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Abstract. We show that Brill–Noether loci in Hilbert scheme of points on a smooth con-
nected surface S are non-empty whenever their expected dimension is positive, and that they
are irreducible and have expected dimensions. More precisely, we consider the loci of pairs
(I, s) where I is an ideal that locally at the point s of S needs a given number of generators.

We give two proofs. The first uses Iarrobino’s description [Iar77] of the Hilbert–Samuel
stratification of local punctual Hilbert schemes, and the second is based on induction via
birational relationships between different Brill–Noether loci given by nested Hilbert schemes.

1. Introduction

Given any pair M,N of moduli spaces of sheaves or complexes on a given variety, one may
consider Brill–Noether loci in M×N determined by the dimension of the space of morphisms
between the corresponding objects.

Question 1.1. In which situations are Brill-Noether loci in M ×N of expected dimension?

This question was, in a sense, first considered in Lazarsfeld’s proof of Brill–Noether for
curves on K3 surfaces [Laz86], and many variants of classical Brill–Noether for curves on
surfaces can be formulated in this way; see also [Bay15, BL17]. A dual version is a crucial
ingredient for Le Potier’s Strange duality [MO09]. In general, such Brill-Noether loci can be
seen as generalisations of nested Hilbert schemes, which highlights a wide range for potential
implications, by giving relations between the birational geometry, the cohomology, Chow
groups, motives or the derived categories of different moduli spaces.

In this paper, we consider the fundamental case where M is the Hilbert scheme of points
on a surface, and N is the surface itself. Let S be a smooth irreducible surface over a field k,
and Hilbn(S) the Hilbert scheme of ideals I ⊂ OS of colength n. For each integer r ≥ 0, the
rth Brill–Noether locus is the locus in Hilbn(S)×S of pairs (I, p) with dimκ(p) Hom(I, κ(p)) ≥
r + 1; equivalently, the locus where the minimal number of generators of I locally at p is at
least r + 1, which by Nakayama’s Lemma is

BNr,n := {(I, p) | dimκ(p)(I ⊗OS
κ(p)) ≥ r + 1} ⊂ Hilbn(S)× S.

Then BN0,n = Hilbn(S) × S, and BN1,n = Zn := {(I, p) | p ∈ V (I)} ⊂ Hilbn(S) × S is the
universal subscheme.

The main result of our paper completely answers Question 1.1 in our setting:

Theorem 1.2. For each n ≥ 1 and r ≥ 0, the Brill–Noether locus BNr,n is Cohen–Macaulay,
irreducible and of expected codimension

codim(BNr,n, Hilbn(S)× S) = r(r + 1).

Equivalently, dimBNr,n = ρr,n := 2n+ 2− r(r + 1). Moreover, BNr,n ̸= ∅ iff ρr,n ≥ 2.

Remark 1.3. One can also observe that BNr,n is the closure of the locus of pairs of the form
(mr

p · J, p) where p ∈ S, mp is the maximal ideal of p, and J is an ideal of ρr,n
2

− 1 points
supported away from p. Indeed, this clearly gives a locus of dimension ρr,n, and thus the
claim follows by the irreducibility of BNr,n.
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1.1. Previous results. Ellingsrud and Strømme [ES98, Proposition 2.2] proved the bound:

codim(BNr,n, Hilbn(S)× S) ≥ 2r for all r ≥ 0.

It was used repeatedly to study the geometry of nested Hilbert schemes: in [ES98] to prove
irreducibility, in [RY20] to study their nef cones, and in [JL18, Jia19] to study their derived
categories and Chow groups. The bound was improved by Ryan and Taylor [RT22]:

codim(BNr,n, Hilbn(S)× S) ≥
(
r + 1

2

)
+ 1 for all r ≥ 1, n ≥

(
r + 1

2

)
.

Finally, if I has r+1 generators at p then the socle of OV (I),p is r-dimensional (see [Son16,
Lemma 2.1]). Thus the non-emptiness statement of Theorem 1.2 is equivalent to the sharp
bound on the dimension of the socle established in [Son16, Theorem 1.2]. One direction of
this bound, the emptiness of BNr,n for ρr,n ≤ 0, was first established by Haiman [Hai01,
Proposition 3.5.3] in his analysis of the singularities of the isospectral Hilbert scheme.

1.2. Proofs. We present two proofs. The first, in Section 2 is based on explicit resolutions
of I over Hilbert–Samuel strata of local punctual Hilbert schemes given by [Bri77, Iar77].
The second proof, in Section 3 is an inductive argument based on birational relations

among the various BNr,n induced by nested Hilbert schemes. We expect that this method
will be useful in answering Question 1.1 in much bigger generality.

Our method also gives the irreducibility of one type of nested Hilbert scheme, see Re-
mark 3.4. In general, irreducibility of nested Hilbert schemes is an open problem; see [GRS22],
[RT22] and [Add16, Section 2.A] for recent results on this topic.

Acknowledgement. We thank the referees for their many helpful comments and sugges-
tions. A.B. and Q.J. were supported by EPSRC grant EP/R034826/1, and by the ERC
Grant ERC-2018-CoG-819864-WallCrossAG. Q.J. is also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy –
EXC-2047/1 – 390685813.

2. Brill–Noether loci via local Hilbert schemes

In this section, we study Brill-Noether loci of local Hilbert schemes (by which we mean that
the entire subscheme is supported at a given point). Our proof is based on explicit coordinate
charts of their Hilbert–Samuel strata constructed by Iarrobino [Iar77] and Briançon [Bri77].
This leads to our first proof of Theorem 1.2.

