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Abstract. We show that the moduli space MX(v) of Gieseker stable sheaves on a smooth cubic
threefold X with Chern character v = (3,−H,−H2/2, H3/6) is smooth and of dimension four.
Moreover, the Abel-Jacobi map to the intermediate Jacobian of X maps it birationally onto the
theta divisor Θ, contracting only a copy of X ⊂MX(v) to the singular point 0 ∈ Θ.

We use this result to give a new proof of a categorical version of the Torelli theorem for cubic
threefolds, which says that X can be recovered from its Kuznetsov component Ku(X) ⊂ Db(X).
Similarly, this leads to a new proof of the description of the singularity of the theta divisor, and
thus of the classical Torelli theorem for cubic threefolds, i.e., that X can be recovered from its
intermediate Jacobian.
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1. Introduction

Moduli spaces of sheaves provide examples of algebraic varieties with an interesting and rich
geometry and they have been widely studied in the past few decades. In particular, there are many
strong results regarding moduli spaces on surfaces, while the situation on threefolds is less under-
stood. We refer to [HL10] for a more detailed account of the theory, which has been revolutionized
by the introduction of stability conditions on triangulated categories by Bridgeland [Bri07].

Perhaps the main player of the seminal paper by Clemens and Griffiths [CG72] on the geometry
of cubic threefolds is the theta divisor Θ of its intermediate Jacobian J(X). Various authors have
studied parametrizations of the theta divisor by moduli spaces of sheaves, see [AKP03, Bea02, Ili99].

In this paper, we find a new, and in a sense most efficient, parametrization of this type: a smooth
four-dimensional moduli space of stable sheaves isomorphic to the desingularization of the theta
divisor.

Let X ⊂ P4 be a smooth cubic threefold over C and H the hyperplane section. Let MX(v) be the
moduli space of Gieseker-semistable sheaves on X with Chern character v := (3,−H,−1

2H
2, 1

6H
3).

2010 Mathematics Subject Classification. 14D20 (Primary); 14F05, 14J30, 14J45.
Key words and phrases. Cubic Threefolds, Derived Categories, Stability Conditions.

1



Theorem 7.1. The moduli space MX(v) is smooth and irreducible of dimension 4. More precisely,
it is the blow up of Θ in its unique singular point. The exceptional divisor is isomorphic to the
cubic threefold X itself, and parametrizes non-locally free sheaves in MX(v).

Moduli space in the Kuznetsov component. The original motivation for our analysis of the
moduli space MX(v) comes from the study of moduli spaces of stable objects in a full triangulated
subcategory Ku(X) ⊂ Db(X) called the Kuznetsov component. It is defined through the semi-
orthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H)〉.
See [Kuz04] for details on the decomposition and on the Kuznetsov component.

Stability conditions on Ku(X) have been constructed in [BMMS12] and [BLMS17]. These sta-
bility conditions are Serre-invariant, which roughly means that stability of an object is preserved
by the action of the Serre functor of Ku(X) (see Section 8 for the precise definition). This property
allows us to study stability of objects irrespective of the specific construction of stability conditions.

The class v in Theorem 7.1 is chosen as the class of the projection KP of a skyscraper sheaf OP
for a point P ∈ X, which is defined by the short exact sequence

0→ KP → O⊕4 → IP (1)→ 0.

These are the non-locally free torsion-free slope-stable sheaves appearing in Theorem 7.1, and we
show that they are also stable as objects of Ku(X) with respect to any Serre-invariant stability
condition. Hence, the moduli space Mσ(v) of σ-stable objects in Ku(X) of Chern character v
contains X, yet its expected dimension is four. This was our first clue that this moduli space is of
interest. Indeed, our next result says that the moduli spaces Mσ(v) and MX(v) agree entirely.

Theorem 1.1 (Theorem 8.7 and Proposition 8.10). Let σ be an arbitrary Serre-invariant stability
condition on Ku(X). Then the moduli space Mσ(v) is isomorphic to the moduli space MX(v).

To summarise, we project the structure sheaf of a point into the Kuznetsov component and take
its moduli space. It obviously contains X but is bigger. It is the resolution of the theta divisor, with
X as the exceptional divisor. Thus, we recover X from Ku(X) or from the intermediate Jacobian,
i.e., we obtain new proofs of both the categorical and classical Torelli theorem for cubic threefolds:

Theorem 1.2 (Corollary 7.6 and Theorem 8.1). Let X1 and X2 be smooth cubic threefolds. The
following are equivalent:

(i) X1 and X2 are isomorphic.
(ii) Ku(X1) and Ku(X2) are equivalent as triangulated categories.

(iii) J(X1) and J(X2) are isomorphic as principally polarised abelian varieties.

Proof ideas. The proof of Theorem 7.1 relies on two classical ingredients. Firstly, we use the fact
that any irreducible theta divisor is normal due to [EL97]. Secondly, we use a characterization
of the theta divisor of the intermediate Jacobian in terms of twisted cubics, see Proposition 2.2.
This was proved by Beauville in [Bea02], but it can also be deduced from the description of Θ as
differences of lines in [CG72], see Remark 2.3.

The strategy to prove Theorem 7.1 is to vary the notion of stability and reach a detailed de-
scription of the objects that belong to the moduli space MX(v) through wall-crossing. Since X has
Picard rank one, Gieseker stability cannot be varied. This is where the derived category comes into
play in the form of tilt-stability introduced in [Bri08] for K3 surfaces, and then further generalized
to other surfaces and threefolds in [AB13, BMT14]. In fact, we give a complete description of the
wall and chamber structure (see Section 6). Once a set-theoretic description of MX(v) has been
reached, we use standard deformation theory arguments in Corollary 6.9 to deduce that it is smooth
and of dimension four.
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To prove Theorem 8.7, we first show the claim for the specific stability condition constructed in
[BLMS17] which are Serre-invariant by [PY20]. We then prove in a completely separate argument
that our moduli space is independent of the choice of Serre-invariant stability conditions σ. The
essential ingredient in this last argument is the weak Mukai Lemma from [PY20].

Related work. In the recent paper [APR19], the authors studied moduli spaces of some torsion
sheaves in the Kuznetsov components of Fano threefolds with Picard rank one and index two. In
the case of cubic threefolds they study Mσ([S2(KP )]) (S is the Serre functor on Ku(X)), but do not
obtain our detailed geometric description. A key difference is that in their case the moduli space
in the Kuznetsov component is different from the moduli space of Gieseker-semistable sheaves.

Classical Torelli is the implication (iii) ⇒ (i) in Theorem 1.2 which was first proved in [CG72].
The implication (ii) ⇒ (iii) was first established in [BMMS12, Theorem 1.1], where it was shown
that the Fano variety of lines F (X) can be recovered from Ku(X) as a moduli space of stable
objects. Thus, one obtains the intermediate Jacobian J(X) as the Albanese variety of F (X).
A more recent argument for (ii) ⇒ (iii) can be deduced from Perry’s categorical construction of
intermediate Jacobians [Per20, Section 5.3], when the equivalence is given by a Fourier-Mukai kernel
on X1 ×X2. Instead, our paper gives a very direct geometric argument for (ii) ⇒ (i), as well as a
variant of the proof of classical Torelli via the description of the singularity of theta divisor implied
by Theorem 7.1.

Since this article originally appeared on the arXiv, [FP21] and [Zha21] proved uniqueness of
Serre-invariant stability conditions on Ku(X). Proposition 8.10 in the last section could now be
obtained as an immediate corollary.
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Notation.
X smooth cubic threefold in P4 over C
H the ample generator of Pic(X)
Y a hyperplane section of X

Db(X) bounded derived category of coherent sheaves on X
Ku(X) the Kuznetsov component inside Db(X)

CH∗(X) the Chow ring of X
CH∗n(X) the numerical Chow ring of X, obtained as CH∗(X) modulo numerical equivalence
Hi(E) the i-th cohomology sheaf of a complex E ∈ Db(X)
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H i(E) the i-th sheaf cohomology group of a complex E ∈ Db(X)
ch(E) total Chern character of an object E ∈ Db(X) up to numerical equivalence
c(E) total Chern class of an object E ∈ Db(X) up to numerical equivalence

c̃h(E) total Chern character of an object E ∈ Db(X) up to rational equivalence
c̃(E) total Chern class of an object E ∈ Db(X) up to rational equivalence

ch≤l(E) (ch0(E), . . . , chl(E))

c̃h≤l(E) (c̃h0(E), . . . , c̃hl(E))

2. Cubic threefolds and intermediate Jacobians

Let X ⊂ P4 be a smooth cubic threefold. In their celebrated article [CG72], Clemens and Griffiths
introduced the intermediate Jacobian of X. It is the complex torus defined as

J(X) := H2,1(X)∨/H3(X,Z) = H1(Ω2
X)∨/H3(X,Z).

