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ABSTRACT. We give a construction of the moduli space of stable maps to the
classifying stackBµr of a cyclic group by a sequence ofr-th root construc-
tions onM0,n. We prove a closed formula for the total Chern class ofµr-
eigenspaces of the Hodge bundle, and thus of the obstruction bundle of the genus
zero Gromov-Witten theory of stacks of the form[CN/µr].

We deduce linear recursions for all genus-zero Gromov-Witten invariants.

1. INTRODUCTION

This paper combines two notions of stable maps—twisted ([AV02]) and weighted
([Has03])—to produce a formula for the genus0 Gromov-Witten invariants of
[CN/µr]. More precisely, we derive a formula for the equivariant Euler class of
the obstruction bundle onM0,n([C

N/µr]) as a pull-back of classes onM0,n. Our
definition of weighted twisted stable maps is ad hoc, applying only to genus0 maps
with target[CN/µr]. Nevertheless, there is a notion of obstruction bundle on each
of these spaces, and we have a wall-crossing formula relating their equivariant Eu-
ler classes. When all except one of the weights is small, the equivariant Euler class
is easy to compute, so we deduce in this way our formula onM0,n([C

N/µr]).
The starting point of this work is our theorem 2.5.2, which provides an explicit

construction ofM0,n([C
N/µr]) fromM0,n via root constructions. This motivates

the generalization to weighted stable maps. They are defined by applying root
constructions to the space of weighted stable curves.

1.1. Introduction to [CN/µr]. The quantum cohomology of stack quotients of
the form [CN/G] has recently seen a lot of interest due to the crepant resolu-
tion conjecture (see [BG06]). However, they are also natural objects of study by
themselves: whenever a smoothN -dimensional stackX has a local orbifold chart
[U/G] whereG acts with an isolated fixed point, part of the quantum cohomology
of X will be described by the quantum cohomology of[CN/G]. Moreover, ifX
has a torus action which restricts to the natural torus action on the chart[CN/G],
then the equivariant quantum cohomology of[CN/G] is relevant for computing the
quantum cohomology ofX via localization.

The Chen-Ruan orbifold cohomology of[CN/µr] has a natural basishe for
e ∈ µr. Consider the moduli spaceM0,n(e1, . . . , en;Bµr) of twisted stable maps
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to the originBµr ∼= [0/µr] ⊂ [CN/µr] in the sense of [AV02], where the branch-
ing behavior at thei-th section is prescribed byei ∈ µr. The non-trivial equi-
variant Gromov-Witten invariants of[CN/µr] are given by integrals over these
moduli spaces. The normal bundle to the origin isCN , understood as a vec-
tor bundle onBµr via the givenµr-action. If we write the universal curve as
π : C → M0,n(e1, . . . , en;Bµr), and the universal map asf : C → Bµr, the ob-
struction bundle of the moduli space isR1π∗f

∗CN . The Gromov-Witten invariant
for he1 , . . . , hen is typically1 given by the integral of the equivariant Euler class
(with respect to the canonical action of theN -dimensional torusT on CN ) of the
obstruction bundle

(1.1.1) 〈he1 ⊗ · · · ⊗ hen〉
[CN/µr] =

∫

M0,n(e1,...,en;Bµr)
eT ([R1π∗f

∗CN ]).

We call these integralsgeneralized Hurwitz-Hodge integrals, as the obstruction
bundle is a direct sum ofµr-eigenspaces of the dual of the Hodge bundle, where
the moduli space is to be understood as a compactification of the Hurwitz spaceof
µr-covers ofP1 by admissible covers.

1.2. Our methods and results. The starting point of our work is the following
explicit description of this moduli space of stable maps toBµr via ther-th root
construction of [Cad07]. Given a divisorD on a schemeX, the r-th root con-
structionXD,r is a stack overX that is isomorphic toX outside ofD, but whose
points overD are stacky withµr as automorphism group. For every proper subset
T ⊂ [n − 1] := {1, . . . , n − 1} having at least 2 elements, letrT be the order∏
i∈T ei, and letDT ⊂ M0,n be the divisor consisting of curves having a node

which separates the marking labels1, . . . , n into T and[n] \ T .

Theorem. M0,n(e1, . . . , en;Bµr) is a µr-gerbe over the stack constructed from
M0,n by successively doing therT -th root construction at the boundary divisor
DT ⊂M0,n for all proper subsetsT ⊂ [n− 1] having at least 2 elements.

We prove this in theorem 2.5.2, and we also give an explicit description of the
universal curve and of ther-torsion line bundle defining the morphism toBµr;
see definitions 2.3.1 and 2.5.1. The root constructions along the boundarydivisor
introduce the additional automorphisms of curves with stacky nodes, calledghost
automorphisms.

Now assume thatµr is acting linearly onCN with weightsw1, . . . , wN . To
determine a formula for the Chern class of the obstruction bundle, we use a reduc-
tion guided by the notion of weighted stable curves in [Has03] and weighted stable
maps in [MM08, AG08, BM06]. Weighted stable curves withn marked points de-
pend on weight dataa1, . . . , an, and yield many birational models of the moduli
spaceM0,n. Particular choices of weight data lead to an explicit presentation of
the moduli spaceM0,n by a series of blow-ups starting withPn−3, such that each
intermediate blow-up step has an interpretation as a moduli space.

1The formula needs an additional factor in case there is a coordinate direction on which everyei

acts trivially.
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Motivated by this work and guided by theorem 2.5.2, we make an ad-hoc defi-
nition of a “moduli space of weighted stable maps toBµr” in section 3.3. When
the weights are chosen such that all fibers of the universal curve areirreducible, the
obstruction bundle can easily be computed from general facts about ther-th root
construction; we do this in section 3.4 for the weight data that gives a moduli space
isomorphic toPn−3.

By a careful analysis of the wall–crossing for changing weights in section4,
we can lift this to a closed formula for the equivariant top Chern class in equation
(1.1.1) for the standard (non-weighted) stable maps. We will now state this formula
in the case ofN = 1 and the standard representation ofµr with weight one:

For 1 ≤ i ≤ n, let δi ∈ [0, 1) be the age ofei, i.e. e2πiδi = ei. For all subsets
T ⊂ [n], let δT =

∑
i∈T δi. Let 〈x〉 denote the fractional part ofx if x is not

an integer, and let〈x〉 = 1 if x is an integer. ForT ⊂ [n − 1], |T | ≥ 2, let
ψT be any class inH∗(M0,n) such that the restrictionDT · ψT is theψ-class of
the node overDT on the component corresponding toT ; e.g. we can setψT :=
−ψn +

∑
[n−1])S)T D

S .

Theorem. The equivariant Euler class of the obstruction bundle for[C/µr] is
given as

eT
(
[R1π∗f

∗C]
)

=

δ[n−1]−1∏

p=〈δ[n−1]〉

(t− pψn) ·
∏

T([n−1]
2≤|T |

δT−1∏

p=〈δT 〉

(
1 +

pDT

t+ pψT

)

The case of different weight follows by adjusting the ages in the above formula,
and the case ofCN by multiplying the individual classes inH∗(M0,n); the full
formula is given in theorem 5.1.1.

In the appendix, it is shown that this class can be expressed as a continuous,
piece-wise analytic function from a real(n−1)-dimensional torus toH∗

T (M0,n,R)
that encodes equivariant top Chern classes for all stacks[CN/µr] whereN , n and
the weightsw1, . . . , wN are fixed, andr ande1, . . . , en are arbitrary. See the dis-
cussion after the proof of Lemma A.1.1.

By a generalized inclusion-exclusion principle, the Chern class formula leads
to linear recursions for all Gromov-Witten invariants of[CN/µr] by a sum over
partitions, where every partition corresponds to a moduli space of comb curves.
They are particularly nice for local Calabi-Yau 3-folds[C3/µr]. We deduce an
explicit formula for the non-equivariant invariants of[C3/µ3]. These invariants are
the integrals in equation (1.1.1) for whichN = r = 3, n is a multiple of3, and all
ei = e2πi/3. The recursion we discovered for these numbers is

〈h⊗nω 〉
[C3/µ3]
0,n = (−1)n+1

(
(
n− 4

3
)!

)3 1

3

+

n−3
3∑

p=1

∑

m

(−1)|m|+1

|Autm|

k∏

j=1

(
(mj −

2

3
)!

)3

M(n− 1,m)〈h⊗n−3p
ω 〉

[C3/µ3]
0,n ,
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where the second sum is over all partitionsm = (m1, . . . ,mk) of p,M(n− 1,m)
is the multinomial coefficient

M(n− 1,m) =

(
n− 1

3m1 + 1, . . . , 3mk + 1, n− 1 −
∑

j(3mj + 1)

)
,

andx! =
∏x
p=〈x〉 p. The base case is〈h⊗3

ω 〉
[C3/µ3]
0,3 = 1/3.

1.3. Relation to other work. The construction of the moduli space and the uni-
versal curve viar-th roots has been described locally by Abramovich in [Abr05,
§3.5]. The global description along with the explicit description of the universal
map toBµr seems to be new.

Our approach is to describe maps toBµr by r-torsion line bundles, which is
particularly convenient in combination with ther-th root constructions. Of course,
one can instead work more geometrically with cyclic covers, which is the point of
view adopted in [ACV03, CC07].

The Gromov-Witten theory of[CN/G] has recently generated a lot of interest
due to the “crepant resolution conjecture”; we refer to [BG06] for an introduction
to the conjecture and overview of the existing literature. WhenX is an orbifold
that admits a crepant resolutionπ : Y → X, Ruan first conjectured that the quan-
tum cohomology rings ofY andX are isomorphic [Rua02], and suggested that
theq-variables forπ-exceptional divisor classes onY need to be specialized to -1
[Rua06] to recover the orbifold cohomology ring ofX. In [BG06], the authors
extended this conjecture: their claim can be formulated as a local linear isomor-
phism between the Frobenius manifolds of the quantum cohomology ofX andY
(after analytic continuation). This isomorphism does not respect the natural ori-
gins of the two Frobenius manifolds, which corresponds to Ruan’s specialization
of q-variables. When the action ofG on CN leaves the volume form invariant, the
stacks of the form[CN/G] yield many non-trivial test cases for the conjecture. In
this form it is only expected to hold for orbifolds satisfying the strong Lefschetz
theorem; a more general formulation can be found in [CCIT06, section 5].

The results so far have been obtained by the use of one the following two tech-
niques: either a combination of localization computations and use of the WDVV-
equations, or by using Tseng’s computation of the Cherncharacterof the obstruc-
tion bundle and Givental’s framework for Gromov-Witten theory.

In [BGP08], the authors explicitly determine the genus-zero Gromov-Witten
potential of[C2/µ3] and verify the crepant resolution conjecture. In [BG06], the
case[C2/µ2] is derived from the Hodge integral computations of [FP00].

More generally, the case ofAn-singularities[C2/µn+1] is shown in [CCIT07a,
CCIT07b] based on the Chern character computation. Various other results have
been announced in [BG06]. For[C3/µ3], part of the potential is computed in
[CCIT07a], up to the problem of inversion of the “mirror map”. While their tech-
nique is completely different to ours, our results are surprisingly close, as explained
in section 3.5 and 6.4; our recursion can be interpreted as a combinatorial inversion
of the mirror map.
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Different recursions for invariants of[C3/µ3] have been established by the sec-
ond author and R. Cavalieri in [CC07], using localization on the space of twisted
stable maps toµ3-gerbes overP1.

While our results are quite general, we make no attempt at verifying the crepant
resolution conjecture.