Since it is enough to prove Theorem 1.2 after base change to the algebraic closure, we will
from now on assume that k is algebraically closed.

2.1. Hilbert–Samuel stratification. We follow the terminology and convention of [Iar77].
LetA = k[[x, y]] be the ring of power series in two variables x and y, where k is an algebraically
closed field, and let m = (x, y) denote the maximal ideal. For any ideal I ⊂ A, the natural
grading of A induces the Hilbert–Samuel function of A/I given by

χA/I(i) = dimk

(
A

I +mi+1

)
= dimk

(
A/I

mi+1(A/I)

)
i ∈ Z≥0.

It is usually convenient to consider the step function of the Hilbert–Samuel function, as
follows.

Definition 2.1. Given an ideal I ⊂ A, its type T (I) = (t0, t1, t2, . . . ) is the sequence

tj = dimk

(
I +mj

I +mj+1

)
,
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and its order d is determined by

d(I) = sup{k ∈ Z≥0 | I ⊂ mk}.

For i ≥ 1, the short exact sequence

0 → I +mi

I +mi+1
→ A

I +mi+1
→ A

I +mi
→ 0

shows that ti(I) = χA/I(i)− χA/I(i− 1). Moreover, if I has colength n and order d, then its
type satisfies

T = (1, 2, 3, . . . , d, td, td+1, . . . , 0, 0, 0, . . . ) where d ≥ td ≥ td+1 ≥ · · · ≥ 0

and |T | =
∑
j

tj = n.(2.1)

Conversely, for any type satisfying (2.1), there exists an ideal of type T , see Example 2.9.

Example 2.2. Let d be such that 0 ≤ ℓ := n− d(d+1)
2

≤ d. Then I belongs to the Grassman-

nian stratum md+1 ⊂ I ⊂ md parametrised by (d+ 1− ℓ)-dimensional subspaces of md/md+1

if and only if I is of type (1, 2, 3, . . . , d, ℓ, 0, . . . ).

It is often convenient to encode the type via the following data.

Definition 2.3. Given a type T of order d, we define the jumping indices of T by

ej =

{
tj−1 − tj if j ≥ d

0 if otherwise.

Then ej ≥ 0 for each j, ej = 0 for j ≥ n+ 1 or j < d, and
∑

ej = d. Clearly, d and T are
determined by the jumping indices.

Theorem 2.4 (Hilbert–Samuel Stratifications; [Bri77, Iar77]). Let k be an algebraically
closed field, let A = k[[x, y]], n ≥ 2, and let Hilbn(A) denote the local punctual Hilbert
scheme, with reduced scheme structure. For each type T with |T | = n, let ZT denote the
subset of Hilbn(A) consisting of ideals I of type T , and let ej denote the jumping indices of
T .

(1) There is a decomposition of Hilbn(A) into a disjoint union

Hilbn(A) =
⊔

|T |=n

ZT ,

where T runs through all types with |T | = n satisfying (2.1).
(2) For each type T satisfying (2.1), the stratum ZT is a locally closed subset of Hilbn(A),

which is nonempty, smooth, rational, connected, of dimension

dimZT = n−
∑
j≥d

ej(ej + 1)

2
= n− d−

∑
j≥d

ej(ej − 1)

2
.

Proof. Since the Hilbert–Samuel function is upper-semicontinuous on Hilbn(A), the difference
function is constructible, and thus each ZT is locally closed.
By [Iar77, Theorem 3.13], each ZT is irreducible, rational and nonsingular. The claim

about the dimension of ZT follows from [Iar77, Theorem 2.12] (see also [Bri77, Theorem
III.3.1]). □

Despite being commonly referred to as the Hilbert–Samuel stratification, the decomposition
of Theorem 2.4 does not always satisfy the condition that the closure of a stratum is a union
of strata.
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Example 2.5 (Curvilinear Strata). For each n ≥ 2, there is a unique type of order d = 1:

Tn,curv = (1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n terms

).

The corresponding stratum Zn,curv := ZTn,curv ⊂ Hilbn(A) is the curve-linear stratum of
Hilbn(A): an ideal has type Tn,curv if and only if it has order 1, i.e. if the associated zero-
dimensional subscheme is contained in the germ of a smooth curve defined by f ∈ I, f /∈ m2.
Moreover, I is determined by f via I = f +mn.
Using affine coordinate charts, it is easy to see that Zn,curv is smooth, connected and has

dimension n − 1. The curvilinear stratum Zn,curv ⊂ Hilbn(A) is open and dense (Remark
2.6), and each ideal I ∈ Zn,curv can be generated by two elements.

Remark 2.6. One primary application of Theorem 2.4 in [Bri77, Iar77] was to establish
the irreducibility of punctual Hilbert schemes. Concretely, using a deformation argument,
Briancon [Bri77, Theorem V.3.2; Corollary V.3.3] and Iarrobino [Iar77, §5] showed that
Zn,curv = Hilbn(A). Consequently, Hilbn(A) is irreducible of dimension n− 1.

2.2. Normal patterns and affine charts of Hilbert–Samuel strata. The notion of
normal patterns gives rise to affine covers of each stratum ZT associated with a type T .
Concretely, given a type T = (tj), the normal pattern P of type T is the set of monomials:

P =
⋃
j≥0

Pj Pj = {xj−tyt | 0 ≤ t ≤ tj − 1}.