It turns out that J(X) is a principally polarized abelian variety of dimension five.
Let {Zb}b∈B be a family of 1-cycles over a variety B. The choice of a base point b0 ∈ B leads to

an Abel-Jacobi map ΨB : B → J(X) as follows. For any b ∈ B the cycle Zb−Zb0 has degree 0, i.e.,
it is homologically trivial, and can be written as the boundary ∂Γ for a 3-chain Γ. The integral

∫
Γ

is an element in H1,2(X)∨ whose class in J(X) is the image of the Abel-Jacobi map. By [Gri68,
Theorem 2.20] the map ΨB is algebraic along the smooth locus of B.

If Zb = C is a smooth curve, then the induced morphism on tangent spaces has been described
by Welters, see [Wel81, Section 2]. Recall that the tangent space of the Hilbert scheme at C is
naturally given by H0(NC/X) where NC/X is the normal bundle. The tangent space of J(X) at

any point is given by H1,2(X)∨ = H1(Ω2
X)∨. By definition, the infinitesimal Abel-Jacobi map

ψC : H0(NC/X)→ H1(Ω2
X)∨ is the map of tangent spaces induced by ΨB. We get a dual morphism

ψ∨C : H1(Ω2
X)→ H0(NC/X)∨.

Lemma 2.1. The following diagram is commutative and has exact rows and columns.

0

��
H0(IC(H))

��
H0(OX(H))

∼= //

��

H1(Ω2
X)

ψ∨
C

��
H0(NC/P4(−2H)) // H0(OC(H)) // H0(NC/X)∨

Proof. This is mostly [Wel81, Lemma 2.8] and the preceding construction of the morphisms. The
map H0(OX(H))→ H1(Ω2

X) is the connecting morphism in a long exact sequence

H0(Ω3
P4 ⊗OX(3H))→ H0(OX(H))→ H1(Ω2

X)→ H1(Ω3
P4 ⊗OX(3H)).

The wedge product induces a perfect pairing Ω3
P4 ⊗ ΩP4 → OP4(−5). Therefore, Ω3

P4 = TP4(−5).
For i = 0, 1 we have

H i(TP4 ⊗OX(−2H)) = 0. �

Recall that the Lefschetz Hyperplane Theorem says that the hyperplane section H ∈ Pic(X)
generates the Picard group. One can use twisted cubics to characterize the theta divisor of J(X).
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A proof of the following result can be found in [Bea02, Proposition 5.2]. Let T be the open locus
of smooth twisted cubics in the Hilbert scheme of X, and let T be its closure.

Proposition 2.2. The Abel-Jacobi map ϕ : T → J(X) with base point of class H2 is algebraic.
Its image is a theta divisor Θ ⊂ J(X) and its generic fiber is isomorphic to P2.

Remark 2.3. Proposition 2.2 can be deduced from the description of Θ as differences of lines as
well. We give a rough sketch of the argument here.

Let F be the Fano variety of lines on X. According to [CG72] the morphism F × F → J(X)
that maps (L,L′) 7→ [L]− [L′] is generically a 6 to 1 cover of Θ.

Since a twisted cubic C ⊂ X lies in a unique cubic surface Y ⊂ X, the morphism T → J(X)
factors via the moduli space F of pairs (D,Y ), where Y is a cubic surface and D is the divisor
class of a twisted cubic. The generic fiber of the morphism T → F is given by P(H0(OY (D)) = P2.
Indeed, OY (D) is the pullback of OP2(1) if Y is written as the blow up of six general points in P2.

If D is the class of a twisted cubic on a smooth cubic surface, then D − H2 can be written as
the difference of two lines on a cubic surface. Therefore, the Abel-Jacobi morphism maps onto Θ.
Moreover, there are precisely six ways to write D−H2 as the difference of two lines. Together with
the fact that F × F → J(X) is generically a 6 to 1 cover of Θ, we get that F → Θ has degree 1.

Lemma 2.4. Let P1 ∼= C ⊂ X ⊂ P4 be a twisted cubic. Then NC/P4 = OP1(5)⊕2 ⊕ OP1(3),

h0(NC/X) = 6, and h1(NC/X) = 0. In particular, the Hilbert scheme T is smooth of dimension six.

Proof. We have a short exact sequence

0→ NC/P3 = OP1(5)⊕2 → NC/P4 → NP3/P4 ⊗OC = OP1(3)→ 0.

Since Ext1(OP1(3),OP1(5)) = 0, we get NC/P4 = OP1(5)⊕2 ⊕ OP1(3). Next, we have a short exact
sequence

0→ NC/X → NC/P4 = OP1(5)⊕2 ⊕OP1(3)→ NX/P4 ⊗OC = OP1(9)→ 0.

Thus, NC/X has degree 4 and can only be OP1(m)⊕OP1(4−m) for some −1 ≤ m ≤ 5. The claim
about the cohomology of NC/X holds for each of them. �

Lemma 2.5. Along the locus of smooth curves T ⊂ T , the Abel-Jacobi morphism ϕ has differential
of rank four.

Proof. Let C ⊂ X be a smooth twisted cubic. Clearly, restriction maps H0(OX(H)) ∼= C5 sur-
jectively onto H0(OC(H)) ∼= C4. By Lemma 2.4, we have h0(NC/P4(−2H)) = h0(OP1(−1)⊕2 ⊕
OP1(−3)) = 0. By Lemma 2.1, we get a commutative diagram

C5
∼= //

����

H1(Ω2
X)

ψ∨
C

��
C4 � � // H0(NC/X)∨

Therefore, ψ∨C has rank four. �

The singularities of the theta divisor were computed in [Mum74, p. 348]. Another proof was
given in [Bea82, Main Theorem and Proposition 2]. We will not need this full description and
instead rely only on normality.

Theorem 2.6 ([EL97, Theorem 1]). Any irreducible theta divisor of an abelian variety is normal.

Lemma 2.7. Up to numerical equivalence, the Todd class of X is td(X) = (1, H, 2
3H

2, 1
3H

3). In

particular, for any E ∈ Db(X)

χ(E) = ch3(E) +H · ch2(E) + 2
3H

2 · ch1(E) + 1
3H

3 · ch0(E).
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Proof. By Kodaira vanishing H i(OX) = 0 for i 6= 0, and therefore, χ(OX) = 1. By the Hirzebruch-
Riemann-Roch Theorem we get td3(X) = χ(OX) = 1

3H
3. Similarly, Kodaira vanishing implies

H i(OX(−H)) = 0 for i 6= 0. Again by Hirzebruch-Riemann-Roch

0 = χ(OX(−H)) =
−H3

6
+H · H

2

2
− td2(X) ·H +

H3

3
.

Since X has Picard rank one, this is only possible if td2(X) = 2
3H

2. �

Lemma 2.8. The numerical Chow ring CH∗n(X) has a basis given by 1, H, H2/3, and H3/3. In
particular, if E ∈ Db(X), then ch2(E) ∈ 1

6H
2 · Z, and ch3(E) ∈ 1

6H
3 · Z.

Proof. Since Pic(X) is generated by H, the group CH2
n(X) is generated by a rational multiple of

H2. A general hyperplane section of X is a smooth cubic surface, which contains lines. The class
of such a line is H2/3. Since H3 = 3, the class has to be indivisible. Since H3/3 is the class of a
point, the group CH3

n(X) must be generated by it.
The claim about second Chern characters follows directly from ch2(E) = 1

2c
2
1(E) − c2(E). The

claim about ch3(E) follows from Lemma 2.7 and the fact that χ(E) ∈ Z. �

3. Divisors on hyperplane sections

We need to understand the singularities that can occur on hyperplane sections of X.

Proposition 3.1. Any cubic hyperplane section Y = V ∩X ⊂ P4 is normal and integral.