1.4. Acknowledgements.This project owes special thanks to R. Cavalieri; his
explanations of [BGP08] got us started on the direction of this work. The first
author would like to thank A. Bertram, Y. Iwao, Y.-P. Lee and G. Todorov for
discussions about Givental’s formalism and [CCIT07a] that helped understanding
the relation to our results.

1.5. Notations and conventions.We write[n] for the set[n] = {1, 2, . . . , n}. We
write 〈x〉 = x−⌈x⌉+1 ∈ (0, 1] for the fractional part ofx, set to 1 ifx is integral.
At various places we will write

∏x
p=〈x〉 f(p) for the product

∏
0<p≤x,〈p〉=〈x〉 f(p).

If x < 0, the notation
∏x
p=〈x〉 f(p) means

∏〈x〉−1
p=x+1

1
f(p) (which is consistent with

∏x
p=〈x〉 f(p) = f(x) ·

∏x−1
p=〈x〉 f(p) for all x ∈ R).

Forx > 0, we writex! for the fractional factorialx! =
∏x
p=〈x〉 p.

We identify the rational Chow groups of the moduli stacks of twisted stable
mapsM0,n(e1, . . . , en;Bµr) with that of its coarse moduliM0,n via pull-back,
and similarly for all other moduli stacks we construct. In the appendix, we in-
troduce and explain a few non-standard notations for divisors onM0,n that are
particularly well-suited for our setting; most of it is only used in section 5.2, the
exception being

ψT := −ψn +
∑

[n−1])S)T

DS

for anyT ⊂ [n− 1].

2. MODULI SPACE OF STABLE MAPS TOBµr VIA r-TH ROOTS

In this section, we show how to construct a component of the moduli space of
genus zero stable maps toBµr from the moduli spaceM0,n of stable curves of
genus zero by a series ofr-th root constructions.

2.1. User’s guide to ther-th root construction. Given an effective Cartier divi-
sorD of a Deligne-Mumford stackX, and a positive integerr which is invertible
onX, ther-th root construction of [Cad07] produces a DM-stackXD,r with the
following properties:

(1) There is a canonical mapπ : XD,r → X that is an isomorphism overX\D.
(2) Every point inXD,r lying overD ⊂ X has stabilizerµr.
(3) The preimage ofD is an infinitesimal neighborhood of theµr-gerbe2 D

overD parameterizingr-th roots of the fibers ofOX(D)|D: this is the

2A gerbe overD is a stackD overD which étale locally admits a section and has the property
that any two local sections are locally 2-isomorphic. A gerbeD → D is aµr-gerbe ifµr acts as the
2-automorphism group of every section in a compatible way.
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stack whose objects are triples(f : S → D,L, φ) wheref is a morphism,
L is a line bundle onS, andφ : Lr → f∗OX(D)|D is an isomorphism.
(Only whenOX(D)|D is ther-th power of a line bundle isD isomorphic
toD ×Bµr.)

(4) OnXD,r, there is a line bundleOXD,r
(D) with a sectionsD and an iso-

morphismφ : O(D)r → π∗(O(D)) such thatφ(srD) = π∗(sD). (Here
sD ∈ O(D) is the tautological section vanishing alongD.)

The universality of the data in (4) is the defining property: giving a morphism
f : S → XD,r is equivalent to giving a quadruple(g, L, s, φ) whereg = π ◦ f is a
morphism toX, L is a line bundle onS, s a section, andφ : Lr → g∗O(D) is an
isomorphism sendingsr to g∗(sD).

Locally, whenX = SpecA is affine and the divisorD is given by an equation
(x = 0), ther-th root construction is given by stack quotient[

(
SpecA[u]/(ur −

x)
)
/µr] of the cyclicµr-cover branched atD, but of course globally such a cover

may not exist.
To the best of our knowledge, ther-th root construction is originally due to A.

Vistoli and spread as a rumor for quite some time. His notation isr
√

(X,D).
We callOXD,r

(D) the tautological line bundle of ther-th root construction at
D. The zero stackZ ⊂ XD,r of srD is the preimage ofD ⊂ X. The zero stack of
sD is the gerbeD. To simplify notation we writeO(1

rD) to refer toO(D). More
generally, ifd ∈ 1

rZ, we writeO(dD) for O(D)⊗dr. This notation is particularly
nice to describe the push-forward of line bundles alongπ:

(2.1.1) π∗O(dD) = O(⌊d⌋D)

(This follows from [Cad07, Theorem 3.1.1].)
If X is an algebraic space, then the coarse moduli space ofXD,r isX. WhenX

is smooth andD ⊂ X is smooth, thenXD,r is smooth. The construction commutes
with base change for a morphismf : Y → X such thatf−1(D) is a Cartier divisor.
(The construction can be generalized a little to make it compatible with arbitrary
base change: seeX(L,s,r) in [Cad07].)

If D = (D1, . . . , Dn) is ann-tuple of Cartier divisors and~r = (r1, . . . , rn),
we can iterate the root constructions to obtain a stack denotedXD,~r. This stack
can also be realized as then-fold fiber product overX of the root stacksXDi,ri .
If X is smooth, each individualDi is smooth and theDi have normal crossing,
thenXD,~r is smooth, too. Ifdi ∈ 1

ri
Z, we extend the above notation by writing

O(
∑

i diDi) for the tensor product of the line bundlesO(Di)
diri , whereO(Di) is

the tautological bundle corresponding to the root construction alongDi.
It is instructive (and important for the construction ofM0,n(Bµr) later on) to

compare the stacksXD,~r andXD,r in the case wheren = 2, r = r1 = r2, and
D = D1 ∪D2. OnXD,r, the line bundleO(1

r (D1 +D2)) with sectionsD1 · sD2

defines anr-th root ofD, and thus there is a natural map

(2.1.2) XD,~r → XD,r.
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However, this is not an isomorphism if the divisors intersect, and one way tosee
this is by looking at stabilizer groups of points of the two stacks. Ifx ∈ D1 ∩D2,
then the stabilizer group of the point inXD,~r lying overx is µr × µr. On the other
hand, the stabilizer group of any point in the preimage ofD in XD,r is µr. If X
is smooth andD1, D2 are smooth with normal crossings, then these stacks are also
distinguished by the fact thatXD,~r is smooth, whileXD,r is singular overD1∩D2.

2.2. Stable maps toBµr. Consider the moduli spaceM0,n(Bµr) of balanced
twisted stable maps of genus0 toBµr in the sense of [AV02], where we work over
C. Such a map over a schemeS can be described by the following data:

• A stacky nodal curveC overS, with n divisorsΣ1, . . . ,Σn in the smooth
locus ofC, and

• a line bundleL onC together with an isomorphismφ : Lr → OC .

These have to satisfy various properties:

• The stacky curveC is a scheme away from its nodes and the divisorsΣi,
and its nodes arebalanced.

• EachΣi is a cyclotomic gerbe overS.
• If C is the coarse moduli space ofC, then the image of every divisor

Σi ⊂ C in C is isomorphic to the image of a sectionxi : S → C, so
that (C, x1, . . . , xn) becomes a stable curve of genus zero withn marked
points.

• The mapC → Bµr induced by(L, φ) is representable.

The line bundleL is the pull-back of the line bundle onBµr given by the
canonical one-dimensional representation ofµr. Every pointx ∈ Σi has an au-
tomorphism group isomorphic toµp for somep dividing r. This identification is
canonical if the representation ofµp corresponding to the fiber of the normal bun-
dle OΣi(Σi) at x equals the standard representation. Letω be the primitiver-th

root of unityω = e
2πi
r . Thenωr/p acts on the fiberLxi as multiplication byei

for someei ∈ µr. Equivalently, the map of stabilizer groupsµp → µr (which is
injective by representability ofC → Bµr) sends the canonical generator ofµp to
ei. These group elementse1, . . . , en are constant on every connected component
of M0,n(Bµr).

From now on, we assume we are givene1, . . . , en ∈ µr and restrict our atten-
tion to the connected componentM0,n(e1, . . . , en;Bµr). There is a natural map
M0,n(e1, . . . , en;Bµr) → M0,n induced by the coarse moduli space of the uni-
versal curve. Our theorem will describe this map explicitly via a series of root
constructions. One explanation for these root constructions is that twistedcurves
have ghost automorphisms for each twisted node (cf. [Abr05, section 3.5]).

2.3. Construction of the moduli space via root constructions.Let r andei ∈
µr, i = 1, . . . , r be given. For convenience we allowei = 1, i.e. untwisted points;
then the universal curve is given by the forgetful morphism

π0,(e1,...,en) : M0,n(e1, . . . , en, 1;Bµr) →M0,n(e1, . . . , en;Bµr).

The component is empty unless
∏
i ei = 1.
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Consider the universal stable curve of genus zeroπ0,n : M0,n+1 → M0,n. The
boundary divisors ofM0,n are indexed by subsetsT ⊂ [n] such that2 ≤ |T | ≤
n − 2 andn 6∈ T (see Appendix A). For every suchT , let rT be the order of∏
i∈T ei.

Definition 2.3.1. LetM
(1)

be the stack constructed fromM0,n by doing therT -th

root construction at every boundary divisorDT . We constructC
(1)

fromM0,n+1

in the same way after settingen+1 = 1.

(In particular, we take theri-th root construction at every sectionsi = Di,n+1

whereri is the order ofei.)

Lemma 2.3.2. There is a canonical mapπ(1) : C
(1)

→M
(1)

.

Proof. Equivalently, we construct a map to the fiber product

C
(0)

= M0,n+1 ×M0,n
M

(1)
;

thenC
(0)

will be the relative coarse moduli space. Sinceπ−1
0,n(D

T ) = DT ∪

DT∪{n+1} and ther-th root construction is compatible with such a base change,
this fiber product can be constructed fromM0,n+1 by therT -th root constructions

at all divisorsDT ∪ DT∪{n+1} for T ⊂ [n]. To constructC
(1)

, we instead took
therT -th root construction atDT andDT∪{n+1} separately, hence the morphism

C
(1)

→ C
(0)

is given by forgetting the root construction along all sections, fol-
lowed by a composition of morphisms as in (2.1.2) above. 2

Note thatC
(1)

has additional automorphisms along the nodes of the curves lying

overDT . When we restrict this family to theµrT -gerbe inM
(1)

lying overDT ,
the fibers become stacky curves with a twisted node. The node is balanced because
after base change to a scheme over the base, the remaining automorphism group is
the kernel of the multiplicationµrT ×µrT → µrT , which acts with opposite weight
on the two branches. The so–called “ghost automorphisms” are accounted for by
the additional automorphism introduced in the moduli space. We have thus proved:

Proposition 2.3.3. The morphismπ(1) : C
(1)

→ M
(1)

is a family of balanced
twisted curves.

Note that we adapted [AV02, Definition 4.1.2] to a family over a Deligne-
Mumford stack: all conditions have to be checked afterétale base change to a

scheme coveringM
(1)

.
Each fiber ofπ(1) admits a morphism toBµr having the correct restrictions to

Σi (given bye1, . . . , en). However, these morphisms do not in general glue to a

morphismC
(1)

→ Bµr. They will glue precisely when theµr-gerbe of Definition
2.5.1 is trivial.

2.4. The universal line bundle. ForT ⊂ [n], we will write alwaysTC = [n] \ T
for its complement.
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Lemma 2.4.1. LetC be a geometric fiber ofπ(1) and let

L = O
C

(1)(
1

rT
DT,n+1).

(1) If there is no nodex ∈ C such that one of the two connected components
ofC \ {x} contains exactly the markings ofT (and the other those ofTC),
thenL|C is trivial.