The normal pattern P associated with a type T can be visualised as Young diagram ∆(P ) such
that (i, j) ∈ ∆(P ) ⇐⇒ xiyj ∈ P . For example, in the case where T = (1, 2, 3, 2, 2, 0, 0, . . .),
we can depict P as

P = y2

y xy x2yx3y

1 x x2 x3 x4

Remark 2.7. The Young diagram ∆(P ) is determined by the property that the row lengths
k0 > k1 > · · · > kd = 0 give a strictly decreasing partition of n, and that it contains tj
monomials of degree j.

Conversely, given any Young diagram ∆(P ) with strictly decreasing row lengths, tj is the
number of monomials in P of degree j, whereas the jumping indices ej are determined as
follows: ej = 0 if j < d or j > k0, and if d ≤ j ≤ k0, ej is the number of degree j monomials
in the sequence

xk0y0, xk1y1, . . . , xkd−1yd−1.

Definition 2.8 (Affine Charts Associated with Normal Patterns). Let P = P (x, y) with
type T = T (P ) be a normal pattern. We let ZP ⊂ ZT denote the subset of ideals I satisfying
the following equivalent conditions ([Iar77, Lemma 1.4]):

(1) For all j, ⟨P ∩mj⟩ ⊕ (I ∩mj) = mj.
(2) ⟨P ⟩ ∩ I = 0 and T (P ) = T (I), where ⟨P ⟩ denotes the k-linear span of P .

Then ZP is a Zariski open subscheme of ZT , isomorphic to an affine space ([Iar77, Propo-
sitions 2.5 & 2.8]). The proof of Theorem 1.2 will use an explicit parametrisation of ZP .

Example 2.9. Let k0 > k1 > k2 > · · · > kd−1 be the partition of n corresponding to ∆(P )
for a type T and order d, and set kd = 0. Let us = xksys for 0 ≤ s ≤ d. Then the monomial
ideal I = (u0, . . . , ud) is contained in ZP .
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In characteristic zero or large characteristics, when we vary the system of parameters (x, y)
linearly, the affine spaces ZP of Definition 2.8 form an open covering of the stratum ZT :

Proposition 2.10 ([Iar77, Proposition 3.2 & Corollary 3.3]). Let T be a type with |T | = n.
Assume that either char(k) = 0 or char(k) ≥ |T | = n. Then ZT is the union of a finite
number of translates of ZP under the action of GL(2,k).
The above statements are no longer valid in low characteristic cases. This proposition is

the only place where we need the characteristic assumption in our first proof of the main
theorem.

The monomial ideal of Example 2.9 has a resolution of the form

(2.2) Ad MP ·−−→ Ad+1 (u0,...,ud)·−−−−−−→ I

where the (d+ 1)× d-matrix MP encodes the obvious relations y · us−1 = xks−1−ks · us:

(MP )ii = −y, (MP )(j+1)j = xkj−1−kj , (MP )ij = 0 if j ̸= i, i− 1.

By Nakayama’s Lemma, as MP (0, 0) = 0, this shows that I needs d+1 generators. Note also
that, up to signs, the ui are precisely the d× d-minors of MP .

2.3. Affine parametrization. We will use a parametrisation of ZP due to Iarrobino that
is obtained by deforming I via deforming the matrix MP and thus the resolution (2.2).

Proposition 2.11 ([Iar77, Proposition 4.17]1). For a normal pattern P of type T , where T
has order d and |T | = n, we consider (d + 1) × d matrices β with entries in k[x] satisfying
the following constraints:

(1) βij = 0 if i > j;
(2) for i ≤ j, the entry βij is a polynomial of degree kj−1 − kj − 1; and
(3) βij(0) = 0 if kj−1 + j = ki−1 + i.

Let I(β) be the ideal generated by the d× d-minors of MP + β. Then I(β) ∈ ZP , and

(2.3) Ad MP+β−−−−→ Ad+1 → I(β)

is a resolution for I(β). Conversely, any ideal in ZP is of the form I(β) for a unique matrix
β satisfying the conditions (1)–(3) above.

We first consider condition (3) in more detail. It applies exactly when i, j belong to the
same group i′, . . . , i′ + ei′+ki′

− 1, for some i′, occurring in Remark 2.7. In other words, β(0)
is a matrix whose bottom row vanishies, and whose top d × d-block satisfies the following
condition.

Definition 2.12. For any type T of order d ≥ 1, we let e = e(T ) = (ei1 , ei2 , . . . , eit) be the
nonzero jumping indices ej of T , where i1 > i2 > · · · > it. Notice that

∑
eij = d. We say

that a d × d upper-triangular matrix M = (mij) has shape e if the entries of the diagonal
blocks of M of sizes ei1 × ei1 , ei2 × ei2 , . . . , eit × eit are zero. We let Mate(k) ∼= Ane denote
the affine space of d× d matrices of shape e.

Example 2.13. If T = (1, 2, 3, 4, 5, 3, 3, 1, 0, 0, . . .), then degree is d = 5, the shape is e =
(ei1 , ei2 , ei3) = (e8, e7, e5) = (1, 2, 2), and Mate(k) ∼= A8 is the affine space of upper-triangular
matrices of the form 

0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0
0 0 0 0 0

 .

1Notice that the inequality “µ ≤ wmax{i,j}” in the formula [Iar77, (4.14)] should be “µ < wmax{i,j}”.
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A dimension count shows that the matrices β satisfying (1)–(3) form an affine space of

dimension nT := n − d −
∑

i
ei(ei−1)

2
, whereas matrices of shape e with entries in k form an

affine space of dimension ne :=
∑

j<k eijeik =
d2−

∑
e2i

2
.