Proof. Since hypersurfaces satisfy condition S2, by Serre’s condition [Sta20, Section 031S], it is
enough to show that Y has isolated singularities. Assume for contradiction that Y contains a curve
C of singular points. Let F and x be the defining equation of X and V , respectively. Then ∂F/∂x
is a homogeneous degree 2 polynomial and hence vanishes somewhere along C. At such a point, all
partial derivatives of F vanish, hence it is a singular point of X, a contradiction. �

In order to deal with singular hyperplane sections, we need to recall the relation between Weil
divisors and rank one reflexive sheaves on integral normal varieties. This is very similar to the
standard relation between line bundles and Cartier divisors. We refer to [Sta20, Section 0EBK] or
[Sch07] for proofs of the following facts. They can also be found in [Har94] in more generality.

Let Y be a normal integral projective variety. By Cl(Y ) we denote the group of Weil divisors
modulo rational equivalence. For two rank one reflexive sheaves L1, L2 ∈ Coh(Y ) we can define a
new rank one reflexive sheaf by (L1⊗L2)∨∨. This defines a group law for rank one reflexive sheaves
on Y , where inverses are given by L 7→ L∨. For any effective prime divisor D one can define a rank
one reflexive sheaf OY (D) := I∨D. This can be linearly extended to any divisor.

Proposition 3.2. (i) The group of isomorphism classes of rank one reflexive sheaves is iso-
morphic to Cl(Y ) under the homomorphism D 7→ OY (D).

(ii) To every non-zero section s ∈ H0(L) of a rank one reflexive sheaf L, one can associate an
effective divisor D on Y .

(iii) For any effective Weil-divisor D on Y there is a section s ∈ H0(OY (D)) such that the
associated divisor is given by D.

(iv) Two sections s1, s2 ∈ H0(L) define the same divisor if they satisfy s1 = λs2 for some
λ ∈ C∗.

4. Notions of stability

In this section, we recall a number of notions of stability for sheaves. Let X be a smooth
projective threefold, and let H be an ample divisor on X.
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Definition 4.1 ([Mum63, Tak72]). (i) For any E ∈ Coh(X), the Mumford-Takemoto-slope is
defined as

µ(E) :=

{
H2·ch1(E)
H3·ch0(E)

for ch0(E) 6= 0,

+∞ for ch0(E) = 0.

(ii) A sheaf E ∈ Coh(X) is slope-(semi)stable if for any non-trivial proper subsheaf F ↪→ E the
inequality µ(F ) < (≤)µ(E/F ) holds.

From the Definition it follows immediately that if Pic(X) = Z ·H and E is slope-semistable with
gcd

(
ch0(E), H2 ch1(E)/H3

)
= 1, then E is slope-stable.

While slope-stability suffices to construct moduli spaces of vector bundles on curves, a refinement
is necessary in higher dimensions.

Definition 4.2. We define a pre-order on the polynomial ring R[m] as follows.

(i) For all non-zero f ∈ R[m], we have f ≺ 0.
(ii) If deg(f) > deg(g) for non-zero f, g ∈ R[m], then f ≺ g.

(iii) Let deg(f) = deg(g) for non-zero f, g ∈ R[m] and let af and ag be the leading coefficient of
f and g. Then f � g if and only if f(m)/af ≤ g(m)/ag for all m� 0.

(iv) If f, g ∈ R[m] with f � g and g � f , we write f � g.

For any E ∈ Coh(X), we denote its Hilbert polynomial and the terms αi(E) by P (E,m) :=

χ(E(mH)) =
∑3

i=0 αi(E)mi. Moreover, let P2(E,m) =
∑3

i=1 αi(E)mi.

Definition 4.3. (i) The sheaf E is Gieseker-(semi)stable if for all non-trivial proper subsheaves
F ⊂ E, the inequality P (F,m) ≺ (�)P (E,m) holds.

(ii) The sheaf E is 2-Gieseker-(semi)stable if for all non-trivial proper subsheaves F ⊂ E, the
inequality P2(F,m) ≺ (�)P2(E/F,m) holds.

Note that for 2-Gieseker-semistability we could have equivalently asked P2(F,m) � P2(E,m), but
for 2-Gieseker-stability, P2(F,m) ≺ P2(E,m) is a stronger condition that is almost never fulfilled
for all such subsheaves. These notions imply each other as follows:

slope-stable +3 2-Gieseker-stable +3 Gieseker-stable

��
slope-semistable 2-Gieseker-semistableks Gieseker-semistableks

The intermediate notion of 2-Gieseker stability is not classical and will just appear in the technical
parts of our arguments.

Due to [Gie77, Mar77, Mar78, Sim94] there exists a projective moduli spaceMX(v) parametrising
S-equivalence classes of Gieseker-semistable sheaves with Chern character v. Here two semistable
sheaves are called S-equivalent if they have the same stable factors up to order and isomorphism
in their Jordan-Hölder filtrations:

Proposition 4.4 ([HL10, Proposition 1.5.2]). Any Gieseker-semistable sheaf E ∈ Coh(X) has a
filtration

0 = E0 ↪→ E1 ↪→ . . . ↪→ En = E

such that the factors Ai := Ei/Ei−1 are Gieseker-stable with P (Ai,m) � P (E,m) for i = 1, . . . , n.
The sheaf

n⊕
i=1

Ai

is uniquely determined (up to isomorphism) by E.

Moreover, any sheaf E has a Harder-Narasimhan-filtration into Gieseker-semistable factors.
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Proposition 4.5 ([HL10, Theorem 1.3.4]). Let E ∈ Coh(X). There is a unique filtration

0 = E0 ↪→ E1 ↪→ . . . ↪→ En = E

such that the factors Ai := Ei/Ei−1 are Gieseker-semistable with P (A1,m) � P (A2,m) � . . . �
P (An,m).

Based on Bridgeland stability on surfaces, the notion of tilt stability was introduced in [BMT14].
It is not quite a Bridgeland stability condition, but it turns out to suffice for our purposes. The
basic idea is to change the category in which subobjects are taken when defining stability. This
is done via the theory of tilting introduced in [HRS96]. As before, let X be a smooth projective
threefold with an ample divisor H.

Definition 4.6. For any β ∈ R, we define two full additive subcategories of Coh(X):

Fβ(X) := {E ∈ Coh(X) : any slope-semistable factor F of E satisfies µ(F ) ≤ β},
Tβ(X) := {E ∈ Coh(X) : any slope-semistable factor F of E satisfies µ(F ) > β}.

The category
Cohβ(X) := 〈Tβ(X),Fβ(X)[1]〉

is the full additive subcategory of those E ∈ Db(X) for which H0(E) ∈ Tβ(X), H−1(E) ∈ Fβ(X),
and Hi(E) = 0 for all i 6= −1, 0.

Note that Hom(T, F ) = 0 for all T ∈ Tβ(X) and F ∈ Fβ(X), by semistability. It is well known

that the category Cohβ(X) is abelian. A sequence of morphisms

0→ A→ B → C → 0

in Cohβ(X) is a short exact sequence if and only if the induced sequence

A→ B → C → A[1]

is a distinguished triangle in Db(X).

To simplify notation, we define for any E ∈ Db(X) its twisted Chern character as chβ(E) :=
ch(E) · e−βH . Note that when β ∈ Z, this is nothing but ch(E ⊗OX(−βH)).

Definition 4.7. For α > 0, β ∈ R, and E ∈ Cohβ(X) we define a slope function

να,β(E) :=
H · chβ2 (E)− α2

2 H
3 · chβ0 (E)

H2 · chβ1 (E)
,

where again division by zero needs to be interpreted as +∞. Analogously to slope stability, an
object E ∈ Cohβ(X) is called να,β-(semi)stable if for all non-trivial proper subobjects F ↪→ E in

Cohβ(X) the inequality να,β(F ) < (≤)να,β(E/F ) holds.

If it is clear from context, we will sometimes abuse notation and write tilt-(semi)stable instead of

να,β-(semi)stable. Note that by definition, any E ∈ Cohβ(X) satisfies H2 · chβ1 (E) ≥ 0. Therefore,

this function plays the same role in Cohβ(X) as the rank does in Coh(X).
As previously, Harder-Narasimhan filtrations exist. However, note that a version of Jordan-

Hölder filtrations exists, but the stable factors are not unique up to order.
The notion of 2-Gieseker stability occurs as a limit of tilt stability as follows.