(2) Otherwise, letC3, C4 be the two connected components ofC after normal-
ization atx, such thatC3 contains all the markings ofT , andC4 those of
TC , and letC1 ⊂ C3 andC2 ⊂ C4 be the two irreducible components of
C meeting atx. Then

L|C1
∼= OC1(−

1
rT
x)(2.4.1)

L|C2
∼= OC2(

1
rT
x)(2.4.2)

L|C′
∼= OC′(2.4.3)

whereC ′ is any irreducible component ofC other thanC1, C2.

Proof. The first statement is obvious asC does not meet the divisorDT in that
case.

In the second case,C3 = C ∩ DT,n+1, and so equation (2.4.2) is obvious, as
is (2.4.3) for allC ′ ⊂ C4. The claim then follows by symmetry and the fact that
the restriction ofO( 1

rT
(DT +DT,n+1)) toC is trivial, as it is the pull-back of the

tautological line bundleO( 1
rT
DT ) onM

(1)
. 2

Now choosedi ∈ 1
r ·Z such thate2πidi = ei and

∑n
i=1 di = 0 (which is possible

since
∏n
i=1 ei = 1). ForT ⊂ [n], let dT =

∑
i∈T di.

Lemma 2.4.2. Define the line bundleL1 onC
(1)

as

(2.4.4) L1 := O
( n∑

i=1

disi +
∑

T⊂[n]
2≤|T |≤n−2

n6∈T

dTD
T,n+1

)

ThenL1
r is the pull-back of a line bundle onM

(1)
:

L1
r = (π(1))∗(L2)

We writen 6∈ T to stress that this is for now just an arbitrary way to pick exactly
one ofT, TC for all subsetsT .

Proof. First note thatLr1 is pulled back from the coarse moduli spaceM0,n+1

sincedT ∈ 1
rZ for all T . A line bundle on a family of nodal curves of genus zero

over a smooth scheme is pulled back from the base if and only if its degree on any
irreducible component of every fiber is zero (in which case it is the pull-back of its
own push-forward to the base). Hence it is sufficient to check that the degree of
L1

r (or, equivalently, the degree ofL1) is zero on any irreducible componentC0

of any fiberC of π1 (in which caseLr1 is even pulled back fromM0,n).
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Let x1, . . . , xm be the nodes ofC contained inC0. Let Ti ⊂ {1, . . . , n}, 1 ≤
i ≤ m be the markings contained in the irreducible components which are con-
nected toC0 via the nodexi, and letT0 be the markings contained inC0. For every
j with 1 ≤ j ≤ m exactly one ofO(dTjD

Tj ,n+1) andO(dTC
j
DTC

j ,n+1) will ap-

pear in the right-hand side of equation (2.4.4) definingL1; by the previous lemma
anddT = −dTC , both restrict toO(dTjxj) onC0. By the same lemma, all other
O(dTD

T,n+1) restrict trivially toC0. Hence

L1|C0
= O(

∑

i∈T0

disi +
∑

1≤j≤m

dTjxj).

This line bundle has degree
∑m

j=0

∑
i∈Tj

di = 0 since[n] is the disjoint union of
all Tj . 2

2.5. Base change to the gerbe.

Definition 2.5.1. Let M
(2)

be theµr-gerbe overM
(1)

of r-th roots ofL2. Let

π(2) : C
(2)

→ M
(2)

be the base change ofπ(1) : C
(1)

→ M
(1)

viaM
(2)

→ M
(1)

,
and letL1/r

2 be the universal line bundle that is anr-th root ofL2.

By abuse of notation, we writeL1 also for the pull-back ofL1 toC
(2)

. The line
bundleL = L1 ⊗ π(2)∗L

−1/r
2 together with the obvious isomorphismLr → O

C
(2)

defines a morphismC
(2)

→ Bµr.

Theorem 2.5.2.The following diagram

C
(2) //

π(2)

��

Bµr

M
(2)

is a family of twisted stable maps overM
(2)

which defines an isomorphism

m : M
(2)

→M0,n(e1, . . . , en;Bµr).

Proof. We already showed thatπ(1) (and thusπ(2)) is a family of balanced
twisted curves.

The morphismC
(2)

→ M
(2)

× Bµr is representable: away from the sections
and nodes, the mapπ(2) is already representable, and since all nodes and sections
do not intersect each other, we can treat them separately. At a sectionsi, the relative
inertia group ofπ(2) is isomorphic toBµri ; since that group acts faithfully onL1

and thus onL, the map on inertia groups is injective. A similar argument holds for
all nodes.

We thus get a morphismm as claimed in the theorem. By lemma 2.5.3,m
is an isomorphism if both stacks are smooth and the morphism is birational and a
bijection ofC-valued points which induces isomorphisms of their stabilizer groups.

SinceM
(2)

is étale overM
(1)

, which is a root construction onM0,n at smooth
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divisors with transversal intersection, it follows thatM
(2)

is smooth. The first
order deformations of ann-marked, genus0 twisted stable map toBµr are the
same as those of the marked twisted curve, which has dimension equal ton − 3
(see [ACV03, section 3]). As this equals the dimension ofM0,n(e1, . . . , en;Bµr),
it is also smooth.

For bijectivity, it suffices to show for eachn-marked genus0 curveC, there is
a unique twisted stable map toBµr with coarse moduli spaceC and contact types
e1, . . . , en. ForC irreducible, this uniqueness is shown in [CC08, 2.1.5]. Other-
wise, one can show by induction that the contact types at the nodes are uniquely
determined by those at marked points. So the morphism is unique over each com-
ponent ofC, and it suffices to show that it glues uniquely over the nodes. Since the
morphism toBµr is equivalent to a line bundleL and a non-vanishing section of
Lr, the gluing is clearly unique up to isomorphism.

It remains only to check the map on automorphism groups induced bym. If x is

a closed point ofM
(2)

, the automorphism groupGm(x) ofm(x) in the moduli stack
M0,n(e1, . . . , en;Bµr) can be identified with the group ofµr-automorphisms of

theµr-coverC̃x of the fiberCx of C
(2)

overx. If S is the set of irreducible com-
ponents ofCx, this identifiesGm(x) with the subgroup ofµSr that acts compatibly

over every node; since the preimage of a nodenT ∈ Cx in C̃x is isomorphic to
µr/µrT , we can identifyGm(x) with the kernel of the map

Σ =
∏

T

ΣT : µSr →
∏

T⊂[n−1]|x∈DT

µr/µrT

whereΣT is given by the quotient of the group elements corresponding to the two
irreducible components meeting innT .

Theµr-coverC̃x is given by ther-th roots of unity inside the line bundleL|Cx
;

hence to understand the mapGx → Gm(x) it is sufficient to look at how the auto-

morphism groupGx of x acts onL. By the construction ofM
(2)

, the automorphism
group ofx is

Gx = µr ×
∏

T⊂[n−1]|x∈DT

µrT .

By the definition ofL, the first factor acts viaL2 and thus diagonally, whereasµrT
acts diagonally on the irreducible components ofDT,n+1 ∩ Cx (and trivially on
all others), by its induced action onO(DT,n+1). LetC0 be the component ofCx
which contains then-th marking.

Before showing thatm : Gx → Gm(x) is an isomorphism, we introduce some
notation. Forg ∈ Gx, write g0 for the projection ofg ontoµr, and writegT for its
projection ontoµrT . For each irreducible componentCi ofCx, letCj0 , Cj1 , Cj2 , . . . , Cjki

be the unique shortest path fromCi toC0. That is to say,j0 = i, jki = 0,Cjℓ meets
Cjℓ+1

in a node for each0 ≤ ℓ ≤ ki− 1, and there are no repetitions inj0, . . . , jki .
For0 ≤ ℓ ≤ ki − 1, letTℓ be the subset of[n− 1] determined by the node joining
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Cjℓ toCjℓ+1
. Thenm(g) acts on the restriction ofL to the componentCi by

(2.5.1) g0

ki−1∏

ℓ=0

gTℓ
.

Let g ∈ Gx, and suppose thatm(g) is trivial. Sincem(g) acts onC0 by g0, it
follows thatg0 is trivial. By inducting on the number of nodes separating a given
node fromC0, and using (2.5.1), it follows thatgT is trivial for eachT . Therefore,
g is trivial.

Now supposeh ∈ Gm(x). Let g0 be the element ofµr by whichh acts onC0.
By inducting over the nodes as in the previous paragraph, and using the fact that
the irreducible components ofCx form a tree, we can now definegT for eachT in
such a way thatm(g) = h. Therefore,m : Gx → Gm(x) is an isomorphism. 2

We remark that [ACV03, section 7] contains a careful treatment of automor-
phism groups forG-covers.

Lemma 2.5.3. Let X and Y be normal, separated, integral, Deligne-Mumford
stacks of finite type over an algebraically closed fieldk of characteristic zero. Let
f : X → Y be a birational morphism which induces an equivalence of categories
between objects overSpec k. Thenf is an isomorphism.

Proof. Let V → Y be anétale surjective morphism from a schemeV and let
U = V ×Y X . ThenU → V is separated and quasi-finite, hence quasi-affine by
[LMB00, A.2]. Therefore,U is a scheme. LetU ′ ⊆ U be a connected component
and letV ′ ⊆ V be its image. The hypotheses of the lemma imply thatU ′ andV ′ are
normal varieties and thatU ′ → V ′ is a birational morphism which is bijective on
k-points. By Zariski’s birational correspondence theorem, it follows thatU ′ → V ′

is an isomorphism. Applying the argument to each connected component shows
thatU → V is an isomorphism. It now follows from [LMB00, 3.8.1] thatX → Y
is an isomorphism. 2

2.6. Comments on the construction.The pull-back of a one-dimensionalBµr-
representation is a power ofL. Hence, in order to understand the Chern class of
the obstruction bundleR1π∗C

N it is sufficient to understand the Chern classes of
the higher direct imageR1π∗L

w of powers ofL, and their products.
It is worth pointing out that while the ghost automorphism groups are isomor-

phic to µrT , this isomorphism is not natural; the ghost automorphism group is
naturally isomorphic to the relative stabilizer group of the twisted node, and by
choosing one of the two componentsDT,n+1 or DTC ,n+1 (and identifying the
stabilizer group by its action on the corresponding tangent bundle) one gets an
isomorphism toµrT whose sign depends on this choice. In our construction, this
choice shows up in the definition ofL1, for which we had to choose one ofT and
TC for all divisorsDT of M0,n. AsL2 depends on that choice only up to anr-th

power, neitherM
(2)

nor the universal line bundleL depend on this choice. The

mapm : M
(2)

→ M0,n(e1, . . . , en;Bµr) does depend on it, however. Different
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choices can be related by a composition with a ghost automorphism3 of the moduli
stack.

3. WEIGHTED STABLE MAPS TOBµr

3.1. Weighted stable maps.Let g be a genus, andA = (a1, . . . , an) beweight
data, which meansai ∈ Q ∩ [0, 1] satisfy2g − 2 +

∑
i ai > 0.

In [Has03], Hassett introduced the notion of weighted stable curves: a weighted
stable curve of type(g,A) over S is a nodal curveπ : C → S with n sections
si : S → C such that

(1) every sectionsi with positive weightai is contained in the smooth locus of
π,

(2) the rational divisorKC/S +
∑

i aisi is π-relatively ample, and
(3) for any I ⊂ [n] such that the intersection

⋂
i si is non-empty, we have∑

i ai ≤ 1.

We will summarize a few of his results, and refer to [Has03] for details.
If ai = 1 for all i, then these are stable curves in the usual sense. The difference

is that when pointssi, i ∈ I, collide, then only when
∑

i ai > 1 does a new rational
component bubble off. This is enough to make the new rational component stable
according to condition (2).