Corollary 2.14. For any normal pattern P of type T and order d, there is an isomorphism

(2.4) AnT
∼=−→ ZP , β 7→ I(β).

The minimal number of generators of I(β) depends only on the image of β under the coordi-

nate projection, with fibers AnT−ne = An− d(d+1)
2 ,

AnT ∼= ZP → Ane ∼= Mate(k), β 7→ β(0) :=
(
βij(0)

)
1≤i,j≤d

obtained by removing the last row of zeros in β(0): it is given by d+ 1− rank(β(0)).

Proof. By virtue of Proposition 2.11, we only need to prove the claim about the minimal
number of generators. Using the resolution (2.3) and Nakayama’s Lemma, we see that it is
given by d+ 1− rank (MP (0, 0) + β(0)). As MP (0, 0) = 0 and the rank of β(0) is unchanged
by removing the row of zeros at the bottom, the claim follows. □

Example 2.15. We consider an order d = 5 stratum of Hilb22(A) associated with the type
T = (1, 2, 3, 4, 5, 3, 3, 1, 0, 0, . . . ), where A = k[[x, y]]. The sequence of nonzero jumping
indices is e = (e8, e7, e5) = (1, 2, 2). The Young diagram ∆(P ) and the values of ki’s and
nonzero ei’s are illustrated in Figure 1.

y5 k5 = 0

y4 xy4 k4 = 1

y3 xy3 x2y3 k3 = 2

y2 xy2 x2y2 x3y2 x4y2 x5y2 k2 = 5

y xy x2y x3y x4y x5y x6y k1 = 6

1 x x2 x3 x4 x5 x6 x7 x8 k0 = 8

e5 = 2

e7 = 2

e8 = 1

Figure 1. Young diagram ∆(P ) in the case where T = (1, 2, 3, 4, 5, 3, 3, 1)
along with the values of ki’s and nonzero ei’s.

The matrices β satisfying (1)–(3) form an affine space A15, and for each such β ∈ A15, the
matrix MP + β of Proposition 2.11 takes the form

MP + β =


−y + β1

11x β0
12 β0

13 + β1
13x+ β2

13x
2 β0

14 β0
15

x2 −y β1
23x+ β2

23x
2 β0

24 β0
25

0 x −y + β1
33x+ β2

33x
2 β0

34 β0
35

0 0 x3 −y 0
0 0 0 x −y
0 0 0 0 x

 ,
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and the ideal I(β) is generated by the 5 × 5 minors of the above matrix; here, βk
ij ∈ A1(k)

are the coefficients of the polynomial βij =
∑

k β
k
ijx

k. The isomorphism (2.4) in this case is

the isomorphism β 7→ I(β), A15
∼=−→ ZP . Moreover, the projection (β ∈ A15) 7→ (β(0) ∈ A8)

of Corollary 2.14 takes the form:

β =


β1
11x β0

12 β0
13 + β1

13x+ β2
13x

2 β0
14 β0

15

0 0 β1
23x+ β2

23x
2 β0

24 β0
25

0 0 β1
33x+ β2

33x
2 β0

34 β0
35

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 7→ β(0) =


0 β0

12 β0
13 β0

14 β0
15

0 0 0 β0
24 β0

25

0 0 0 β0
34 β0

35

0 0 0 0 0
0 0 0 0 0

 .

In light of Corollary 2.14, we need to describe the degeneracy locus of matrices of shape e
and of given rank. We first consider a slightly more general problem. Given a non-decreasing
function Γ: {1, 2, . . . , d} → {0, 1, 2, . . . , d}, we say that a d × d-matrix M is of type Γ if
Mij = 0 for i > Γ(j).

Remark 2.16. Let e be a collection of jumping indices, and let Γ be the function with
Γ(i) = e1 + · · · + ek for e1 + · · · + ek < i ≤ e1 + · · · + ek+1 and 0 ≤ k ≤ s − 1. Then a
matrix of shape e if and only it is of type Γ. (So in Example 2.13 we would set Γ(1) = 0,
Γ(2) = Γ(3) = 1 and Γ(4) = Γ(5) = 3.) But functions Γ not of this form do not correspond
to a shape e.

Lemma 2.17. Let DΓ
R be the locus of d × d-matrices of type Γ and rank R. Then DΓ

R is
non-empty if and only if, for all 1 ≤ k ≤ d, we have

(2.5) Γ(k)− k ≥ R− d.

For each sequence 1 ≤ a1 < a2 < · · · < aR ≤ d, denoted by a, let

(2.6) ρΓ(a) := Rd− R(R− 1)

2
+

R∑
i=1

(Γ(ai)− ai) .

If non-empty, the dimension of DΓ
R is the maximum of ρΓ(a) for all sequences a as above

satisfying Γ(ai) ≥ i for all 1 ≤ i ≤ R.

Proof. Given a matrix M of rank R, we let a = (a1, . . . , aR) be the sequence describing its
row-echelon form: ai is the minimal number such that the first ai columns of M have rank
i. The maximal possible such sequence is given by ai = d + i − R, e.g. for the matrix NR

obtained as the R × R-unit matrix a the top right, filled with zeros in the rows below and
columns to the left; every other possible sequence satisfies ai ≤ d+ i−R.
If M is of type Γ, then the first k columns have rank at most Γ(k), as they only contain

zeros below the row Γ(k). Therefore, Γ(ai) ≥ i for all i. As Γ is monotone, combined with
the previous inequality we get

Γ(d+ i−R) ≥ Γ(ai) ≥ i,

for all i = 1, . . . , R, i.e. inequality (2.5) for k > d − R. As (2.5) is trivially satisfied for
k ≤ d − R due to Γ(k) ≥ 0, this shows that (2.5) is necessary for DΓ

R to be non-empty. On
the other hand, the matrix NR shows that it is also sufficient.