Proposition 4.8 ([Bri08, Proposition 14.2]). Let E ∈ Db(X) and β < µ(E). Then E ∈ Cohβ(X)
and E is να,β-(semi)stable for α� 0 if and only if E ∈ Coh(X) and E is 2-Gieseker-(semi)stable.

The statement in [Bri08] is for K3 surfaces, but the same proof works in our setting. If β > µ(E)
the situation is slightly more complicated. The following Proposition is a combination of [BMS16,
Lemma 2.7] and [LM16, Proposition 3.1].
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Proposition 4.9. Take a να,β-semistable object E ∈ Cohβ(X). If β 6= µ(E), then H−1(E) is a
reflexive sheaf, and if β ≥ µ(E) and α � 0, then H−1(E) is a torsion-free slope-semistable sheaf
and H0(E) is supported in dimension less than or equal to one.

Semistable sheaves satisfy the Bogomolov inequality (see [HL10, Theorem 3.4.1]). A version for
tilt stability was proved in [BMT14, Corollary 7.3.2].

Theorem 4.10 (Bogomolov inequality). Let E ∈ Cohβ(X) be να,β-semistable. Then

∆H(E) := (H2 · ch1(E))2 − 2(H3 · ch0(E))(H · ch2(E)) ≥ 0.

Most applications of tilt stability come from varying (α, β) and determining what that means for
the stability of a given set of objects. We visualize the parameter space of tilt stability, (α, β) ∈ R2

with α > 0, as the upper half-plane via iα + β. For a given class v ∈ K0(X) it turns out that
there is a locally finite wall and chamber structure such that stability only changes as we cross a
wall. These walls are either semicircles with center on the β-axis or vertical lines, see Figure 1 and
Figure 2. In the following, we recall what this means formally.

For v ∈ K0(X) we write ch(v), µ(v), να,β(v), and ∆(v) to mean the appropriate versions where
E is replaced by v.

Definition 4.11. For v, w ∈ K0(X) we define

W (v, w) := {(α, β) ∈ R>0 × R : να,β(v) = να,β(w)}.

The set W (v, w) is a numerical wall if W (v, w) 6= ∅ and W (v, w) 6= R>0 × R, i.e., if it is a proper
non-trivial subset of the upper half-plane.

Numerical walls in tilt stability have a rather simple structure as shown in [Mac14]:

Theorem 4.12 (Nested wall theorem). Let v ∈ K0(X) with ∆(v) ≥ 0.

(i) A numerical wall for v is either a semicircle centered along the β-axis or a vertical line
parallel to the α-axis in the upper half plane

(ii) If ch0(v) 6= 0, then there is a unique numerical vertical wall for v given by β = µ(v). The
remaining numerical walls for v are split into two sets of nested semicircles whose apexes
lie on the hyperbola να,β(v) = 0. In particular, no two distinct walls intersect.

(iii) If ch0(v) = 0 and H2 · ch1(v) 6= 0, then every numerical wall for v is a semicircle whose
apex lies on the ray β = (H · ch2(v))/(H2 · ch1(v)).

The following is a well-known consequence of the fact that walls do not intersect.

Corollary 4.13. Let

0→ F → E → G→ 0

be a short exact sequence of να,β-semistable objects in Cohβ0(X) for some (α0, β0) ∈ W (F,E).

Then this is a short exact sequence of να,β-semistable object in Cohβ(X) for any (α, β) ∈W (E,F ).

Definition 4.14. Let v ∈ K0(X). A numerical wall W for v is called an actual wall for v if there
is a short exact sequence

0→ F → E → G→ 0

of να,β-semistable objects in Cohβ(X) for one (α, β) ∈ W (F,E) such that W = W (F,E) and
ch(E) = v.

Note that the above Corollary implies that this is a short exact sequence in Cohβ(X) for all
(α, β) ∈W (F,E). Determining walls is the key technique in this paper. It will allow us to classify
sheaves with certain Chern characters in terms of short exact sequences (see Theorem 6.1). Note
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that the condition W (F,E) 6= R>0 × R implies να,β(F ) > να,β(E) on one side of such a wall. We
say that that the short exact sequence

0→ F → E → G→ 0,

or sometimes the wall W (F,E), destabilizes E.

Figure 1. Walls are nested semicircles or a unique vertical wall (Theorem 4.12 (ii))

Proposition 4.15 ([BMS16, Appendix A]). If an actual wall is induced by a short exact sequence
of tilt-semistable objects 0→ F → E → G→ 0, then

∆H(F ) + ∆H(G) ≤ ∆H(E),

and equality can only occur if either F or G is a sheaf supported in dimension zero.

It turns out that walls of large radius can only be induced by subobjects of small rank. The
following precise statement is close to [CH16, Proposition 8.3]. A proof of this version can be found
in [MS20, Lemma 2.4] for the case of non-negative ranks. The case of non-positive ranks has the
exact same proof with reversed signs.

Proposition 4.16. Assume that an object E is destabilized by a semicircular wall induced by a
subobject F ↪→ E or quotient E � F with ch0(F ) > ch0(E) ≥ 0 or ch0(F ) < ch0(E) ≤ 0. Then the
radius ρ of W (F,E) satisfies

ρ2 ≤ ∆H(E)

4(H3 · ch0(F ))(H3 · ch0(F )−H3 · ch0(E))
.

Tilt stability interacts nicely with the derived dual D(·) := RHom(·,OX)[1].
10



Figure 2. Walls are nested semicircles (Theorem 4.12 (iii))

Proposition 4.17 ([BMT14, Proposition 5.1.3]). Let E ∈ Cohβ(X) be a να,β-semistable object

with να,β(E) 6= ∞. Then there is a να,−β-semistable objects Ẽ ∈ Coh−β(X), a torsion sheaf T
supported in dimension zero, and a distinguished triangle

Ẽ → D(E)→ T [−1]→ Ẽ[1].

The following proposition seems to be well known to experts, but we could find no proof in the
literature.

Proposition 4.18. Let E ∈ Coh(X) be torsion-free. Then E[1] is tilt-stable along the vertical wall
β = µ(E) if and only if E is slope-stable and reflexive. In particular, slope-stable reflexive sheaves
do not get destabilized along the vertical wall.

Proof. If E is slope-unstable, then E /∈ Cohµ(E)(X). Assume that E is strictly slope-semistable.
Then there is a short exact sequence of slope-semistable sheaves

0→ F → E → G→ 0

such that µ(F ) = µ(G). Taking a shift by one, this becomes a short exact sequence in Cohµ(E)(X)
with να,µ(E)(F [1]) = να,µ(E)(G[1]).

Assume that E is not reflexive, but slope-stable. Then we have a short exact sequence in
Cohµ(E)(X) given by

0→ T → E[1]→ E∨∨[1]→ 0

where T is a non-trivial sheaf supported in dimension less than or equal to one. However, this
sequence makes E[1] strictly tilt-semistable along β = µ(E).

Assume vice-versa that E is a slope-semistable reflexive sheaf. Then it is an object in Cohµ(E)(X)
of maximal phase, and in particular tilt-semistable. If it is strictly semistable, then it admits a
short exact sequence

0→ F → E[1]→ G[1]→ 0
11



where F , G[1], H−1(F )[1], and H0(F ) are also of maximal phase. In particular, H−1(F ) and G are
torsion-free and slope-semistable of slope µ(E), and H0(F ) has support of dimension at most one.

Consider the long exact sequence

0→ H−1(F )→ E → G→ H0(F )→ 0.

Since we assume that E is strictly stable, this is a contradiction unless H−1(F ) = 0. Taking duals
we get an exact sequence

0→ G∨ → E∨ → Ext1(F,OX).

Since F is supported in dimension less than or equal to one, this implies Ext1(F,OX) = 0 and
G∨ ∼= E∨. Hence, E ( G = G∨∨ = E∨∨, a contradiction to E being reflexive. �

From now on, we assume X ⊂ P4 is a smooth cubic threefold. In the later sections, we need
the following result of [Li19, Proposition 3.2] which improves Bogomolov inequality in the case of
a Fano threefold of Picard rank one. Be aware that our notation differs from Li’s.

Theorem 4.19. Let E be a tilt-stable with ch0(E) 6= 0 for some α > 0, β ∈ R. If −1
2 ≤ µH(E) ≤ 1

2 ,

then H·ch2(E)
H3·ch0(E)

≤ 0.