All the moduli spacesMg,A with |A| = n are birational. More precisely, assume
that the weight dataA = (a1, . . . , an) andB = (b1, . . . , bn) satisfyai ≥ bi for all
i, andai > bi for at least onei (we will write A > B from now on). Then there
is a birational reduction morphismρB,A : Mg,A → Mg,B. (It is induced byB-
stabilizing the family of curves overMg,A.) There is a chamber decomposition of
[0, 1]n by a finite number of walls such that the moduli spaceMg,A only depends
on the chamber in which the weight dataA lies: the walls are associated to subsets
T ⊂ [n] and given as

(3.1.1) wT =
{
ai

∣∣∣
∑

i∈T
ai = 1

}
.

Further, the contraction morphism for crossing a single wall is given as a smooth
blow-up.

It is somewhat convenient to allow at least one weight to be zero, because
Mg,A∪{0} is by definitionthe universal curve overMg,A.

This notion has been extend to weighted stable maps in [MM08], [BM06] and
[AG08]. In particular, in [BM06] and [AG08] it was shown that Gromov-Witten
invariants can be computed for any choice of weights, yielding identical GW-
invariants, and [AG08] gave wall-crossing formulae for the full Gromov-Witten
potential including gravitational descendants.

3.2. M0,n as a blow-up of Pn−3. As an example that will be important later,
consider for givenn the weightsAk = ( 1

k , . . . ,
1
k , 1) (with n − 1 entries of 1

k )
for k = 1, . . . , n − 2. The moduli spaceM0,An−2 is isomorphic toPn−3, and the
universal curve is the blow-upBlx Pn−2 of Pn−2 at a pointx; the universal map

3by which we mean an automorphism covering the identity on the coarse moduli space
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is the projection ofPn−2 to Pn−3 ∼= PTx from x. If we pick x away from the
coordinate hyperplanes, then the image of the special section with weight 1 isthe
exceptional divisor, while the remaining sections can be given as the coordinate
hyperplanes. (The special section cannot intersect with any other, while the only
condition on the remaining sections is that they may notall coincide.)

The moduli spaceM0,An−3 is the blow-up ofM0,An−2 at then − 1 points that
are the images of the intersections ofn − 2 of then − 1 coordinate hyperplanes.
When we successively increase the firstn − 1 weights from 1

n−2 to 1, one gets a

description ofM0,n by successive blow-ups fromPn−3. This is also explained in
[Has03, section 6.2]; the description ofM0,n as a blow-up ofPn−3 is equivalent to
the description by De Concini and Procesi in [DCP95].

3.3. The moduli spaces of weighted stable maps toBµr via r-th roots. We
sidestep the question of defining a moduli problem of weighted stable maps to a
stack in general. Instead we give a direct construction of the moduli stacks viar-th
root constructions, guided by the construction in the non-weighted case insection
2.

Givenr, weight dataA > 0, andE = (e1, . . . , en) ∈ µnr , we want to construct
a stack which would resembleM0,A(e1, . . . , en;Bµr) if it were to exist. Choose
di ∈

1
rZ with e2πidi = ei and

∑n
i=1 di = 0 as before. Boundary divisors onM0,A

are given asDσ for A-stable 2-partitionsσ = (T, TC) of [n]; A-stable means
that the condition|T |, |TC | ≥ 2 is replaced by

∑
i∈T ai > 1 and

∑
i∈TC ai > 1.

(This of course means that a corresponding rational curve with two components is
A-stable.)

Let M
(1)
0,A be the stack obtained fromM0,A by taking therT -th root at every

divisor DT such that(T, TC) is A-stable (whererT is defined as before as the

order of
∏
i∈T ei). To obtainC

(1)
0,A fromC0,A = M0,A∪{0}, we start with the same

construction, but additionally construct theri-th root at every sectionsi.4 The same
proof as in lemma 2.3.2 shows:

Lemma 3.3.1. There is a canonical mapC
(1)
0,A →M

(1)
0,A.

This is a stacky curve with balanced nodes, but it can have points (in the relative
smooth locus of the coarse moduli space) with automorphism groupµ

|I|
r , for curves

wheresi, i ∈ I, are identical; so this is not a twisted stable curve in the sense of
[AV02].

Proposition 3.3.2. LetL1,A be the line bundle onC
(1)

defined by

(3.3.1) L1,A :=
n⊗

i=1

O(si)
di ⊗

⊗

T

O(DT,n+1)dT

where the second tensor product goes over all subsetsT ⊂ [n] with n 6∈ T such

that(T, TC) isA-stable. ThenLr1,A = π∗L2,A for some line bundleL2,A onM
(1)

.

4In the case ofM0,n, the sectionsi is equivalent to the boundary divisor given byT = {i, n+1};
however, this does not yield anA-stable 2-partition, hence we need to list them separately.
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Again, this has the same proof as before.

Let M
µr

0,A,E be theµr-gerbe overM
(1)
0,A of r-th roots ofL2,A, and letC

µr

0,A be

the base change ofC
(1)
0,A to M

µr

0,A,E . The line bundleLA := L1,A ⊗ π∗L
−1/r
2,A on

CA has trivialr-th power and thus defines a mapf : C
µr

0,A → Bµr.
However, againf : C

µr

0,A → Bµr is not a twisted stable map in the sense of
[AV02]; most importantly,f is not representable (not representable even after a
base change to a schemeS →M

µr

0,A,E ).

3.4. Pn−3-weight data. For any weightw of a one-dimensionalµr-representation,
we call

Hw
A = R1π∗L

w
A

the generalized dual Hodge bundle onM
µr

0,A,E for the weight dataA.
Our computation of the Chern class builds up from a direct computation for the

weight dataA = ( 1
n−2 , . . . ,

1
n−2 , 1), which yieldsM0,A

∼= Pn−3 (see section 3.1).
Givenw, let δwi ∈ [0, 1) be the age of the line bundleLw at thei-th section; it is
determined bye2πiδ

w
i = ewi . For any subsetT ⊂ [n], we letδwT =

∑
i∈T δ

w
i .

Proposition 3.4.1.The generalized dual Hodge bundleHw
A has the following class

in theK-group:5

[Hw
A ] =

δw
[n−1]

−1∑

p=〈δw
[n−1]

〉

[O(−pH)]

Proof. The moduli space is aµr-gerbe overPn−3, and the universal curve is
constructed fromBlx Pn−2 by theri-th root construction at the sectionsi for all i,
and the base change to theµr-gerbe.

We choosedi such thatdi ∈ [0, 1) for i = 1, . . . , n − 1 anddn = −
∑n−1

i=1 di.
ThenL2,A can be computed byL2 = s∗n(L1,A)r = O(−rdn), and so by projection
formulaHw

A = O(wdn)⊗R
1π∗L

w
1,A. To compute the higher direct image ofLw1,A,

we break upπ into the compositionπ = π2 ◦π1 of the mapπ1, forgetting the roots
along the sections, with the mapπ2 that is the base change of the natural projection
Blx Pn−2 → Pn−3 to theµr-gerbe.

The push-forward alongπ1 follows easily from equation (2.1.1). Using−wdn =
δw[n−1] +

∑n−1
i=1 ⌊wdi⌋, we get (where we writeE for the exceptional divisor of

Blx Pn−2):

(π1)∗L
w
1,A = O

(
n∑

i=1

⌊wdi⌋si

)
= O

(
(−wdn − δw[n−1])H + ⌊wdn⌋E

)

5See 1.5 for other notation conventions used in this formula.
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The relative canonical bundle ofπ2 is−H−E, and the pull-back of the hyperplane
class onPn−3 isH − E. Hence

R1(π2)∗(π1)∗L
w
1,A =

(
(π2)∗O

(
(wdn + δw[n−1] − 1)H + (−⌊wdn⌋ − 1)E

))∨

= O(−〈δw[n−1]〉 − wdn) ⊗
(
(π2)∗O

(
(⌈δw[n−1]⌉ − 2)H

))∨
,

where we usedwdn − ⌊wdn⌋ = {wdn} = 1 − 〈−wdn〉 = 1 − 〈δw[n−1]〉 and
δw[n−1] − 〈δw[n−1]〉 = ⌈δw[n−1]⌉ − 1. Applying (π2)∗ to the short exact sequences
O((a − 1)H) → O(aH) → O(aH)|H , and using(π2)∗O = O, implies that in
theK-group,

[R1(π2)∗(π1)∗L
w
1,A] =

⌈δw
[n−1]

⌉−2∑

p=0

[O(−〈δw[n−1]〉 − wdn − p)].

Tensoring this withO(wdn) and re-indexing yields the statement of the proposi-
tion. 2

Since the hyperplane class ofPn−3 agrees with theψ-class of then-th marking
(which is special by having weight one), this implies:

Corollary 3.4.2. In the situation of the previous proposition, the Chern class of
H2

A is given as

c(Hw
A) =

δw
[n−1]

−1∏

p=〈δw
[n−1]

〉

(1 − pψn)

(Note thatψn denotes the pull-back of the corresponding class inM0,A by our
convention for the rational Chow groups of the moduli stacks.)

3.5. Relation to the twisted I-function. In Givental’s formalism for Gromov-
Witten theory [Giv01, Giv04, CG07, CCIT07a], the so-calledJ-function plays
an essential role. LetX = [CN/µr], whereµr acts diagonally with weights
w1, . . . , wN . The orbifold cohomology ofX is H = H∗(X) =

⊕
e∈µr

C · he,
and theJ function is a mapH → H[z][[z−1]] defined by the following formula:

JX(z, t) = z + t+
∑

n≥0

∑

e∈µr

1

n!
〈t, . . . , t,

he
z − ψ

〉X0,n+1 · rhe−1

= z + t+
∑

n≥0

∑

e∈µr

∑

k≥0

1

n!zk+1
〈t, . . . , t, ψknhe〉

X
0,n+1 · rhe−1(3.5.1)

For example, by the results of [JK02], theJ-function ofBµr is given as

JBµr(z, t) = z + t+
∑

k=(k0,k1,...,kr−1)

r−1∏

j=0

t
kj

j

kj !z|kj |
· hQ

j(ω
j)kj
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where we wrotet =
∑r−1

j=0 tjhωj . The idea of [CCIT07a] (and Givental’s formal-
ism in general), specialized to our setting, is to determine theJ-functionX from
theJ-function ofBµr; the former is called thetwistedJ-functionin [CCIT07a].

As an approximation to the twistedJ-function, Coates, Corti, Iritani and Tseng
define atwistedI-function in [CCIT07a, section 4]; specialized to our case, and
translated into our notation, it is given by6

Itw(z, t) = z + t+
∑

(e1,...,en)

J (e1,...,en) ·M(e1,...,en)(z).

Here
J (e1,...,en) = z−n+2δ1,

Q

i ei
· he−1

n

is the part of theJ-function of Bµr that comes from invariants computed on
M0,n(e1, . . . , en;Bµr), andM(e1,...,en)(z) is defined by

M(e1,...,en)(z) =
N∏

a=1

δwa
[n−1]

−1∏

p=〈δwa
[n−1]

〉

(1 − pz).

To show thatItw has the desired properties7 they use Tseng’s Grothendieck-Riemann-
Roch-computation of the Chern character of the obstruction bundle in [Tse05].