Given M ∈ DΓ,a
R , there is a basis v1, v2, . . . , vR (the rows in a row-echelon form of M) of

the row space of M such that the first non-zero entry of vi is at position ai; this basis is
well-defined up to the action of upper triangular R × R-matrices, and the dimension of the
space of such bases is given by

∑
i(d + 1 − ai). Every row of M is a linear combination of

v1, . . . , vR, where vi can contribute to the first Γ(ai) rows; moreover, a generic choice of such
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a linear combination yields a matrix of rank R and type Γ. Thus DΓ,a
R is irreducible and of

dimension
R∑
i=1

(d+ 1− ai)−
R(R + 1)

2
+

R∑
i=1

Γ(ai) = ρΓ(a).

As DΓ
R is the union of DΓ,a

R for all possible sequences a, this proves the claim. □

Corollary 2.18. Let d ≥ 2 be an integer, e = (e1, . . . , es) be an ordered partition of d of
length s = length(e). For each R ≥ 0, let DR(Mate(k)) = {M ∈ Mate(k) | rankM = R}
denote the degeneracy locus of matrices of shape e and rank R. Then

(1) DR(Mate(k)) ̸= ∅ if and only if R ≤ d−max{ej}.
(2) The dimension is bound by

(2.7) dimDR(Mate(k)) ≤ R

(
2d−R− 1

2

)
.

(3) If length(e) ≥ R + 1, then (2.7) is an equality.

Proof. We apply Lemma 2.17 with Γ as defined in Remark 2.16. The minimal possible value
of Γ(k)− k is given by −max{ej}; substituting this value in equation (2.5) proves (1).

Since Γ(k) ≤ k − 1 for all 1 ≤ k ≤ d, the last term in formula (2.6) satisfies

R∑
i=1

Γ(ai)− ai ≤ −R,

which proves (2). Moreover, equality Γ(k) = k − 1 holds only for k ∈ {e1 + 1, e1 + e2 +
1, . . . , e1 + · · ·+ es−1 +1}; thus equality in (2.7) is obtained if and only if the sequence a is a
subsequence of (e1+1, e1+e2+1, . . . , e1+· · ·+es−1+1), which is possible if length(e) ≥ R+1.
This proves (3). □

Remark 2.19. We note the special case of length(e) = 2, which includes the case of the
Grassmannian stratum of Example 2.2.

In this case, matrices in Mate(k) are just e1 × e2-matrices, extended by rows of zeros and
columns on the bottom and left to form a d× d-matrix. Thus Dr(e1, e2) is non-empty if and
only if r ≤ min{e1, e2}, in which case it has dimension r(d− r).

2.4. Local Brill–Noether theory. The following is our main result regarding the Brill–
Noether loci on each Hilbert–Samuel stratum ZT . The smallest possible minimal number of
generators for ideals in ZP had previously been described in [Iar77, Theorem 4.3] and [Bri77,
Proposition III.2.1].

Theorem 2.20 (Brill–Noether for Hilbert–Samuel Strata). Let T be a type of order d and
|T | = n, and let ZT ⊂ Hilbn(k[[x, y]]) denote the associated stratum. Assume that either
char(k) = 0 or char(k) ≥ |T | = n. Let rmin := maxj{ej}, where ej are the jumping indices
of T . We let e = e(T ) be the list of nonzero jumping indices ej of T as in Definition 2.12,
and let length(e) denote the length of the sequence e. For each r > 0, we consider the
Brill–Noether locus of the stratum ZT ,

BN=r(ZT ) := {I ∈ ZT | dimk(I ⊗A k) = r + 1} ⊂ ZT ,

where dimk(I ⊗A k) is the minimal number of generators of an ideal I. Then:

(1) We have BN=r(ZT ) ̸= ∅ if and only if rmin ≤ r ≤ d.
(2) For all rmin ≤ r ≤ d, we have

(2.8) dimBN=r(ZT ) ≤ n− r(r + 1)

2
− (d− r).
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(3) If length(e) ≥ (d− r) + 1, then BN=r(ZT ) is nonempty, and (2.8) is an equality.

(4) In particular, BN=d(ZT ) is nonempty and of dimension n− d(d+1)
2

.

Proof. By virtue of Proposition 2.10 we only need to prove the results on the affine chart ZP .
Corollary 2.14 implies that the isomorphism (2.4) induces an isomorphism

Dd−r(Mate(k))× An− d(d+1)
2

∼=−→ BN=r(ZP ) for all r ≥ 0,

where Dd−r(Mate(k)) is as defined in Corollary 2.18, and BN=r(ZP ) = BN=r(ZT ) ∩ ZP .
Then the claims (1), (2) and (3) follow directly from the corresponding claims in Corollary

2.18 after substituting R = d− r. Finally, (4) is a special case of (3). □

Example 2.21. Consider the Grassmannian stratum in Hilb d(d+1)
2

+ℓ
(S) of Example 2.2 for

given d and ℓ, and let Gr be the corresponding type. In light of Remark 2.19, we can be
more precise about the loci BNr(ZGr). The locus BNr(ZGr) is non-empty if and only if
max{ℓ, d− ℓ} ≤ r ≤ d; in this case BNr(ZGr) is irreducible and of dimension ℓ+ r(d− r). In
particular, BNd(ZGr) is non-empty and has dimension d.