In the case of cubic threefolds, direct sums of line bundles can be detected among semistable
sheaves or objects by their Chern characters as follows.

Proposition 4.20. (i) If E is slope-semistable or να,β-semistable for some α > 0, β < 0 with

ch(E) = (r, 0, 0, eH3) where r > 0, then e ≤ 0. If additionally, e = 0, then E ∼= O⊕rX .
(ii) If E is να,β-semistable for some α > 0, β > 0 with ch(E) = (−r, 0, 0, eH3) where r > 0,

then e = 0 and E ∼= O⊕rX [1].

Proof. In either case, Proposition 4.15 and ∆(E) = 0 imply that E has no semicircular walls.
We first claim that the only slope-stable reflexive sheaf of class (r, 0, 0, eH3) is OX . Assume oth-

erwise. By Proposition 4.18, such an E is also stable at the vertical wall β = 0, and thus, it is να,β-

stable for all α > 0, β ∈ R. Since ν0,β(E) = −β
2 > −

β
2−1 = ν0,β(OX(−2H)[1]) and both objects are

stable for α � 1 and β ∈ (−2, 0), we have Ext2(OX , E) = Hom(E,OX(−2H)[1]) = 0. Similarly,
from να,β-stability for α � 1 and β ∈ (0, 2) we obtain Ext2(E,OX) = Hom(OX(2H), E[1]) = 0.
However, at least one of χ(OX , E) = r + 3e or χ(E,OX) = r − 3e is positive, and so E admits a
morphism from OX or a morphism to OX . As both are reflexive and slope-stable of slope 0, this
shows E ∼= OX .

Now consider an object E as in case (i). Then E[1] is να,0-semistable. By Proposition 4.18,
its Jordan-Hölder factors are either of the form F [1] for a slope-stable reflexive sheaf F with
ch(F ) = (rF , 0, dFH

2, eFH
3), or a torsion sheaf supported in dimension ≤ 1. In fact, Proposition

4.15 shows dF = 0 in the former case, and thus, F = OX by the previous case, and that the torsion
sheaves are supported in dimension zero. As −3e is the total length of the torsion sheaves, we get
e ≤ 0. If e = 0, all factors are isomorphic to OX [1] and the claim follows from Ext1(OX ,OX) = 0.

In case (ii), we again consider a Jordan-Hölder filtration with respect to να,0-stability. Let
Ei ↪→ Ei+1 be the first filtration step where the quotient Ei+1/Ei is a zero-dimensional torsion sheaf
T , should one exist. Then Ei = OX [1]⊕k for some k > 0. Since Ext1(T,OX [1]) = H1(T )∨ = 0, we
have Ei+1 = Ei⊕ T , and so T is a subobject of E. This contradicts stability of E for β > 0. Thus,
E = OX [1]⊕r as claimed. �

5. Construction of sheaves

In this section, we introduce the sheaves that make up our moduli space MX(v). It turns out
that all of them are at least reflexive, and the generic one is a vector bundle. From now on X ⊂ P4

is an arbitrary smooth cubic threefold.
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Let Y ⊂ X be an arbitrary hyperplane section, D be an effective Weil divisor on Y , and
V ⊂ H0(OY (D)) be a non-trivial subspace. Then we define ED,V ∈ Db(X) to be the cone of the
induced morphism OX ⊗ V → OY (D). Moreover, let ED,V := H−1(ED,V ). Hence, we have a long
exact sequence

0→ ED,V → OX ⊗ V → OY (D)→ H0(ED,V )→ 0.

If V = H0(OY (D)), we will drop V , and write ED, respectively ED.

Lemma 5.1. The sheaf ED,V is slope-stable and reflexive. If additionally H0(ED,V ) = 0, then
ED,V is a vector bundle.

Proof. The quotient (OX ⊗ V )/ED,V embeds into OY (D). Since Y is integral by Proposition 3.1,
the sheaf (OX ⊗ V )/ED,V must be supported on Y . Therefore, ch≤1(ED,V ) = (dimV,−H) is
primitive and it is enough to show that ED,V is slope-semistable. If not, let F ⊂ ED,V be the
slope-semistable subsheaf in the Harder-Narasimhan filtration of ED,V . Then µ(F ) > µ(ED,V )
and the quotient ED,V /F is torsion-free. Since F is also a subsheaf of OX ⊗ V , we must have
µ(F ) = 0. Let ch(F ) = (r, 0, dH2, eH3). The quotient (OX ⊗ V )/F satisfies ch((OX ⊗ V )/F ) =
(dimV − r, 0,−dH2,−eH3). By the Snake Lemma this quotient is either torsion-free or has a
torsion subsheaf purely supported on Y . However, if it is not torsion-free, then its torsion-free
quotient would destabilize OX ⊗ V , a contradiction. As a torsion-free quotient of OX ⊗ V with
slope zero, (OX ⊗ V )/F has to be slope-semistable as well.

The classical Bogomolov inequalities ∆H(F ) ≥ 0 and ∆H((OX ⊗ V )/F ) ≥ 0 imply d = 0.
Applying Proposition 4.20 to both F and (OX ⊗ V )/F implies e = 0, and finally, F = O⊕rX .
However, by construction, ED,V has no global sections, a contradiction.

To see that ED,V is reflexive it suffices to show that Extq(ED,V ,OX) = 0 for q ≥ 2 and that

Ext1(ED,V ,OX) is supported in dimension zero. If additionally Ext1(ED,V ,OX) = 0, then ED,V is
a vector bundle.

Clearly, Extq(OX ⊗ V,OX) = 0 for q 6= 0. Because OY (D) is a rank one reflexive sheaf on the
codimension one subvariety Y , the quotient (OX ⊗ V )/ED,V ⊂ OY (D) is purely supported on Y .
We can use [HL10, Proposition 1.1.10] to see that Extq((OX ⊗ V )/ED,V ,OX) = 0 for all q 6= 1, 2,

and Ext2((OX ⊗ V )/ED,V ,OX) is supported in dimension zero. The long exact sequence obtained
from dualizing the short exact sequence

(1) 0→ ED,V → OX ⊗ V → (OX ⊗ V )/ED,V → 0

implies the required vanishings.
If additionally H0(ED,V ) = 0, then (OX ⊗ V )/ED,V = OY (D) is a reflexive sheaf on the

codimension one subvariety Y , and we can use [HL10, Proposition 1.1.10] again to see that
Ext2(OY (D),OX) = 0. The same long exact sequence as above now implies Ext1(ED,V ,OX) =
0. �

Note that we will use this Lemma for the case ch(OY (D)) = (0, H,H2/2,−H3/6). It will
turn out that in this case h0(OY (D)) = 3 for any such D, see Theorem 6.1, and we will choose
V = H0(OY (D)). Moreover, we will show that in that case H0(ED) = 0, i.e., OY (D) is globally
generated, see Theorem 6.1. A straightforward computation shows that in this example ch(ED) =
(3,−H,−H2/2, H3/6).

Corollary 5.2. Let P ∈ X. Then h0(IP (H)) = 4 and the sheaf KP defined through the exact
sequence

(2) 0→ KP → O⊕4
X → IP (H)→ 0

satisfies ch(KP ) = (3,−H,−H2/2, H3/6). Moreover, KP is reflexive and slope-stable, and locally
free except at P .
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Proof. By choosing an embedding KP ↪→ O⊕3
X we get a short exact sequence

0→ KP → O⊕3
X → IP/Y (H)→ 0

for some hyperplane section Y . The statement then follows from Lemma 5.1 by choosing D = H
and V = H0(IP/Y (H)) ⊂ H0(OY (H)).

From the defining short exact sequence (2) one immediately sees that KP is locally free away
from P (as it is the kernel of a surjective map of vector bundles), and not locally free at P (as
Ext2(OP ,KP ) = Ext1(OP , IP (H)), 6= 0). �

6. Variation of stability

In this section, we investigate semistable sheaves with Chern character

v :=

(
3,−H,−1

2
H2,

1

6
H3

)
.

The main goal is to use wall-crossing to prove the following Theorem, which gives a set-theoretic
description of the moduli space MX(v).

Theorem 6.1. (i) Let D be Weil divisor on a (possibly singular) hyperplane section Y with
ch(OY (D)) = (0, H, 1

2H
2,−1

6H
3). Then OY (D) is globally generated, and h0(OY (D)) = 3.