We can define aweightedJ-functionof X by

JX;weighted(z, t) = z + t+
∑

n≥0

∑

e∈µr

1

n!
〈t, . . . , t,

he
z − ψ

〉X;weighted
0,n+1 · rhe−1 ,

where the invariant with superscript “weighted” denotes the invariant computed by
the moduli of weighted stable mapsM

µr

0,A,E considered in the previous section,
i.e. for A = ( 1

n−2 , . . . ,
1

n−2 , 1). Then the result of the previous section can be
formulated as

JX;weighted(z, t) = z + t+
∑

(e1,...,en)

J (e1,...,en) · M̃(e1,...,en)(z)

whereM̃(e1,...,en)(z) is the truncation ofM(e1,...,en)(z) by zn−2 = 0: When the
Euler class of the obstruction bundle for(e1, . . . , en) is given as a polynomial
P (ψn) in ψn, then the contribution to theJ-function is theψn−3

n -coefficient of
P (ψn)

1
z−ψn

. This coefficient is given byz−n+2 times the truncation ofP (z).

Independently ofn, this shows thatJX;weighted is obtained fromItw by remov-
ing all terms of non-negative degree inz except the first two; such terms would
correspond geometrically to a negative number ofψn-insertions.

4. WEIGHT CHANGE

The goals of this section are the wall–crossing theorems 4.3.1 and 4.3.2.

6The formula on page 9 ibid. defining the “modification factor”Mθ(z) has to be applied with
si specialized such thates(ch) for the Chern characterch of some bundleE gives the Euler class of
−[E].

7It has the same image as the twistedJ-function, namely Givental’s Lagrangian coneLX .
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4.1. Preparations. We begin with several lemmata we will need in the proof.

Lemma 4.1.1.LetD1, D2 be two smooth divisors with transversal intersection on
a smooth Deligne-Mumford stackX. LetX̃ be the blow-up ofX at their intersec-
tion, with exceptional divisorE and proper transforms̃D1 andD̃2. On the other
hand, consider ther-th root constructionX(D1,r),(D2,r) and its blowupZ at the
intersection of the two gerbesD1 andD2 lying overD1 andD2, respectively. Then
Z is isomorphic to ther-th root constructionX̃

( fD1,r),( fD2,r),(E,r)
.

Proof. Let D̃i andE be the gerbes iñX
( fD1,r),( fD2,r),(E,r)

lying over D̃i andE,

respectively. The line bundlesO(D̃i ⊗ E) with their canonical sections arer-th
roots of the pull-backs ofDi ⊂ X, determining a morphism

f : X̃
( fD1,r),( fD2,r),(E,r)

→ X(D1,r),(D2,r).

The pull-back of the ideal sheaf of the intersectionD1 ∩ D2 alongf is the ideal
sheaf ofE : this is easy to see locally, where we can assume thatDi is cut out by
an equation(si = 0); its pull-backf∗si cuts outE ∪ D̃i. SinceE is Cartier, the
universal property of blow-ups yields a map

g : X̃
( fD1,r),( fD2,r),(E,r)

→ Z.

To go the other way, we first show thatZ → X lifts to X̃. The preimage of
D1 ∩D2 in X(D1,r),(D2,r) is Dr

1 ∩ Dr
2. One can check afteŕetale base change to a

scheme that the preimage of this inZ is r times the exceptional divisor, hence is
Cartier. So the universal property of blowups gives us a morphismZ → X̃. The
preimage ofE under this morphism isr times the exceptional divisor ofZ, and it
follows that the preimage of̃Di is r times the proper transform ofDi. This gives
us a lifting to

h : Z → X̃
( fD1,r),( fD2,r),(E,r)

.

As neitherZ nor X̃
( fD1,r),( fD2,r),(E,r)

have nontrivial automorphisms over the
identity ofX, bothgh andhg must be (2-isomorphic to) the identity.

2

Lemma 4.1.2. Let X,Y be Deligne-Mumford stacks, and letf : X → Y be a
composition ofr-th root constructions and blow-ups at regularly embedded centers
(i.e. the normal sheaf of the center is a vector bundle). ThenRf∗Lf

∗F = F for
any quasi-coherent sheafF onY .

Proof. By the projection formula, it is enough to proveRf∗OX = OY . For
r-th root constructions, it is obvious that the higher direct images vanish, and by
[Cad07]f∗OX = OY . For blow-ups, this is well-known in the case of schemes.
Since blow-ups are representable, one can reduce to the case of schemes by taking
anétale base change to a scheme coveringY . 2
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Lemma 4.1.3. (Base change) Let

Y ′ h
//

f ′

��

2

Y

f

��

X ′
g

// X

be a 2-cartesian square of Deligne-Mumford stacks whereX is quasi-compact,f
is quasi-compact and quasi-separated, andY andX ′ are tor-independent overX.
Let E ∈ Db(Y ) be a complex having quasi-coherent cohomology. Suppose either
thatg has finite tor-dimension or thatE has flat, finite amplitude relative tof . Then
there is a natural isomorphism

Lg∗Rf∗E → Rf ′∗Lh
∗E .

We will apply this in the case wheref is flat andE is a line bundle onY .
Proof. The existence of a natural morphismLg∗Rf∗E → Rf ′∗Lh

∗E follows
from the adjointness of pullback and pushforward. Indeed, the natural morphism
E → Rh∗Lh

∗E determines a morphism

Rf∗E → R(fh)∗Lh
∗E = R(gf ′)∗Lh

∗E ,

which is equivalent to the morphism above by adjointness ofRg∗ andLg∗.
For schemes, the proposition is the same as [SGA71, IV, 3.1.0], and the reduc-

tion to the case of schemes is identical to the proof of [LMB00, 13.1.9]. 2

Lemma 4.1.4. Let τ : X̃ → X be the blow-up of a smooth Deligne-Mumford
stackX at a smooth centerZ ⊂ X of codimension two, with normal bundleN
and exceptional divisorE. Then forn ≥ 0

[R1τ∗O(n · E)] =

n−2∑

k=0

[Λ2N ⊗ SymkN ].

Proof. As a blow-up is representable, it is sufficient to check this for schemes.
Due to the short exact sequencesO((n− 1) · E) → O(nE) → OE(−n) on X̃, it
follows from induction if we showR1π∗OE(−n) = [Λ2N ⊗ Symn−2N ]. This is
easily checked by Serre duality, since

R0π∗OE(n) = Symn(N∨)

and the relative dualizing sheaf ofτ |E is OE(−2) ⊗ τ∗(Λ2N)−1. 2

4.2. Constructing the reduction map. Consider two weight dataA > B; then
there is a reduction morphismρB,A : M0,A → M0,B. Further, we assume the
following property:

(*) There is exactly one 2-partitionσ = (T0, T
C
0 ) of [n] such thatσ isA-stable

butB-unstable.

In other words, there is just one wall betweenA andB in the chamber decomposi-
tion of the set of weight data discussed in section 3.1. Specifically, this meansthat∑

i∈T0
ai > 1 but

∑
i∈T0

bi ≤ 1, and thatT0 is the only such subset of[n].
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ThenρB,A : M0,A → M0,B is the blow-up ofM0,B at the locusZT0 of curves
where allsi, i ∈ T0 agree; the exceptional divisor isDT0 . The universal curveCA

is obtained fromCB in two steps:

(1) Blowing up at the preimageπ−1ZT0 of ZT0 , i.e. taking the base change for
ρB,A; we denote the resulting family overM0,A byCB/A.

(2) Blowing up at the preimage (with respect to the previous blow-up) of the
common imagesi(ZT0) for anyi ∈ T0. (See [BM06, Remark 3.1.2].)

There is a canonical map

ρ
(1)
B,A : M

(1)
0,A →M

(1)
0,B.

This follows from the fact that the pull-back of any boundary divisorDS ⊂ M0,B

is just the corresponding divisorDS ⊂ M0,A, and that ther-th root construction
commutes with such base change.

A matching mapC
(1)
A → C

(1)
B does not exist in general, for the following reason:

the preimage of a sectionsi ⊂ CB with i ∈ T0 is the union of the corresponding
sectionsi ∈ CA with the exceptional divisorDT0,n+1 of the second blow-up step
in the construction ofC0,A above. However, for example when

∏
i∈T0

ei = 1,

there is no root construction along the divisorDT0,n+1 in the construction ofC
(1)
A

at all, and so anri-th root of the pull-back ofsi ⊂ C0,B does not exist.
In order to compare the Hodge bundles, we will later construct some auxiliary

spaces to overcome this problem.
For simplicity, we make the following additional assumption:

(**) We assume that forT0 as in (*), we haven 6∈ T0.

(This simplifies the computation with respect to our choice ofL1,A in definition
3.3.1 and, on the other hand, always holds when we start with thePn−3-weight
data used in section 3.4.)

Lemma 4.2.1. Assuming (*) and (**), we haveρ∗B,AL2,B = L2,A

This is immediate fromL2,A = s∗n(L1,A)r, assn does not meet any of the
divisors appearing in the definition (3.3.1) ofL1,A, except itself. As a consequence,
it follows that:

Corollary 4.2.2. There is a well-defined reduction map

ρB,A : M
µr

0,A,E →M
µr

0,B,E .

4.3. Weight change and Hodge bundles.We continue with the assumptions (*)
and (**) from the previous section. We want to compareρ∗B,AH

w
B andHw

A in the

K-group ofM
µr

0,A,E , where due to projection formulaHw
A can be computed by

Hw
A = R1π∗L

w
1,A ⊗ (L2,A)−

w
r .

We will introduce several auxiliary spaces; the goal is to have a reductionmap
as a smooth blow-up between spaces that are very close to the universalcurves.
This is achieved in the mapτ below.
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Let AA be the intermediate space obtained fromC
µr

0,A by forgetting the root
construction along all sections. In other words, it is constructed from theuniversal
curveCA by therT -th root construction for every divisorDT whereT ⊂ [n + 1]

andT isA∪{0}-stable, followed by the base change alongM
µr

0,A,E →M
(1)
0,A. Let

νA : C
µr

0,A → AA be the induced map, andπ′A : AA → M
µr

0,A,E the projection to
the moduli space.

Then

(4.3.1) νA∗

(
Lw1,A

)
= O




n∑

i=1

⌊wdi⌋si +
∑

T⊂[n−1]

(T, TC) is A-stable

wdT ·DT,n+1




Now letAB/A be the base change ofAB → M
µr

0,B,E alongρB,A. While a map
AA → AB/A exists, we prefer not to use it and instead consider two more addi-
tional spaces: Pick any sectionsj0 with j0 ∈ T0 and letA′

A = (AA)sj0
,rT

be the
stack obtained fromAA by adding therT -th root construction at thej0-th section.
We defineA′

B/A analogously.

C
µr

0,A

νA

!!CC
CC

CC
CC

A′
A

ǫA

��

τ
// A′

B/A

ǫB/A

��

C
µr

0,B

νB
{{ww

ww
ww

ww
w

AA

π′
A ""FF

FF
FF

FF
F

AB/A
ρB,A

//

π′
B/A

��

AB

π′
B

��

M
µr

0,A,E

ρB,A
// M

µr

0,B,E

Applying lemma 4.1.1 to the divisorssj0 andπ−1DT on the coarse moduli space
ofAB/A, we see that the mapτ is the blow-up at the intersection of the tautological

gerbes oversj0 and
(
π′B/A

)−1
DT0 in A′

B/A.

SettingLw1,B/A = ρ∗B,AνB∗L
w
1,B, we have

(ρB,A)∗Hw
B =(ρB,A)∗R1(π′B)∗νB∗L

w
1,B ⊗ L

−w
r

2,B

=R1(π′B/A)∗ρ
∗
B,AνB∗L

w
1,B ⊗ (L2,A)−

w
r (lemma 4.1.3)

=R1(π′B/A)∗L
w
1,B/A ⊗ (L2,A)−

w
r(4.3.2)

=R1(π′B/AǫB/Aτ)∗(ǫB/Aτ)
∗Lw1,B/A ⊗ (L2,A)−

w
r (lemma 4.1.2)

on the other hand,

Hw
A =R1(π′A)∗νA∗L

w
1,A ⊗ (L2,A)−

w
r

=R1(π′AǫA)∗ǫ
∗
AνA∗L

w
1,A ⊗ (L2,A)−

w
r (lemma 4.1.2)

=R1(π′B/AǫB/Aτ)∗ǫ
∗
AνA∗L

w
1,A ⊗ (L2,A)−

w
r .(4.3.3)
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Now for anyT ⊂ [n− 1] such that(T, TC) is B-stable, it is alsoA-stable, and

(ρB,AǫB/Aτ)
∗(DT,n+1) = ǫ∗A(DT,n+1).