From Theorem 2.20, we obtain the following:

Corollary 2.22. Let A = k[[x, y]], where k is a field, and let n ≥ 2 be an integer. Assume
that char(k) = 0 or char(k) ≥ n. Let Hilbn(A) denote the Hilbert scheme of n points on
R = k[[x, y]] with the reduced scheme structure. For any integer r ≥ 0, we define

ρlocr,n := n− r(r + 1)

2
.

We let BNloc
r,n denote the Brill–Noether locus BNr(Hilbn(A)) = {I ∈ Hilbn(A) | dimk(I⊗Ak) ≥

r + 1}. Then:
(1) BNloc

r,n ̸= ∅ if and only if ρlocr,n ≥ 0.

(2) If the conditions of (1) are satisfied, then dimBNloc
r,n = ρlocr,n.

(3) If ρlocr,n = 0, then BNloc
r,n

∼= {mr} is a point.

Proof. By virtue of Theorem 2.4, BNloc
r,n is the union of BNr,n(ZT ), where T runs through all

possible types with |T | = n. The condition ρlocr,n ≥ 0 is equivalent to the condition that there
is a type T with |T | = n and order r. For such a type T , Theorem 2.20 (4) implies that
BNr(ZT ) is nonempty and has dimension ρlocr,n.

Conversely, if BNloc
r,n ̸= ∅, then there exists a type T such that BNr(ZT ) ̸= ∅. By Theorem

2.20 (1), such a type T has order ≥ r, which implies ρlocr,n ≥ 0. This proves claim (1).
Now assume the conditions of claim (1). If a type T has order < r, then BNr(ZT ) is empty

by Theorem 2.20.(1); if T has order r, then dimBNr(ZT ) = ρlocr,n by Theorem 2.20.(3); and

if a type T has order > r, then dimBNr(ZT ) has dimension strictly smaller than ρlocr,n by
Theorem 2.20.(2). As there always exists a type of order r, this proves claims (2). And if
ρlocr,n = 0, then the only possible type of order r is (1, 2, . . . , r, 0, 0, . . . ), corresponding to the
unique ideal mr; this proves (3). □

Remark 2.23. When ρlocr,n = 1, Hilbn(A) consists of precisely one degree r stratum ZT which
parametrizes ideals of type T = (1, 2, . . . , r, 1, 0, 0 . . . ), i.e., ZT

∼= Pr is the Grassmannian
stratum of Example 2.2 in the case where ℓ = 1. In this case, BNloc

r,n = BNr(ZT ) ∼= P1 is

the image of rth Veronese embedding νr : P1 ↪→ Pr ∼= ZT . To see this, let P = P (x, y) be a
normal pattern associated with T . Then ideals of ZP are given by I = (f0, f1, . . . , fr), where
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f0 = xr+1, f1 = xr−1y − a1x
r, . . ., fr = yr − arx

r, (a1, . . . , ar) ∈ Ar. Each such ideal I has a

presentation Rr M−→ Rr+1 → I, where

M =


−y + a1x a2 − a21 a3 − a1a2 · · · ar − a1ar−1

x2 −y − a1x −a2x · · · −ar−1x
x −y 0 · · ·

x · · · 0
· · · −y

x

 .

Therefore, I ∈ BNr(ZP ) if and only if M |(0,0) = 0, if and only if

a2 − a21 = a3 − a1a2 = · · · = ar − a1ar−1 = 0.

Applying the action of GL2(k), we see that BNr(ZT ) ⊂ Pr is smooth, closed, and one-
dimensional, and is the closure of the curve {(a1, a21, · · · , ar1) | a1 ∈ A1} ⊂ Ar in Pr.

2.5. Global Brill–Noether theory. Before applying our local results in the global setting,
we note that our Brill-Noether loci have a well-defined expected dimension:

Lemma 2.24. The locus BNr,n is everywhere of dimension at least

ρr,n = 2n+ 2− r(r + 1).

If this expected dimension is achieved at each point, then BNr,n is Cohen–Macaulay.

Proof. Since the universal subscheme Zn ⊂ Hilbn(S) × S is finite and flat over the smooth
scheme Hilbn(S), it is Cohen–Macaulay. Let z = (I, p) ∈ Hilbn(S)×S. By the Hilbert–Burch
theorem ([Eis13, Theorem 20.15]), the ideal IZn admits a resolution of length two of the form

Ok
Hilbn(S)×S,z

M−→ Ok+1
Hilbn(S)×S,z → IZn,z

near z, where ℓ ≥ 1 is an integer.
Since IZn,z ⊗OHilbn×S,z

κ(z) ∼= Ip ⊗OS,p
κ(p), the Brill–Noether locus BNr,n at z = (I, p)

coincides with the degeneracy locus where the k × (k + 1) matrix M has rank ≤ k − r.
Therefore, it is a closed subset of codimension at most r(r+1). Moreover, when the maximal
codimension r(r + 1) is achieved, the Brill–Noether locus BNr,n is Cohen–Macaulay at the
point z (see, for example, [Eis13, Exercise 10.9 & Theorem 18.18]). □

Proof of Theorem 1.2 under the condition char(k) = 0 or char(k) ≥ n. Consider the stratifi-
cation of BNr,n by the multiplicity mp(I) = dimk(OS,p/IS,p) of I at p:

BNr,n =
n⊔

m=1

BN(m)
r,n , BN(m)

r,n = {(I, p) ∈ BNr,n | mp(I) = m}.

By semicontinuity, each BN(m)
r,n is a locally closed subset.