In particular, there exists a smooth twisted cubic C in Y of class D.
(ii) A sheaf E with Chern character v is Gieseker-semistable if and only if it is either equal to

the reflexive sheaf KP for a point P ∈ X (2), or the vector bundle ED for a Weil divisor
D on a hyperplane section Y ⊂ X (1) with ch(OY (D)) = (0, H, 1

2H
2,−1

6H
3).

Note that since ch1(E) = −H, any Gieseker-semistable sheaf of class v is slope stable. The
argument will essentially boil down to a detailed analysis of the numerical wall W defined by

(3) α2 +

(
β − 1

2

)2

=
1

4
.

At this wall, the short exact sequences (2) and (1) become destabilizing short exact sequences

in Cohβ(X) in the form 0 → OY (D) → ED[1] → OX [1]⊕3 → 0 and 0 → IP (H) → KP [1] →
OX [1]⊕4 → 0. Moreover, we can show that every object gets destabilized, and the destabilizing
short exact sequence must be of one of these types, see Lemma 6.8.

6.1. Classification of some torsion sheaves. In this section, we prove the following Proposition.

Proposition 6.2. The wall W of equation (3) is the unique actual wall in tilt stability for objects
G with Chern character ch(G) = (0, H, 1

2H
2,−1

6H
3).

(i) Above W the moduli space of tilt-semistable objects is the moduli space of Gieseker-semistable
sheaves, and contains precisely the following two types of sheaves G:
(a) G = IP/Y (H) for Y ∈ |H| and P ∈ Y , and
(b) G = OY (D) where D is a Weil-divisor on some Y ∈ |H|.

(ii) Below W the moduli space of tilt-semistable objects contains precisely the following two types
of objects G:
(a) the unique non-trivial extensions

(4) 0→ OX [1]→ GP → IP (H)→ 0

for points P ∈ X, and
(b) G = OY (D) where D is a Weil-divisor on some Y ∈ |H|.

We start by dealing with slightly more general objects without fixing ch3.
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Lemma 6.3. The wall W of equation (3) is the unique actual wall in tilt stability for objects
G with Chern character ch≤2(G) = (0, H, 1

2H
2). If G is strictly semistable along W , then any

Jordan-Hölder filtration of G is given by either

0→ IZ(H)→ G→ OX [1]→ 0,

or
0→ OX [1]→ G→ IZ(H)→ 0,

where Z ⊂ X is a zero-dimensional subscheme of length H3/6− ch3(G).

Proof. All walls for (0, H, 1
2H

2) intersect the vertical ray β = 1
2 . If G is strictly-semistable along

some numerical wall intersecting β = 1
2 , then there is a short exact sequence in Coh1/2(X) of

tilt-semistable objects
0→ A→ G→ B → 0

with equal tilt-slope. Let ch≤2(A) = (r, cH, dH2). By definition of Coh1/2(X) and the fact that
neither A nor B can have infinite tilt-slope we get

0 < H2 · ch1/2
1 (A) = H3(c− r

2
) < H2 · ch1/2

1 (G) = H3.

Therefore, c = r
2 + 1

2 , and in particular, r is odd. We will deal with the case r < 0. If r > 0, then B
has negative rank and one simply has to exchange the roles of A and B in the following argument.

For (α, 1
2) ∈W (A,G) we have

−α2r + 2d− r

4
− 1

2
= να,1/2(A) = να,1/2(G) = 0.

Since α2 > 0, this implies d < r
8 + 1

4 . The fact

0 ≤ ∆H(A)

(H3)2
= −2dr +

r2

4
+
r

2
+

1

4

implies d ≥ r
8 + 1

8r + 1
4 . Since d ∈ 1

6Z, these restrictions on d are only possible for r ∈ {−1,−3}.
If r = −3, then ch≤2(A) = (−3,−H,−1

6H
2). This case is immediately ruled out by Theorem

4.19. If r = −1, then ch≤2(A) = (−1, 0, 0), and by Proposition 4.20, we know A = OX [1]. Then
ch(B) = (1, H, 1

2H
2, ch3(G)). By Proposition 4.15, we know that there is no semicircular wall for

B, and by Proposition 4.8, the object B has to be a 2-Gieseker-stable sheaf. Since ch(B(−H)) =
(1, 0, 0, ch3(G)− 1

6H
3), the remaining statement follows by applying Proposition 4.20 to B(−H). �

The next step is to gain further control over the third Chern character.

Lemma 6.4. Let G be a να,β-semistable object with ch≤2(G) = (0, H, 1
2H

2). Then ch3(G) ≤ 1
6H

3.

If ch3(G) = 1
6H

3 and (α, β) is above W , then G ∼= OY (H) for some Y ∈ |H|.

Proof. We may assume ch3(G) ≥ 1
6H

3. By Lemma 6.3, the only possible wall is given by W . There-
fore, G has to be tilt-semistable along W . Since W lies below the numerical wall W (G,OX(−H)[1]),
we get ext2(OX(H), G) = hom(G,OX(−H)[1]) = 0. Thus, hom(OX(H), G) ≥ χ(OX(H), G) =
ch3(G) + 1

6H
3 > 0. Therefore, W is a wall for G and by Lemma 6.3, the destabilising sequence is

0→ OX(H)→ G→ OX [1]→ 0.

This implies G = OY (H) for some Y ∈ |H| and ch3(G) = 1
6H

3. �

Proof of Proposition 6.2. Assume that G is strictly tilt-semistable along W . Then Lemma 6.3 splits
our problem into two cases.

Firstly, assume that G fits into a non-splitting short exact sequence

0→ IP (H)→ G→ OX [1]→ 0
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for a point P ∈ X. Then clearly G = IP/Y (H) for some Y ∈ |H|. This object is tilt-stable above
W , and tilt-unstable below W by precisely this sequence.

Secondly, assume that G fits into a non-splitting short exact sequence

(5) 0→ OX [1]→ G→ IP (H)→ 0

for some P ∈ X. By Serre duality, Ext1(IP (H),OX [1]) = h1(IP (−H)) = 1 and hence, there
is a unique G for each P ∈ X. Clearly, this object is tilt-unstable above W . Assume it is also
tilt-unstable below W . Then there is a short exact sequence 0→ A→ G→ B → 0 destabilizing G
below the wall. However, G is strictly-semistable at W , and by Lemma 6.3, this implies B = OX [1].
However, that means the short exact sequence (5) splits, a contradiction.

Lastly, assume that G is να,β-stable for all (α, β). By Proposition 4.17, D(G) lies in a distin-
guished triangle

(6) G̃→ D(G)→ T [−1]→ G̃[1]

where T is a torsion sheaf supported in dimension zero and G̃ ∈ Coh−β(X) is να,−β-semistable.

If ch3(T ) = t, then ch(G̃) = (0, H,−1
2H

2,−1
6H

3 + t). Thus, G̃ is a pure sheaf supported on a
hyperplane section Y ∈ |H|. We can compute

ch(G̃⊗OX(H)) =

(
0, H,

1

2
H2,−1

6
H3 + t

)
.

Thus, Lemma 6.4 gives t = 0 or t = 1, and if t = 1, then G̃⊗OX(H) ∼= OY (H), i.e., G̃ ∼= OY (H).

Hence there is a non-trivial morphism OX → G̃. Since hom(OX , T [−i]) = 0 for i > 0, The triangle
(6) shows that there is a non-trivial morphism OX → D(G). Dualizing this morphism leads to a
non-trivial morphism G → OX [1]. However, this is in contradiction to the assumption that G is
stable along W .

If t = 0, then D(G) = G̃ is a sheaf, so Extq(G,OX) = 0 for q > 1. Thus, [HL10, Proposition
1.1.10] implies that G is reflexive and supported on a hyperplane section Y ∈ |H|. This means
G = OY (D) for some Weil divisor D on Y . �

6.2. Set-theoretic description of the moduli space. We now prepare the proof of Theorem
6.1.

Lemma 6.5. There are no walls along β = −1 for tilt-semistable objects E with Chern character
ch≤2(E) = (3,−H,−1

2H
2).

Proof. Assume there is such a wall induced by a short exact sequence

0→ A→ E → B → 0

with ch−1
≤2(A) = (r, xH, yH2). Then 0 < H · ch−1

1 (A) = xH3 < H · ch−1
1 (E) = 2H3 implies x = 1.