The pull-back of the divisor class of sections is given by

(ρB,AǫB/Aτ)
∗(si) =

{
si if i 6∈ T0

si +DT0,n+1 if i ∈ T0

Using these formulae and equation (4.3.1) forA andB, respectively, yields

(ǫA)∗νA∗L
w
1,A = (ǫB/Aτ)

∗Lw1,B/A ⊗O


∑

i∈T0

(
wdi − ⌊wdi⌋

)
·DT0,n+1


 .

Note thatδwT0
=
∑

i∈T0

(
wdi − ⌊wdi⌋

)
. The projection formula yields

(4.3.4) R(ǫB/Aτ)∗(ǫA)∗νA∗L
w
1,A = Lw1,B/A ⊗ R(ǫB/Aτ)∗O

(
δwT0

·DT0,n+1
)
.

Combining equations (4.3.2, 4.3.3, 4.3.4), and usingR0(ǫB/Aτ)∗O
(
δwT0

·DT0,n+1
)

=
O, it follows that
(4.3.5)

[Hw
A] = [ρ∗B,AH

w
B ]+

[
(π′B/A)∗

(
R1(ǫB/Aτ)∗O

(
δwT0

DT0,n+1
)
⊗ Lw1,B/A

)
⊗ L

−w
r

2,A

]

Write δwT0
as the fractionp0r0 , wherer0 = rT0 . The exceptional divisor ofτ is

DT0,n+1 = 1
r0
DT0,n+1; so by lemma 4.1.4

(4.3.6) [R1τ∗O
(
δwT0

·DT0,n+1
)
] =

p0−2∑

k=0

[Λ2N ⊗ SymkN ],

whereN is the normal bundle to the center of the blow-upτ . To compute the
right-hand side, we introduce additional normal bundles. LetNsj0

be the normal
bundle of the gerbesj0 over sj0 in A′

B/A, let NDT0 be the normal bundle to the

gerbeDT0 overDT0 in M
µr

0,A,E , and letNsj0
be the normal bundle tosj0 in AB/A

(equivalently,Nsj0
is the relative tangent bundle ofπ′B/A restricted tosj0). Then

Nsj0
is the restriction of the tautological bundle of ther0-th root constructionǫB/A

at the sectionsj0 to the gerbe, and

(4.3.7) (ǫB/A)∗N
k
sj0

=

{
N

k
r0
sj0

if r0 dividesk,

0 otherwise.

The sectionsj0 induces a splitting of the tangent bundle ofAB/A alongsj0 into
the relative tangent bundle and the push-forward of the tangent bundleof M

µr

0,A,E

alongsj0 . This induces a splitting ofN as

N =
(
(ǫB/Aπ

′
B/A)∗NDT0 ⊕Nsj0

)∣∣∣
ZT0
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Applying this splitting to equation (4.3.6), we obtain

[R1τ∗O
(
δwT0

·DT0,n+1
)
] =

p0−2∑

k=0

∑

a+b=k

[N b+1
sj0

⊗ (ǫB/Aπ
′
B/A)∗Na+1

DT0
].

We can rewrite the summation as
∑p0−2

b=0

∑p0−b−2
a=0 or, equivalently,

∑p0−1
b=0

∑p0−b−2
a=0

By equation (4.3.7), only the terms withmr0 = b+1 for somem ∈ Z are surviving
the push-forward alongǫB/A, which yields:

[R1(ǫB/Aτ)∗O
(
δwT0

·DT0,n+1
)
] =

⌈δw
T0

⌉−1∑

m=1

p0−r0m−1∑

a=0

[Nm
sj0

⊗ (π′B/A)∗Na+1
DT0

]

Combining this with equation (4.3.5) yields the wall–crossing theorem in theK-
group:

Theorem 4.3.1.The generalized dual Hodge bundlesHw
A andHw

B can be related
in theK-group ofM

µr

0,A,E as follows:

(4.3.8) [Hw
A] = [ρ∗B,AH

w
B ]+

⌈δw
T0

⌉−1∑

m=1

p0−r0m∑

a=1

[Na
DT0

⊗s∗j0N
m
sj0

⊗s∗j0L
w
1,B/A⊗L

−w
r

2,A ]

wheresj0 is the sectionsj0 : M
µr

0,A,E → AB/A.

Let α be the first Chern class of the line bundles∗j0νB∗L
w
1,B ⊗ L

−w
r

2,B onM
µr

0,B,E .

The first Chern class ofs∗j0Nsj0
onM

µr

0,B,E is −ψj0 , and so the first Chern class of

K := s∗j0N
m
sj0

⊗ s∗j0L
w
1,B/A ⊗ L

− 2
r

2,A is ρ∗B,A(α−mψj0).
Tensoring the short exact sequences

0 → O(
1

r0
DT0)a−1 → O(

1

r0
DT0)a → Na

DT0
→ 0

with K yields Chern classes for all summands of the right hand side of equation
(4.3.8), and thus the following formula relating the Chern classes of the dualHodge
bundles:

c(Hw
A) = ρ∗B,A(c(Hw

B )) ·

⌈δw
T0

⌉−1∏

m=1

p0−r0m∏

a=1

1 + a
r0
DT0 + ρ∗B,A(α−mψj0)

1 + a−1
r0
DT0 + ρ∗B,A(α−mψj0)

= ρ∗B,A(c(Hw
B )) ·

⌈δw
T0

⌉−1∏

m=1

1 + (δwT0
−m)DT0 + ρ∗B,A(α−mψj0)

1 + ρ∗B,A(α−mψj0)

= ρ∗B,A(c(Hw
B )) ·

⌈δw
T0

⌉−1∏

m=1

(
1 +

(δwT0
−m)DT0

1 + ρ∗B,A(α−mψj0)

)

Equation (4.3.8) implies that this formula does not depend onα itself but only
on its restrictionα · ZT0 to the center of the blowup-part ofρB,A. The Chern class
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of L1,B onC
µr

0,B is by construction equal to the Chern class ofπ∗BL
1
r
2,B. Henceα

can be computed as the difference of the Chern classes ofνB∗L
w
1,B andLw1,B, which

is given by
∑n

i=1(⌊wdi⌋ − wdi)si = −
∑n

i=1 δ
w
i si. Pulling this back viasj0 , and

ignoring everything that restricts as zero toZT0 , givesα = −
∑

i∈T0
δwi (−ψj0) =

δwT0
ψj0 .
We claim that the restriction ofρ∗B,Aψj0 to DT0 is theψ-class of the node on

the component corresponding to the complement ofT0. To see this, note that the
irreducible component overDT0 corresponding toTC0 is the pull-back of the family
overZT0 , with sj0 being pulled back to the node.

Since in the final formula, after expanding the fraction using a geometric series,
ρ∗B,Aψj0 only appears in monomials that also have a factor ofDT0 , we can replace
ρ∗B,Aψj0 by ψT0 ; hereψT0 is for now any divisor on that restricts as theψ-class of
the node toDT0 (but see (A.1.4) for a somewhat canonical global definition). So
the formula simplifies further:

Theorem 4.3.2.Assume that there is a single wallwT0 as defined in (3.1.1) be-
tween the two weight dataA ≥ B. The Chern classes of the generalized dual
Hodge bundles can be related onM

µr

0,A,E as follows:

c(Hw
A) = ρ∗B,A(c(Hw

B )) ·

δw
T0

−1∏

p=〈δw
T0

〉

(
1 +

pDT0

1 + pψT0

)

5. CHERN CLASS FORMULA

5.1. Main theorem. Theorem 4.3.2 and corollary 3.4.2 immediately give a closed
formula for the equivariant Euler class of the generalized dual Hodge bundle.

Assume thatµr is acting diagonally onCN with weightsw1, . . . , wN . Given
e1, . . . , en ∈ µr, let δ(a)i ∈ [0, 1) be the age ofei acting on thea-th coordinate

direction, i.e.e2πiδ
(a)
i = ewa

i . For all subsetsT ⊂ [n], let δ(a)T =
∑

i∈T δ
(a)
i .

Theorem 5.1.1.On the connected componentM0,n(e1, . . . , en;Bµr) of the mod-
uli space of twisted stable mapsM0,n(Bµr), the equivariant Euler class of the
obstruction bundle is given as

eT
(
[R1π∗f

∗CN ]
)

=
N∏

a=1

δ
(a)
[n−1]

−1∏

p=〈δ
(a)
[n−1]

〉

(ta − pψn) ·
∏

T([n−1]
2≤|T |

δ
(a)
T −1∏

p=〈δ
(a)
T 〉

(
1 +

pDT

ta + pψT

)

Proof. If we start with weight dataA = ( 1
n−2 , . . . ,

1
n−2 , 1) as in section 3.4, we

can choose a path in[0, 1]n leading toA = (1, 1, . . . , 1) such that we pass every
wallwT =

{
ai
∣∣∑

i∈T ai = 1
}

for T ( [n−1], |T | ≥ 2 exactly once, and only one
wall at a time. By theorem 4.3.2, we pick up exactly the factor in the above product
corresponding toDT when we cross the wallwT , after we setta = 1. To get the
equivariant Euler class from the total Chern class, we just have to multiply the i-th
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Chern class of the higher direct image of thea-th coordinate directionC ⊂ CN

with trk−i
a , as the torus is acting trivially on the moduli space, and linearly with

multiplication byta on the fibers of the vector bundle. 2

5.2. Remarks on the formula. Using the notationsD[n−1] = −ψn, Di = −ψi
andψ[n−1] = 0 as explained in the appendix, the formula can be written in more
compact form:
(5.2.1)

eT
(
[R1π∗f

∗CN ] − [R0π∗f
∗CN ]

)
=

N∏

a=1

t
δ
(a)
[n]

−1
a

∏

∅6=T⊆[n−1]

δ
(a)
T −1∏

p=〈δ
(a)
T 〉

ta + pψT + pDT

ta + pψT

Hereδ(a)[n] − 1 is the virtual dimension of the contribution from thea-th coordinate

directionC ⊂ CN to obstruction bundle.
The convenience of this formulation is that it remains correct (up to an overall

power ofta) as long asδ(a){i} is any real number such thatewa
i = e

2πiδ
(a)
{i} (if we still

defineδ(a)T =
∑

i∈T δ
(a)
{i}). This is shown in the appendix, see lemma A.1.1.

This version of the formula also gives the correct answer for the necessary lo-
calization computation in case allei act trivially on one of the coordinate direction,
that is if ewa

i = 1 for somea and alli. In that case,M0,n(e1, . . . , en;Bµr) is the
fixed point locus ofM0,n(e1, . . . , en; [C

N/µr]) (instead of being isomorphic to it).
The factor of 1

ta
we get in the above formula is the contribution of thea-th coordi-

nate direction to the inverse of the equivariant Euler class of the normal bundle of
the fixed point locus.