Consider the projection BN(m)
r,n → S that sends (I, p) to p. Choosing local parameters x, y

at a point p ∈ S identifies the fiber of this projection over p with BNloc
r,m ×Hilbn−m(S\{p}).

From Corollary 2.22 (1), we obtain that BN(m)
r,n ̸= ∅ if and only if r(r+1)

2
≤ m ≤ n.

Consequently, BNr,n ̸= ∅ if and only if r(r+1)
2

≤ n, if and only if ρr,n ≥ 2. If BN(m)
r,n ̸= ∅, by

Corollary 2.22 (2), we have

dimBN(m)
r,n = dimBNloc

r,m+2(n−m+ 1) = 2n+ 2−m− r(r + 1)

2
.
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So dimBN(m)
r,n is strictly decreasing with respect to the variable m ∈ [ r(r+1)

2
, n], and achieves

its maximum if and only if m = mmin := r(r+1)
2

. In this case,

dimBN(mmin)
r,n = 2n+ 2− r(r + 1) = ρr,n,

and the fiber of BN(mmin)
r,n under the projection to S is BNloc

r,mmin
×Hilbn−mmin

(S\{p}) =

{point} × Hilbn−mmin
(S\{p}) by Corollary 2.22.(3). In particular, BN(mmin)

r,n is irreducible.

By Lemma 2.24, this implies that BN(mmin)
r,n of BNr,n is irreducible of the expected dimen-

sion, as every lower-dimensional stratum is contained in the closure of this one. □

3. Birational correspondences between Brill-Noether loci

In this section, we give a second proof of Theorem 1.2 using birational correspondences
between different Brill-Noether loci defined by certain nested Hilbert schemes. For simplicity,
we continue to assume that k is algebraically closed.
Recall from the introduction that

BNr,n = {(I, p) | dimk(I ⊗OS
κ(p)) ≥ r + 1} ⊂ Hilbn(S)× S,

for n ≥ 1, r ≥ 0, and let BN=r,n be the open subset

BN=r,n = {(I, p) | dimk(I ⊗OS
κ(p)) = r + 1} ⊂ Hilbn(S)× S.

Recall from Lemma 2.24 (the only result from Section 2 that we will use) that BNr,n has
expected dimension ρr,n. We will prove by induction on n that BNr,n and BN=r,n have
expected dimension and are non-empty if and only if ρr,n ≥ 2. Note that ρr−1,n = ρr,n+r,
which is the first hint of a relation between BNr−1,n and BNr,n+r. The key role in this relation,
and in our second proof of Theorem 1.2, is played by the following nested Hilbert scheme:

Definition 3.1. For n ≥ 1, 1 ≤ r ≤ n we let Hilb†
n−r,n(S) be the r-step nested Hilbert scheme

Hilb†
n−r,n(S) := {In ⊂ In−r | ∃p ∈ S, In−r/In ∼= κ(p)⊕r} ⊂ Hilbn−r(S)× Hilbn(S).

We let π1, π2 be the natural projections:

(3.1)

Hilb†
n−r,n(S)

Hilbn−r(S)× S Hilbn(S)× S

π2π1

It was proven in [Jia20, Lemma 5.6] that both π1 and π2 can be described as relative
Grassmannian bundles, for the ideal IZ of the universal subscheme Z ⊂ Hilbn−r(S) × S in
case of π1, and for ωZ in case of π2. For our purposes, we only need the following consequences
of [Jia20, Lemma 5.6], for which we give a self-contained proof for convenience:

Lemma 3.2. (1) The image of π1 is BNr−1,n−r.
(2) Moreover, if In ∈ BN=r′−1,n−r for some r′ ≥ r, then the fiber π−1

1 (In) is isomorphic to
the Grassmannian Grass(r, r′). In particular, it is an isomorphism over BN=r−1,n−r.

(3) The image of π2 is BNr,n, and π2 is an isomorphism over BN=r,n. If r > n, then
BNr,n is empty.

Proof. By definition, closed points of Hilb†
n−r,n(S) are in 1:1-correspondence with short exact

sequences of the form

(3.2) 0 → In → In−r → κ(p)⊕r → 0.
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First consider In−r fixed. Then such sequences correspond to surjections In−r ↠ κ(p)⊕r

up to the automorphism GLr(κ(p)) of κ(p)⊕r, which in turn are given by surjective maps
In−r ⊗OS

κ(p) ↠ κ(p)r of k ∼= κ(p)-vector spaces; this proves both (1) and (2).
Now we apply Hom( , κ(p)) to the short exact sequence (3.2). As Ext2(In−r, κ(p)) = 0,

we obtain a surjection

Ext1(In, κ(p)) ↠ Ext2
(
κ(p)⊕r, κ(p)

) ∼= κ(p)r.

Since χ(In, κ(p)) = 1 and all higher Ext vanish by Serre duality, this gives

dimκ(p)(In ⊗OS
κ(p)) = dimκ(p) Hom(In, κ(p)) = dimκ(p) Ext

1(In, κ(p)) + 1 ≥ r + 1.

This shows that the image of π2 is contained in BNr,n.
Conversely, if In ∈ BNr,n, then dimκ(p) Ext

1(In, κ(p)) = dimκ(p) Ext
1(κ(p), In) ≥ r by the

same reasoning. Any r-dimensional subspace of Ext1(κ(p), In) defines an extension

0 → In → J → κ(p)⊕r → 0

with Hom(κ(p), J) = 0. Thus J is a torsion-free sheaf of rank one and trivial determinant
on a smooth surface, and therefore an ideal sheaf. This shows that r ≤ n, and that In is
contained in the image of π2. Moreover, if In ∈ BN=r,n, this short exact sequence is unique.
This concludes the proof of (3). □

Theorem 3.3. (1) For each n ≥ 0 and r ≥ 0, the locus BNr,n is non-empty if and only
if its expected dimension satisfies ρr,n ≥ 2.