By exchanging the roles of A and B if necessary, we may assume r ≥ 2.
Using ∆H(A) ≥ 0 we get y ≤ 1

2r . A straightforward computation shows that there exists α > 0

with να,−1(A) = να,−1(E) if and only if y > 0. Since y ∈ 1
6Z, this is only possible if y = 1

6 and

r ∈ {2, 3}. Both cases ch−1
≤2(A) = (3, H, 1

6H
2) and ch−1

≤2(A) = (2, H, 1
6H

2) are directly ruled out by
Theorem 4.19. �

Proposition 6.6. Take a slope-stable sheaf E of Chern character (3,−H, ch2, ch3). Then H ·ch2 ≤
−1

2H
3, and if ch2 ·H = −1

2H
3, then ch3 ≤ 1

6H
3. In particular, this implies that any slope-stable

sheaf of Chern character v is a reflexive sheaf.

Proof. Since E is slope stable, the classical Bogomolov inequality gives

∆H(E) = (H3)2 − 2(3H3) (H · ch2(E)) ≥ 0
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which implies H · ch2(E) ≤ 1
6H

3. The case H · ch2(E) = 1
6H

3 is immediately ruled out by

Theorem 4.19. Since c2(E) = 1
2H

2 − ch2(E) has to be an integral class, we are left to rule out

H · ch2(E) = −1
6H

3. Assume H · ch2(E) = −1
6H

3. We may assume that E is a reflexive sheaf. If
not, we replace it by the double dual E∨∨ which satisfies H · ch2(E) ≤ H · ch2(E∨∨). By the first
part of the argument H · ch2(E∨∨) = −1

6H
3 holds as well.

We first show that ext2(E,E) = 0. Since H3 · ch−1/2
1 (E) = 1

2H, any destabilizing subobject

F ⊂ E along β = −1
2 must satisfy H3 · ch−1/2

1 (F ) = 1
2H or H3 · ch−1/2

1 (F ) = 0. Thus, either F
or the quotient E/F have infinite tilt-slope, a contradiction. This means E is να,−1/2-stable for all
α > 0.

By Proposition 4.18, the object E[1] is tilt-stable for β = 0 and α� 0. Since H3 ·ch1(E[1]) = H3,
the same type of argument as above shows that there cannot be any wall along β = 0. Hence,
E(−2H)[1] is να,β-stable for β = −2 and any α > 0.

A straightforward computation shows that W (E,E(−2H)[1]) intersects both the vertical lines
β = −2 and β = −1

2 . Therefore, E and E(−2H)[1] are tilt-stable for any (α, β) ∈W (E,E(−2H)[1])

and have the same phase, and thus, ext2(E,E) = hom(E,E(−2H)[1]) = 0. Since E is stable, we
know hom(E,E) = 1 and hence, 3 = χ(E,E) = 1− ext1(E,E)− ext3(E,E) ≤ 1, a contradiction.

Now assume H · ch2 = −1
2H

3. We know E ∈ Cohβ(X) is να,β-stable for α� 0 and β < −1
3 . By

Lemma 6.5, we have that E is να,−1-stable for any α > 0. One can easily compute

ν0,−1(OX(−2H)[1]) < ν0,−1(E)

which implies h2(E) = hom(E,OX(−2H)[1]) = 0. Moreover, since µ(E) = −1
3 < µ(OX), we get

hom(OX , E) = 0. Therefore, χ(E) = ch3(E)− 1
6H

3 ≤ 0 as claimed.
Lastly, assume that a slope-stable sheaf E of Chern character v is not reflexive. We have a short

exact sequence

0→ E → E∨∨ → T → 0.

Since E∨∨ is also slope-stable, and both H · ch2(E) and H · ch3(E) are maximal, one gets ch(E) =
ch(E∨∨). This is only possible if T = 0. �

To prove Theorem 6.1, we start in the large volume limit.

Lemma 6.7. Take β > −1
3 . An object Ẽ ∈ Cohβ(X) of Chern character −v is να,β-semistable for

α� 0 if and only if Ẽ ∼= E[1] for a slope-stable reflexive sheaf E.

Proof. Take a να,β-semistable object Ẽ of class −v. Proposition 4.9 implies that H−1(Ẽ) is a

slope-stable reflexive sheaf and H0(Ẽ) is a torsion sheaf supported in dimension ≤ 1. Therefore,

ch(H−1(Ẽ)) =

(
3,−H,−1

2
H2 + ch2(H0(Ẽ)),

1

6
H3 + ch3(H0(Ẽ))

)
.

By Proposition 6.6, this is only possible if ch2(H0(Ẽ)) = ch3(H0(Ẽ)) = 0, i.e., H0(Ẽ) = 0.
Conversely, any slope-stable reflexive sheaf E of class v is να,β-stable for α� 0 and β < µ(E) =

−1
3 . Proposition 4.18 implies that E[1] is να,β-stable for α� 0 and β > µ(E) = −1

3 . �

Next, we move down from the large volume limit and investigate walls for objects of class −v.
Note that all walls to the right of the vertical wall must intersect β = −1

3 .

Lemma 6.8. The wall W of equation (3) is the unique actual wall for objects with Chern character
−v to the right of the vertical wall. There are no tilt-semistable objects below W . Any tilt-semistable
Ẽ with Chern character −v fits into one of the following two cases:
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(i) Ẽ fits into a short exact sequence

0→ OY (D)→ Ẽ → O⊕3
X [1]→ 0

where D is a Weil divisor on hyperplane section Y ∈ |H|;
(ii) Ẽ fits into a short exact sequence

0→ IP (H)→ Ẽ → O⊕4
X [1]→ 0

where P ∈ X.

Proof. Let Ẽ be a tilt-semistable object with Chern character −v. Let W ′ be a wall strictly above
W induced by a short exact sequence 0 → F → Ẽ → G → 0. Then the wall W ′ contains points
(α, 0) with α > 0. In particular, 0 < H · ch1(F ) < H · ch1(Ẽ) = H3, a contradiction.

Since the wall W (OX(2H), Ẽ) is larger than W , we get hom(Ẽ,OX [3]) = hom(OX(2H), Ẽ) = 0
and

hom(Ẽ,OX [1]) = hom(Ẽ,OX) + ext2(Ẽ,OX)− χ(Ẽ,OX) ≥ −χ(Ẽ,OX) = 3.

Clearly, any morphism Ẽ → OX [1] destabilizes Ẽ below W .

Let r := hom(Ẽ,OX [1]) ≥ 3. We get a short exact sequence of tilt-semistable objects along W
given by

0→ G→ Ẽ → O⊕rX [1]→ 0.

If r ≥ 4, then Proposition 4.16 says
1

4
≤ 1

r(r − 3)
,

i.e., r ≤ 4. For r = 4, we get ch(G(−H)) = (1, 0, 0,−1
3H

3) and so G = IP (H) for some P ∈ X.

If r = 3, then ch(G) = (0, H, 1
2H

2,−1
6H

3). Assume G is not of the form OY (D) for some Weil-
divisor D on a hyperplane section Y ∈ |H|. Then Proposition 6.2 implies that G has to be strictly-

semistable along our wallW . Since Ẽ is tilt-semistable above the wall, we know Hom(OX [1], E) = 0.
Therefore, Lemma 6.3 shows that there is a short exact sequence

0→ IP (H)→ G→ OX [1]→ 0

for a point P ∈ X. But then there is an inclusion IP (H) ↪→ Ẽ and we are in the second case. �

Proof of Theorem 6.1. Let D be a Weil-divisor on a hyperplane section Y ∈ |H| with ch(OY (D)) =
(0, H, 1

2H
2,−1

6H
3). By Proposition 6.2, the sheaf OY (D) is tilt-stable for all α > 0, β ∈ R. A

straightforward computation shows that the numerical wall W (OY (D),OX(−2H)[1]) is non-empty,
and therefore, h2(OY (D)) = hom(OY (D),OX(−2H)[1]) = 0. We conclude

h0(OY (D)) = χ(OY (D)) + h1(OY (D)) + h3(OY (D)) ≥ χ(OY (D)) = 3.

We pick a three-dimensional subspace V ⊂ h0(OY (D)) to get an object ED,V ∈ Db(X) as in Section
5. By Lemma 5.1, the sheaf ED,V = H−1(ED,V ) is slope-stable and reflexive. If H0(ED,V ) 6= 0,
then ED,V has a Chern character in contradiction to Proposition 6.6. This shows that OY (D) is
globally generated.