6. RECURSIONS FORGROMOV-WITTEN INVARIANTS

6.1. Inclusion-exclusion principle. The formula gives particularly nice recur-
sions when the invariants are (almost) non-equivariant. To expand the formula,
we use the following fact, which we think of as a generalized inclusion-exclusion
principle:

Lemma 6.1.1. LetS be a partially ordered set. LetU(S) be the set of non-empty
subsetsI ⊂ S such that no two elements ofI are comparable. For every subset
I ⊂ S, letC(I) ⊂ S be the “ordered complement” ofI: the set of elements ofS
that are not less than or equal to any element ofI. Then:

(6.1.1)
∏

T∈S

(1 + xT ) = 1 +
∑

I∈U(S)

(−1)|I|+1
∏

T∈I

xT
∏

T∈C(I)

(1 + xT )

Proof. For any subsetJ ⊂ S, the monomial
∏
T∈J xT appears in the right-hand

side of the above product wheneverI is a subset of the set of minimal elements of
J . It is easily checked that it overall has coefficient one. 2
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We use this forS being the set of subsetsT ⊂ [n − 1] with 2 ≤ |T | ≤ n − 2,
ordered by inclusion, and

xT = −1 +
N∏

a=1

δ
(a)
T −1∏

p=〈δ
(a)
T 〉

(
1 +

pDT

ta + pψT

)

=

∏
a,p(1 − t−1

a pψTC ) −
∏
a,p(1 + t−1

a pψT )
∏
a,p(1 + t−1

a pψT )
,

whereψTC = −DT −ψT (see Appendix). ThenxT is a class with support onDT .
Thus, ifT, T ′ are not comparable, thenxTxT ′ can only be non-zero ifT andT ′ are
disjoint; hence the expansion of lemma 6.1.1 reduces to a sum over a combination
of pairwise disjoint subsetsT1, . . . , Tk ⊂ [n − 1]. Since everyTi has size at least
2, the datum of{T1, . . . , Tk} can be identified with a partitionP of [n− 1]; given
P, we writeP≥2 for the sets inP that have size at least 2, recovering the list of the
Ti. We can similarly simplify the second product of equation (6.1.1) to a product
overT which are either disjoint from or fully containTi, for all i; in other words,
we can identifyT with a subset of the quotient set[n − 1]/(P) having at least2
elements. Thus:

(6.1.2) eT (R1π∗f
∗CN ) =


1 +

∑

P

(−1)|P≥2|+1
∏

T∈P≥2

xT
∏

T([n−1]/(P)
2≤|T |

(1 + xT )




N∏

a=1

δ
(a)
[n−1]

−1∏

p=〈δ
(a)
[n−1]

〉

(ta−pψn)

where the sum goes over all non-trivial partitionsP of [n − 1] (excluding the
partitions of size 1 andn− 1), and we identify a subsetT ⊂ [n− 1]/(P) with its
preimage in[n− 1].

The class associated to the partitionP in the above expansion has support on⋂
T∈P≥2

DT , which explains why we call it an inclusion-exclusion principle. This
intersection is a moduli space of comb curves as in the figure on page 29.

6.2. Non-equivariant recursions for [C3/µr]. Let µr act non-trivially onC3 so
that it leaves the volume form ofC3 invariant. Up to isomorphism ofµr, we may
assume that the generator is acting with age 1; then the weightsw1, w2, w3 of the
one-dimensional representations satisfyw1 + w2 + w3 = r. The age of the action
of a non-trivial group elementei is given byage(ei,C

3) = age(ew1
i )+age(ew2

i )+
age(ew3

i ). In this section we will develop recursions for invariants of the form

(6.2.1) 〈he1 ⊗ · · · ⊗ hen−1 ⊗ ψνnhen〉
[C3/µr]
0,n

wheree1, . . . en−1 ∈ µr are group elements of age 1, anden is arbitrary, and also
the only element for which we allow insertion of aψ-class. (This implies that
δ
(1)
T + δ

(2)
T + δ

(3)
T = |T | for all T ⊂ [n− 1].)
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We want to determine the integral of a summand on the right-hand-side of equa-
tion (6.1.2) related to a partitionP of [n− 1], after inserting an additionalψ-class
at then-th marked point. LetT1, . . . , Tk be the elements ofP≥2.

ψνn · c(P) = ψνn ·
k∏

i=1

xTi

∏

T([n−1]/(P)
2≤|T |

(1 + xT )
N∏

a=1

δ
(a)
[n−1]

−1∏

p=〈δ
(a)
[n−1]

〉

(ta − pψn)

This term is supported on the intersectionDT1∩· · ·∩DTk , isomorphic toM0,T1∪{∗}×

· · · ×M0,Tk∪{∗} ×M0,[n]/(P); so in order to determine the integral ofc(P) · ψνn,
we will write it as a product ofDT1 · · ·DTk with factors that are pulled back from
one of the components above.

The numerator ofxTj is the only factor that has terms coming fromM0,Tj∪{∗},
while its denominator involvesψTj , which is theψ-class of the node corresponding
to the markingTj onM0,[n]/(P). To examine the numerator more closely, we first
factor outDTj :
∏

a,p

(1 − t−1
a pψTC

j
) −

∏

a,p

(1 + t−1
a pψTj ) =

∑

k>0

βk((−1)kψk
TC

j
− ψkTj

)

= DTj ·
∑

k>0

βk

k−1∑

ℓ=0

(−ψTC
j

)ℓψk−1−ℓ
Tj

.

The largest power ofψTC
j

which appears in the last expression is

3∑

a=1

(δ
(a)
Tj

− 〈δ
(a)
Tj

〉) − 1 = |Tj | − 1 −
3∑

a=1

〈δ
(a)
Tj

〉.

As the dimension ofM0,Tj∪{∗} is |Tj |−2, the expression only has a term in the top

degree if
∑3

a=1〈δ
(a)
Tj

〉 = 1, which means thateTj =
∏
i∈Tj

ei acts with age1 onC3

and acts nontrivially in each coordinate direction. By the balancing condition, eTj

is prescribing the monodromy of the node as seen from the component correspond-

ing to [n]/(P). As the integral ofψ
|Tj |−2

TC
j

is one, the integral of the above product

onM0,Tj∪{∗} is
∏3
a=1 t

−⌈δ
(a)
Tj

⌉

a (δ
(a)
Tj

− 1)! if the condition oneTj is satisfied, and 0
otherwise.

OnM0,[n]/(P), we are left with the following product:

ψνn ·
3∏

a=1

t
−1+δ

(a)
[n]

a

∏

∅6=T⊆[n−1]/(P)

δ
(a)
T −1∏

p=〈δ
(a)
T 〉

ta + pψT + pDT

ta + pψT

Here we used the same conventions as for formula (5.2.1), applied to the set
[n− 1]/(P) (so for exampleD{Tj} is identified with−ψ{Tj}, which is theψ-class
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of a single marking; the term related toTj in the above product is the denomina-

tor of xTj ); and we extendedδ(a)T in the obvious way from subsets of[n − 1] to
subsets of the quotient set[n − 1]/(P). Now by the remarks in section 5.2, based
on lemma A.1.1, this product computes the Chern class of the obstruction bun-
dle onM0,[n]/(P)

(
(ei)i∈[n]/(P);Bµr

)
. Its integral is thus given by the equivariant

Gromov-Witten invariant

〈
⊗

i∈[n−1]/(P)

hei ⊗ ψνnhen〉
[C3/µr]
0,[n]/(P).

This proves the following recursion:

Proposition 6.2.1. For an equivariant Gromov-Witten invariant of[C3/µr] as in
equation (6.2.1) with the assumptions above, letS be the set of non-trivial parti-
tionsP of [n− 1] such that for everyT ∈ P≥2, the group elementeTj =

∏
i∈Tj

ei

acts with age 1 onC3, and non-trivial in every coordinate direction. Then the
following recursive formula holds:

〈he1⊗· · ·⊗hen−1⊗ψ
ν
nhen〉

[C3/µr]
0,n = 〈he1⊗· · ·⊗hen−1⊗ψ

ν
nhen〉

[C3/µr];weighted
0,n +

+
∑

P∈S

(−1)|P≥2|+1
∏

T∈P≥2

3∏

a=1

(δ
(a)
T − 1)! 〈

⊗

i∈[n−1]/(P)

hei ⊗ ψνnhen〉
[C3/µr]
0,[n]/(P).

Here the invariant with superscript “weighted” means the invariant as computed
by using the moduli space of weighted stable maps instead of the ordinary moduli
space, with weight data chosen as in section 3.4. These invariants are given, up to
a multiplication with a monomial in theta, by the(n− 3− ν)-th elementary sym-

metric function of the variablest−1
a (δ

(a)
[n−1] − 1), t−1

a (δ
(a)
[n−1] − 2), . . . , t−1

a 〈δ
(a)
[n−1]〉

for a = 1, 2, 3.

6.3. Recursions for[C3/µ3]. The recursion of proposition 6.2.1 simplifies further
in the case[C3/µ3] for the diagonal representation ofµ3. The only group element

of age 1 isω = e
2πi
3 . We haveδ(a)T = |T |

3 for all T ⊂ [n− 1] anda = 1, 2, 3. The
setS contains the partitionsP of [n− 1] so that everyT ∈ P has size3mT +1 for
somemT ∈ Z≥0. The summand forP in the formula of proposition 6.2.1 depends
only on the sizes of the subsets, not on the actual subsets; if we setp =

∑
T mT ,

we can thus reduce the above sum to a sum over partitionsm = (m1, . . . ,mk) of
p, for all p ≥ 1 with n − 3p ≥ 3. For any such partition, letM(n − 1,m) be the
multinomial coefficient

M(n− 1,m) =

(
n− 1

3m1 + 1, . . . , 3mk + 1, n− 1 −
∑

j(3mj + 1)

)

counting the ways to distributen− 1 markings on the different components.
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Proposition 6.3.1.

〈h⊗n−1
ω ⊗ ψνnhen〉

[C3/µ3]
0,n = 〈h⊗n−1

ω ⊗ ψνnhen〉
[C3/µ3];weighted
0,n

+

⌊n−3
3

⌋∑

p=1

∑

m

(−1)|m|+1

|Autm|

k∏

j=1

(
(mj −

2

3
)!

)3

M(n−1,m)〈h⊗n−1−3p
ω ⊗ψνnhen〉

[C3/µ3]
0,n

The superscript “weighted” means the same as before; ifen = ω and ν =

0, this weighted Gromov-Witten invariant is just given as(−1)n+1
(
(n−4

3 )!
)3 1

3 ;
otherwise it is an elementary symmetric function.

FIGURE 1. Comb forn = 30, p = 7 andm = (1, 1, 2, 3)

A maple program implementing some of these recursions is available from the
authors upon request. The numbers match the calculations of [ABK08], [CCIT07a]
and [CC07].

As the recursions are linear, it is not hard to invert the matrix and obtain a direct
formula. LetIℓ = 〈h⊗3ℓ+3

ω 〉
[C3/µ3]
0,3ℓ+3 . Proposition 6.3.1 implies that

ℓ∑

p=0

(−1)pCp,ℓIℓ−p = (−1)ℓ((ℓ−
1

3
)!)3

1

3
,

whereC0,ℓ = 1 and for 0 < p ≤ ℓ, Cp,ℓ is the sum over partitionsm =
(m1, . . . ,mk) of p, with k ≤ 3(ℓ− p) + 2, of the quantity

1

|Autm|

k∏

j=1

((mj −
2

3
)!)3 ·

(
3ℓ+ 2

3m1 + 1, . . . , 3mk + 1, 3(ℓ− p) + 2 − k

)
.

