, for all p > 1 with n — 3p > 3. For any such partition, le¥/(n — 1, m) be the
multinomial coefficient

n—1
M(n—1,m) =
(n ,m) <3m1+1,...,3mk+1,n—1—Zj(?)mj—i-l))

counting the ways to distribute — 1 markings on the different components.
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Proposition 6.3.1.

<h®n 1 ® Y he >[(C /us] _ <h®n 1 ® ¥’ he ><C3/p3} :weighted

|m|+1 3 .
_ ®n—1-3p o1,V [C°/us]
+ Z ; |Autm] H ( > M(n—1,m)(h ®1/1nhen>0,n

The superscript “welghted” means the same as before, i w and

V =
0, this weighted Gromov-Witten invariant is just given @s1)"! ((25* ) 3
otherwise it is an elementary symmetric function.

FIGURE 1. Comb forn =30, p = 7andm = (1, 1,2, 3)

A maple program implementing some of these recursions is available from the
authors upon request. The numbers match the calculations of [ABKOB|TI7 a]
and [CCO7].

As the recursions are linear, it is not hard to invert the matrix and obtaireatdir

formula. Letl, = <h®3€+3)gc3e/f§] Proposition 6.3.1 implies that

‘ 1,1
> (1P Cpaliy = (~D'((£ = IV,
p=0

whereCp, = 1 and for0 < p < ¢, C,, is the sum over partitionsn =
(mq,...,my) of p, with & < 3(¢ — p) + 2, of the quantity

30+2
.23,
|Autm|j1;[1((m] 3)‘) <3m1+1,...,3mk+1,3(6—p)+2—k)'

LetD,, = C,_p . By inverting the matrix we obtain the formula:

1
3(_1)£I£ = Z (_1)|S|((ZEO - g)!)ngo,xl T D:qul,:Equq,fa
Sg[O,K—l]
S={z0,....xq}

where[0,¢ — 1] = {0,1,...,£ — 1} and itis assumed thay < z; < --- < .
For S = (), the summand is taken to ¢ — 1/3)!)3.
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6.4. Inversion of the “mirror map”. The recursion in this case can also be de-
rived from the results in [CCITO7a]. We explained above in section 3.Gtiiedr
I-function '™ (t) is almost identical (up to high powers oj to the “weighted
J-function” JX;weighted

From general principles of Givental’s formalism they deduce that foctue-
dinate change(t): H — H, called the “mirror map”, given by

3k tl 3k+1 2 3
T(toh1 + t1hy,) = toh1 + Z 3k 1) ((k‘ — *)') he

k>0

the twisted/-function and the twisted-function can be related after setting the
dual coordinate ok, > equal to zero:

Itw(tohl + t1hy, Z) = JX(T(tohl + tlhw), Z)

Our recursive formula can be recovered by comparing coefficientsese two
power series; in other words, the sum over partitighs proposition 6.3.1 is a
combinatorial inversion of the mirror magit).

More precisely, given any two power serig¢§ohi+tihy, 2), B(toh1+ti1hy, 2)
related by

A(tohl + tlhwa Z) = B(T(tohl + tlhw), Z)

we can recursively recover the coefficients Bfby comparing coefficients of
powers oft;. If we write A(tihi) = 3, %8 and B(tihi) = Y, 5§ with
ar, by, € HI[[z71]], the recursion will look exactly as proposition 6.3.1 with the
“weighted invariants* replaced by, and the actual invariants replaced &y In
particular, settingd to the identity power seried(tghy, + t1hy) = toh1 + t1he
yields an inversion of the mirror map that can also be a interpreted as a @1m ov
comb curves.

6.5. Equivariant recursions. The methods of this section are sufficient to pro-
duce a linear recursion for the equivariant descendant Gromov-Wfttariants of

[CN /). However, this requires one to allayvclasses at every marked point. As
in section 6.2, one can use lemma 6.1.1 to expand the equivariant Eulerfdlzes o
obstruction bundle, and to each partitionof- 1] one should associate a comb as
before, where the-th marked point is on the head of the comb. For each tooth of
the comb, we can write the numeratoraf as

k—1
DTN 3> (—pe) b,

k>0 =0

just as in section 6.2. The exponentwfc which leads to a nonzero integral is
determined by the descendant exponents chosen for the marked pdintgire
integral over the tooth can then be computed using the well-known formula

P gt = n—3
— 1 n a a .
Mo,n 1y.-.,0Un
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We are left with a polynomial i1, theiy-class of the node on the main component
(and hence our method does not yield a recursion for non-desdeindariants
only).

In summary, for each partition of — 1], one gets a linear combination of equi-
variant Gromov-Witten invariants with fewer marked points, each with a combina
torial factor. These must be summed together and added to the weightednhvar
just as in section 6.2.

APPENDIXA. COMBINATORICS OF DIVISORS ONM ,,

A.1. Notations for divisors. This section reviews notations for divisors dfy ,,,
some of which is introduced in this paper. The standard relations are ex\jiewwd

a combinatorial proof of a key simplifying relation, used in section 6, is wibrke
out.

First recall the vital divisotD”', introduced by Keel [Kee92], wherE is any
subset of{rn] having at leasR and at most: — 2 elements. This divisor is the
locus of curves having a node which separates the markinggiared7¢. Here
complements are always taken witHie]. To make this into a correspondence,
assume throughout this appendix tiaand T are subsets di — 1]. It is natural
to defineD"—1 to be—1,,, which comes from the work of de Concini and Procesi
[DCP95]. From their point of viewD!" 1l is the pullback of minus the hyperplane
class under a sequence of blowups produdifg,, from P"~3. This sequence of
blowups is the same one discussed in section 3.2 in the context of weightkd stab
maps. Under this blowup description &f, ,,, D is the exceptional divisor of the
blowup in the proper transform of the linear space generated by the feideied
by [n — 1]\ T.