(2) If this condition is satisfied, then BNr,n is irreducible, of expected dimension ρr,n, and
birational to Hilbi(S)× S, for i = ρr,n

2
− 1.

(3) Moreover, if n ≥ 1, 1 ≤ r ≤ n and ρr,n ≥ 2, then the diagram (3.1) induces a diagram

(3.3)

Hilb†
n−r,n(S)

BNr−1,n−r BNr,n,

π2π1

where π1 and π2 are isomorphisms over the open and dense loci BN=r−1,n−r and
BN=r,n.

Proof. We will give a proof by induction on n. If n = 0, BN0,0 = Hilb0(S)×S and BNr,0 = ∅
for r ≥ 1, as claimed.

For the induction step, by Lemma 3.2.(3), we can assume r ≤ n. For r = 0, we have
BN0,n = Hilbn(S) × S, matching our claims. In the remaining cases 1 ≤ r ≤ n we use

diagram (3.1) and apply Lemma 3.2. Consider the map π1 : Hilb
†
n−r,n → BNr−1,n−r and the

stratification
BNr−1,n−r =

⋃
r′≥r

BN=r′−1,n−r

of the image. By induction assumption, BN=r′−1,n−r is irreducible and of expected dimension

ρr′−1,n−r = 2n− 2r + 2− (r′ − 1)r′, and non-empty iff ρr′−1,n−r ≥ 2. In particular, Hilb†
n−r,n,

and thus BNr,n, is non-empty if and only if ρr,n = ρr−1,n−r ≥ 2, proving (1).
By Lemma 3.2.(2), the preimage π−1

1 (BN=r′−1,n−r) has dimension

2n− 2r + 2− (r′ − 1)r′ + r(r′ − r) = 2n+ 2− r(r + 1)− (r′ − 1)(r′ − r)

= ρr,n − (r′ − 1)(r′ − r) ≤ ρr,n,

with equality only if r′ = r. As BNr−1,n−r is irreducible by the induction assumption,

Hilb†
n−r,n(S) has one irreducible component of dimension ρr,n, birational to BNr−1,n−r; should
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Hilb†
n−r,n(S) be reducible, every other component has smaller dimension. Since BNr,n is the

image of Hilb†
n−r,n(S) by Lemma 3.2.(3), and has dimension at least ρr,n at every point by

Lemma 2.24, it is irreducible, of expected dimension, and birational to BNr−1,n−r. This
proves both claim (2) and, when combined with Lemma 3.2.(3), claim (3). □

Remark 3.4. In the situation of Theorem 3.3.(2), Hilb†
n−r,n(S) is also irreducible, of expected

dimension ρr,n, and birational to Hilbi(S) × S. Since IZn−r locally admits a resolution of

the form Ok
Hilbn−r(S)×S

M−→ Ok+1
Hilbn−r(S)×S for some k ≥ 1 (see the proof of Lemma 2.24), we

can locally identify points of Hilb†
n−r,n(S) with surjections Ok+1

Hilbn−r(S)×S → κ(z)r that become

zero when composed with M . This locally identifies π1 with the zero locus of the section of
an rk-dimensional vector bundle on a relative Grass(r, k+1)-bundle over Hilbn−r(S)×S (see
e.g. [Jia22b, Proposition 4.19] for a general description of this phenomenon). Thus it has
dimension at least 2(n−r)+2+r(k+1−r)−rk = ρr,n at every point, and so the irreducible
component described in the proof of Theorem 3.3 is the only one. (See [Jia22a, Lemma 7.16]
for a similar argument, for projectivisations rather than relative Grassmannians.)

Example 3.5. When BNr,n−r and BNr+1,n are empty, then by Lemma 3.2 both π1 and π2

in (3.3) are isomorphisms, and so BNr−1,n−r
∼= BNr,n. For any fixed expected dimension ρr,n,

this holds as soon as 2r ≥ ρr,n:

(1) When the expected dimension is two, the locus BN1,1 ⊂ Hilb1(S) × S ∼= S × S is
the diagonal ∆S, and BN1,1

∼= BN2,3
∼= . . . ∼= BN

d,
d(d+1)

2

∼= S for all d. Concretely,

BN
d,

d(d+1)
2

is the locus of pairs (md
p, p).

(2) When the expected dimension is four, we have BN0,1 = Hilb1(S)×S ∼= S×S, whereas
BN1,2 ⊂ Hilb2(S) × S is the universal subscheme, isomorphic to Bl∆S

(S × S), and
BN1,2

∼= BN2,4
∼= . . . ∼= BN

d,
d(d+1)

2
+1

for d ≥ 1.

(3) When the expected dimensions is six, we have that BN0,2
∼= Hilb2(S)×S and BN1,3 ⊂

Hilb3(S) × S is the universal subscheme. In the diagram (3.3) for Hilb†
2,3(S), both

morphisms π1 and π2 are non-trivial. In the next step, π1 : Hilb
†
3,5(S) → BN1,3 is

a Gr(2, 3) = P2-bundle over BN2,3
∼= S, and an isomorphism on the complement,

whereas π2 : Hilb
†
3,5(S) → BN2,5 is an isomorphism, with BN2,5

∼= BN3,8
∼= . . . ∼=

BN
d,

d(d+1)
2

+2
for d ≥ 3.
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