LetDp,ℓ = Cℓ−p,ℓ. By inverting the matrix we obtain the formula:

3(−1)ℓIℓ =
∑

S⊆[0,ℓ−1]
S={x0,...,xq}

(−1)|S|((x0 −
1

3
)!)3Dx0,x1 · · ·Dxq−1,xqDxq,ℓ,

where[0, ℓ − 1] = {0, 1, . . . , ℓ − 1} and it is assumed thatx0 < x1 < · · · < xq.
ForS = ∅, the summand is taken to be((ℓ− 1/3)!)3.
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6.4. Inversion of the “mirror map”. The recursion in this case can also be de-
rived from the results in [CCIT07a]. We explained above in section 3.5 that their
I-function Itw(t) is almost identical (up to high powers ofz) to the “weighted
J-function” JX;weighted.

From general principles of Givental’s formalism they deduce that for thecoor-
dinate changeτ(t) : H → H, called the “mirror map”, given by

τ(t0h1 + t1hω) = t0h1 +
∑

k≥0

(−1)3k(t1)
3k+1

(3k + 1)!

(
(k −

2

3
)!
)3
hω

the twistedI-function and the twistedJ-function can be related after setting the
dual coordinate ofhω2 equal to zero:

Itw(t0h1 + t1hω, z) = JX(τ(t0h1 + t1hω), z)

Our recursive formula can be recovered by comparing coefficients ofthese two
power series; in other words, the sum over partitionsP in proposition 6.3.1 is a
combinatorial inversion of the mirror mapτ(t).

More precisely, given any two power seriesA(t0h1+t1hω, z),B(t0h1+t1hω, z)
related by

A(t0h1 + t1hω, z) = B(τ(t0h1 + t1hω), z)

we can recursively recover the coefficients ofB by comparing coefficients of
powers oft1. If we write A(t1h1) =

∑
k
ak
k! t

k
1 andB(t1h1) =

∑
k
bk
k! t

k
1 with

ak, bk ∈ H[[z−1]], the recursion will look exactly as proposition 6.3.1 with the
“weighted invariants“ replaced byak and the actual invariants replaced bybk. In
particular, settingA to the identity power seriesA(t0h1 + t1hω) = t0h1 + t1hω
yields an inversion of the mirror map that can also be a interpreted as a sum over
comb curves.

6.5. Equivariant recursions. The methods of this section are sufficient to pro-
duce a linear recursion for the equivariant descendant Gromov-Witteninvariants of
[CN/µr]. However, this requires one to allowψ-classes at every marked point. As
in section 6.2, one can use lemma 6.1.1 to expand the equivariant Euler class of the
obstruction bundle, and to each partition of[n− 1] one should associate a comb as
before, where then-th marked point is on the head of the comb. For each tooth of
the comb, we can write the numerator ofxT as

DT ·
∑

k>0

βk

k−1∑

ℓ=0

(−ψTC )ℓψk−1−ℓ
T ,

just as in section 6.2. The exponent ofψTC which leads to a nonzero integral is
determined by the descendant exponents chosen for the marked points inT . The
integral over the tooth can then be computed using the well-known formula

∫

M0,n

ψa1
1 · · ·ψan

n =

(
n− 3

a1, . . . , an

)
.
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We are left with a polynomial inψT , theψ-class of the node on the main component
(and hence our method does not yield a recursion for non-descendant invariants
only).

In summary, for each partition of[n− 1], one gets a linear combination of equi-
variant Gromov-Witten invariants with fewer marked points, each with a combina-
torial factor. These must be summed together and added to the weighted invariant,
just as in section 6.2.

APPENDIX A. COMBINATORICS OF DIVISORS ONM0,n

A.1. Notations for divisors. This section reviews notations for divisors onM0,n,
some of which is introduced in this paper. The standard relations are reviewed, and
a combinatorial proof of a key simplifying relation, used in section 6, is worked
out.

First recall the vital divisorDT , introduced by Keel [Kee92], whereT is any
subset of[n] having at least2 and at mostn − 2 elements. This divisor is the
locus of curves having a node which separates the markings intoT andTC . Here
complements are always taken within[n]. To make this into a correspondence,
assume throughout this appendix thatS andT are subsets of[n − 1]. It is natural
to defineD[n−1] to be−ψn, which comes from the work of de Concini and Procesi
[DCP95]. From their point of view,D[n−1] is the pullback of minus the hyperplane
class under a sequence of blowups producingM0,n from Pn−3. This sequence of
blowups is the same one discussed in section 3.2 in the context of weighted stable
maps. Under this blowup description ofM0,n,DT is the exceptional divisor of the
blowup in the proper transform of the linear space generated by the pointslabeled
by [n− 1] \ T .

The ringH∗(M0,n) is generated by the divisorsDT for T ⊆ [n − 1], |T | ≥ 2,
with relations given by

DSDT if S andT are incomparable andS ∩ T 6= ∅,(A.1.1)
∑

i,j∈T

DT for everyi 6= j ∈ [n− 1] [DCP95].(A.1.2)

Geometrically, the first relation is due to the fact that the exceptional divisorsDS

andDT are disjoint, and the second is due to the fact that the preimage of the
hyperplane inPn−3 generated by all points excepti andj consists of the proper
transformDi,j together with all the exceptional divisorsDT for i, j ∈ T . Fix
T ( [n− 1] and choosei /∈ T andj ∈ T . Then relations (A.1.1,A.1.2) imply that

(A.1.3) DT
∑

S: i∈S
S⊃T

DS = 0.

For any nonempty subsetT ⊆ [n− 1], we introduce the notation

(A.1.4) ψT :=
∑

S)T

DS .
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If T = {i}, then this recovers theψ-class at thei-th marked point. Indeed, we have
for any distinctj, k different fromi (recalling the conventionn /∈ T ),

ψi =
∑

j,k∈T
i/∈T

DT+
∑

i∈T
j,k/∈T

DT = −
∑

i,j,k∈T

DT+
∑

i∈T
j,k/∈T

DT+
∑

i,j∈T

DT+
∑

i,k∈T

DT = ψ{i},

the last equality following from an inclusion-exclusion argument. By definition,
ψ[n−1] = 0, and we also setDi = −ψi for 1 ≤ i ≤ n− 1. Finally, we define

ψTC := −DT − ψT

for T ⊆ [n− 1], which we found useful in section 6.
The Chern class formula of theorem 5.1.1 can now be expressed as

(A.1.5) c =
∏

∅6=T⊆[n−1]

δT−1∏

p=〈δT 〉

(
1 + p(DT + ψT )

1 + pψT

)
,

whereδT =
∑

i∈T δi andδi are chosen so that0 ≤ δi < 1. The following lemma
shows that if everyδi ≥ 0, this expression is periodic in eachδi with period1; so it
defines a continuous, piecewise-analytic function from an(n−1)-dimensional real
torus into the cohomology ofM0,n with real coefficients. This is used in section 6
to produce recursions for the Gromov-Witten invariants.

Lemma A.1.1. Letδ1, . . . , δn−1 be real numbers, and for any subsetT ⊆ [n− 1],
defineδT =

∑
i∈T δi. Then

(A.1.6)
∏

1∈T

1 + δT (DT + ψT )

1 + δTψT
= 1.

Proof. For1 ≤ k ≤ n− 1, let

Ek =
n−1∑

i=2

δi
∑

1,i∈T
|T |>k

DT + δ1
∑

1∈T
|T |>k

DT ,

and let

Ak = (1 + Ek)
∏

1∈T⊆[n−1]
|T |≤k

1 + δT (DT + ψT )

1 + δTψT
.

Then it must be shown thatAn−1 = 1. AsEn−2 = δ[n−1]D
[n−1], it follows that

An−2 = An−1. Moreover,E1 = δ1ψ1, soA1 = 1. It remains to show that
Ak = Ak−1 for 1 < k < n− 1.

Note that for any divisorsx, y, z,

(A.1.7)
(1 + x)(1 + y)

1 + z
= 1 + x+ y − z if (x− z)(y − z) = 0.

Fix T with 1 ∈ T and |T | = k, and letx be any expression of the formEk +∑
S∈σ αSD

S , whereσ is a collection of subsetsS ⊆ [n − 1] with |S| = k and
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1 ∈ S 6= T . ThenDT (x− δTψT ) = 0 by the following argument. For anyS ∈ σ,
1 ∈ S ∩ T and|S| = |T |, soDSDT = 0. Moreover,

Ek − δTψT =
∑

i: i/∈T

δi
∑

S: i∈S
T⊆S

DS +
∑

|S|>k
S 6⊃T
1∈S

δSD
S .

SinceDT annihilates the first term on the right hand side by (A.1.3) and annihi-
lates the second by (A.1.1), it follows thatDT (Ek − δTψT ) = 0, completing the
verification of the claim.

It follows that one can iterate through all setsT with |T | = k to eliminate those
factors from the expression forAk and apply relation (A.1.7) at each step. Since

Ek +
∑

1∈T
|T |=k

δTD
T = Ek−1,

it follows thatAk = Ak−1, completing the proof. �

If in (A.1.5), one were to add1 to δ1 (and thus add one to eachδT for 1 ∈ T )
then one would be multiplyingc by the left hand side of (A.1.6). Thereforec does
not change after the translationδi 7→ δi + 1. Using the notational conventions
of section 1.5, the formula forc makes sense for negative values ofδi, and the
same argument shows that it remains invariant under integer translations. It seems
natural to regardδ1, . . . , δn as coordinates on(R/Z)n satisfying

∑n
i=1 δi = 0.

A.2. Restricting to DT . It is a standard fact for any proper subsetT ⊂ [n − 1]
containing at least two elements,DT ∼= M0,|T |+1 ×M0,n−|T |+1, with the node
counting as an extra marked point on each factor. The restrictions of divisorsDS

andψS toDT are easily computed if one uses subsets ofT for the divisors on the
first factor on subsets of the quotient set[n−1]/T for divisors on the second factor.
So on the first factor, the node counts as the extra marked point that all sets must
avoid. For setsS ⊂ T , we useDS

∗ andψ∗
S to notate divisors onM0,|T |+1 and we

likewise useDS
• andψ•

S for divisors onM0,n−|T |+1. Now the following formulas
hold for any nonempty setS ⊆ [n− 1].

DS |DT =





DS
∗ ⊗ 1, if S ( T

1 ⊗DS
• , if S ∩ T = ∅

1 ⊗D
S/T
• , if S ) T

DT
∗ ⊗ 1 + 1 ⊗D

T/T
• , if S = T

0, otherwise

(A.2.1)

ψS |DT =





ψ∗
S ⊗ 1, if S ( T

1 ⊗ ψ•
S , if S ∩ T = ∅

1 ⊗ ψ•
S/T , if S ⊇ T

(A.2.2)

Note that the fourth line of (A.2.1) is another way of writing the standard factthat
the restriction of−DT to DT is the sum of theψ-classes at the node on the two
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components. Moreover, the third line of (A.2.2) shows thatψT restricts toDT as
theψ class of the node on the component corresponding toTC . So our definition
of ψCT as−DT − ψT ensures thatψCT restricts to theψ class of the node on the
other component.
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[MM08] Anca M. Mustaţ̌a and Andrei Mustaţǎ. The Chow ring ofM0,m(Pn, d). J. Reine Angew.
Math., 615:93–119, 2008, arXiv:math.AG/0507464.

[Rua02] Yongbin Ruan. Stringy geometry and topology of orbifolds. InSymposium in Honor
of C. H. Clemens (Salt Lake City, UT, 2000), volume 312 ofContemp. Math., pages
187–233. Amer. Math. Soc., Providence, RI, 2002.

[Rua06] Yongbin Ruan. The cohomology ring of crepant resolutions of orbifolds. In Gromov-
Witten theory of spin curves and orbifolds, volume 403 ofContemp. Math., pages 117–
126. Amer. Math. Soc., Providence, RI, 2006, arXiv:math.AG/0108195.
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