The ring H*(My ,,) is generated by the divisol3” for T C [n — 1], |T| > 2,
with relations given by

(A.1.1) DSDT if S andT are incomparable an§in 7" + 0,
(A.1.2) > D foreveryi # j € [n — 1] [DCP95]
ijer

Geometrically, the first relation is due to the fact that the exceptional da/i36r

and DT are disjoint, and the second is due to the fact that the preimage of the
hyperplane inP"—3 generated by all points exceptindj consists of the proper
transformD®/ together with all the exceptional divisoi3” for i,7 € T. Fix

T C [n— 1] and chooseé ¢ T andj € T. Then relations (A.1.1,A.1.2) imply that

(A.1.3) DT " D¥=o.
S:ieS
SOT
For any nonempty subsg&t C [n — 1], we introduce the notation

(A.1.4) Y=Y DS

ST
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If T'= {i}, then this recovers thg-class at thé-th marked point. Indeed, we have
for any distinctj, k different fromi (recalling the convention ¢ T),

SO IS ST SIS DU SRS P U
G k€T ieT i,j,keT ieT i,j€T ikeT
i¢T JkgT Jk¢T
the last equality following from an inclusion-exclusion argument. By definition,
Yp—1) = 0, and we also seb* = —1); for 1 <7 < n — 1. Finally, we define
Yo = —DT — 4

for T' C [n — 1], which we found useful in section 6.
The Chern class formula of theorem 5.1.1 can now be expressed as

or—1
(A.1.5) c= I H <1+§)fp¢+TW)),

P£TC[n—1] p=

whereér = .., d; andd; are chosen so that< §; < 1. The following lemma
shows that if every; > 0, this expression is periodic in eaéhwith period1; so it
defines a continuous, piecewise-analytic function fronran 1)-dimensional real
torus into the cohomology af/ ,, with real coefficients. This is used in section 6
to produce recursions for the Gromov-Witten invariants.

LemmaA.1.1. Letdy,...,d,—1 be real numbers, and for any subgetC [n — 1],
definedr = >, d;. Then
1+ 5T(DT + )
A.1.6 =1.
( ) g 1+ 5T¢T

Proof. Forl1 <k <n —1,let

n—1
EBy=)» 6 Y D'+6 ) D7,

i=2  1,4eT 1eT

|T|>k IT|>k
and let .
1+ 0p(D* +
Av=0+E) ] 1T+(5w vr)
1€TC[n—1] T
IT|<k

Then it must be shown that,_; = 1. As E,_ = §},,_yyDI"~1, it follows that
A,_o = A,_1. Moreover,Ey = 6191, SOA; = 1. It remains to show that
A=A, _1forl <k<n-—1.
Note that for any divisors, y, z,
(1+2z)(1+y)
1+2

Fix T'with 1 € T and|T| = k, and letz be any expression of the fori, +
> seo gD, whereo is a collection of subsetS C [n — 1] with |S| = k and

(A.1.7) =l+az4+y—zif (z—2)(y—2) =0.
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1€ S #T.ThenDT (x — d7¢r) = 0 by the following argument. For any € o,
1€ SNnTand|S| = |T|, soD*DT = 0. Moreover,

By —o0rpr= Y 6 Y DY+ > 45D

i 1¢T  S:i€S |S|>k
res SpT
1es

Since DT annihilates the first term on the right hand side by (A.1.3) and annihi-
lates the second by (A.1.1), it follows thaX’ (E), — dr¢r) = 0, completing the
verification of the claim.

It follows that one can iterate through all s&twith |7'| = k to eliminate those
factors from the expression fat;, and apply relation (A.1.7) at each step. Since

Ep+ Y opDT = By,
1eT
T =k
it follows that A, = Ax_1, completing the proof. O

If in (A.1.5), one were to add to §; (and thus add one to eadh for 1 € 1)
then one would be multiplying by the left hand side of (A.1.6). Thereforaeloes
not change after the translation — ¢; + 1. Using the notational conventions
of section 1.5, the formula for makes sense for negative valueségfand the
same argument shows that it remains invariant under integer translatisesns
natural to regard;, . . ., d,, as coordinates ofRR /Z)" satisfying) ;" , 6; = 0.

A.2. Restricting to DT It is a standard fact for any proper subgetc [n — 1]
containing at least two element® = Mg 71 X Mg, r+1, With the node
counting as an extra marked point on each factor. The restrictionsigbti\D~
andiyg to DT are easily computed if one uses subset® &br the divisors on the
first factor on subsets of the quotient get- 1] /T for divisors on the second factor.
So on the first factor, the node counts as the extra marked point thatsathast
avoid. For setss C T, we useD? andv’g to notate divisors OMOJT‘_H and we
likewise useD? andvg for divisors onﬁoyn_mﬂ. Now the following formulas
hold for any nonempty set C [n — 1].

DY @1, fSCT
1® DS, ifSNT =0
(A.2.1) DS pr ={ 12 DJ", if SO T
DT@1+1D!", ifS=T
0, otherwise
Yrol, ifSCT
(A.2.2) Yglpr = 1@y,  FSNT =0

1@y, FSDT

Note that the fourth line of (A.2.1) is another way of writing the standardtfeat
the restriction of~D7 to DT is the sum of the)-classes at the node on the two
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components. Moreover, the third line of (A.2.2) shows thatrestricts toD” as
the ) class of the node on the component correspondirito So our definition
of ¥$ as—DT — v ensures that'$ restricts to the) class of the node on the
other component.
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