Since ED,V is slope-stable, we know h0(ED,V ) = 0 and h3(ED,V ) = hom(ED,V ,OX(−2H)) = 0.
Moreover, as in the proof of Proposition 6.6 we get h2(ED,V ) = 0. This implies h1(ED,V ) =
−χ(ED,V ) = 0. The long exact sequence obtained from taking sheaf cohomology of

0→ ED,V → OX ⊗ V → OY (D)→ 0

implies H i(OY (D)) = 0 for i > 0 and h0(OY (D)) = 3. Therefore, V = H0(OY (D)) and for each D
there is a unique slope-stable sheaf ED = ED,V .

Let U ⊂ Y be the smooth locus of Y . By Lemma 3.1, we know that Y is normal, and therefore,
Y \U has dimension zero. In particular, a general section of OY (D) leads to a curve completely
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contained in U . Since we work in characteristic 0, we can use a version of Bertini’s theorem [Har77,
Corollary III.10.9, Remark III.10.9.1, Remark III.10.9.2] on the open subset U to see that a general
section cuts out a smooth curve C. By adjunction,

ch(KC) = ch(OY (−H +D)|D) = ch(OY (−H +D))− ch(OY (−H))

=
(

0, H,−1

2
H2,−1

6
H3
)
−
(

0, H,−3

2
H2,

7

6
H3
)

=
(

0, 0, H2,−4

3
H3
)
,

which shows that C is of degree 3 with χ(KC) = −1, i.e., a twisted cubic. This completes the proof
of part (i).

For part (ii), we already showed in Corollary 5.2 that KP is slope-stable for any P ∈ X. Vice-
versa, if E is slope-stable, we can immediately conclude by Lemma 6.8. �

As a consequence we can already infer that our moduli space MX(v) is smooth.

Corollary 6.9. Every Gieseker-semistable sheaf E with ch(E) = (3,−H,−H2/2, H3/6) satisfies

Exti(E,E) =


C if i = 0

C4 if i = 1

0 otherwise.

In particular, the moduli space MX(v) is smooth and 4-dimensional.

Proof. Since (3,−H) is primitive, we know that E is slope-stable. Therefore, hom(E,E) = 1.
Moreover, we must have Ext3(E,E) = Hom(E,E(−2H))∨ = 0. By Lemma 6.5, the sheaf E is
να,−1-stable for any α > 0. Proposition 6.6 shows that E(−2H) is reflexive, so its shift E(−2H)[1]

lies in the heart Cohβ=−1(X) and it is να,−1-stable for any α > 0 by Lemma 6.8. Since ν0,−1(E) =
0 > −1

2 = ν0,−1(E(−2H)[1]), we get Ext2(E,E) = Hom(E,E(−2H)[1]) = 0. We can conclude

ext1(E,E) = hom(E,E)− χ(E,E) = 4. �

7. Proof of the main theorem

Recall that MX(v) is the moduli space of Gieseker-semistable sheaves with Chern character

v :=

(
3,−H,−1

2
H2,

1

6
H3

)
and MX(v) ⊂ MX(v) is the open locus of Gieseker-semistable vector bundles. The aim of this
section is to prove the following Theorem.

Theorem 7.1. The moduli space MX(v) is smooth and irreducible of dimension 4. Moreover,
there is an Abel-Jacobi morphism Ψ: MX(v) → J(X) sending E 7→ c̃2(E) −H2 whose image is a
theta divisor Θ in the intermediate Jacobian J(X). The theta divisor has a unique singular point,
and MX(v) is the blow up of Θ in this point. The exceptional divisor is isomorphic to the cubic
threefold X itself.

We have already shown that MX(v) is smooth of dimension 4 in Corollary 6.9. By Proposition
2.2, the image of ϕ : T → J(X) is Θ ⊂ J(X), where T is the open locus of smooth twisted cubics
in the Hilbert scheme of X, and T is its closure. By Theorem 2.6, we know that Θ is normal.

Proposition 7.2. There is a surjective map ϕ′ : T → MX(v) that sends a twisted cubic C to the
vector bundle EC . The map ϕ|T : T → J(X) factors through ϕ′:

T
ϕ|T

""

ϕ′

{{
MX(v)

Ψ|MX (v) // J(X)
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Therefore, the image of Ψ: MX(v)→ J(X) is Θ ⊂ J(X).

Proof. Let C be a twisted cubic in X, then it lies in a unique hyperplane section Y . There is a
short exact sequence

0→ OY → OY (C)→ T → 0,

where T is a sheaf supported on C with rank one. Therefore, c̃h≤2(OY (C)) = (0, H,C−H2/2) and

we get c̃h≤2(EC) = (3,−H,H2/2−C). It follows that c̃2(EC) = C. Thus, the composition Ψ|MX(v)◦
ϕ′ : T →MX(v)→ J(X) is the Abel-Jacobi map ϕ : T → J(X) restricted to T . Surjectivity of ϕ′

is a direct consequence of Theorem 6.1. �

Lemma 7.3. The morphism i : X → MX(v) that maps P 7→ KP is an embedding with normal
bundle OX(−H).

Proof. We interpret X as the moduli spaces of twisted ideal sheaves IP (H) for all P ∈ X. By
definition of KP , we have a canonical short exact sequence

(7) 0→ KP → O⊕4
X → IP (H)→ 0.

The appropriate version in families, considered below, induces the morphism i. It is injective, as P
is the unique point where KP is not locally free by Corollary 5.2.

Applying Hom(·,KP ) to (7), we get an isomorphism Ext1(KP ,KP ) ∼= Ext2(IP (H),KP ). Next,
we apply the functor Hom(IP (H), ·) to (7) to show that the induced morphism on tangent spaces
Ext1(IP (H), IP (H)) ↪→ Ext2(IP (H),KP ) = Ext1(KP ,KP ) is an embedding. Since both X and
MX(v) are smooth, the morphism is an embedding.

To determine the normal bundle, we need a relative version of the previous arguments to de-
termine the cokernel of this embedding as a line bundle on X. The universal family inducing i is
given by the sheaf K on X ×X fitting into the short exact sequence

0→ K → p∗ΩP4 |X(H)→ I∆(0, H)→ 0,

where p : X ×X → X is the projection to the first factor. The pull-back of the tangent bundle via
i is i∗TMX(v) = H1(p∗Hom(K,K)). Since p∗Hom(p∗ΩP4 |X(H),K) = 0, we have an isomorphism

H1(p∗Hom(K,K)) = H2(p∗Hom(I∆(0, H),K).

The differential di of i fits into the four-term long exact sequence

0→ TX = H1(p∗Hom(I∆(0, H), I∆(0, H))
di−→ H2(p∗Hom(I∆(0, H),K))→

→ H2(p∗Hom(I∆(0, H), p∗ΩP4 |X(H)))→ H2(p∗Hom(I∆(0, H), I∆(0, H))→ 0.

Using Grothendieck duality and projection formula, the third term becomes

ΩP4 |X(H)⊗H1(p∗I∆(0,−H))∨ = ΩP4 |X(H)⊗H0(p∗O∆(0,−H))∨ = ΩP4 |X(2H).

A similar computation using the short exact sequence I∆ ↪→ OX �OX � O∆ gives

H2(p∗Hom(I∆, I∆) = ΩX(2H)

for the fourth term. Thus, the cokernel of di is isomorphic toN∨X/P4(2H) = OX(−H) as claimed. �

Lemma 7.4. The morphism Ψ induces an isomorphism MX(v)→ Θ \ {0}. Moreover, Ψ contracts
the irreducible divisor MX(v) \MX(v) to the zero point. In particular, Θ is smooth away from 0.

Proof. By Lemma 5.1 and Corollary 5.2, the locus MX(v) \MX(v) coincides with vector bundles
EC associated to a twisted cubic C. By Lemma 2.5, the map ϕ|T has full rank four on tangent
spaces. Thus, the commutative diagram in Proposition 7.2 implies that Ψ|MX(v) has full rank four
on tangent spaces. Since MX(v) is smooth of dimension four, Ψ|MX(v) must be injective on tangent
spaces. In particular, the morphism Ψ|MX(v) must have finite fibers. Since φ|T has generically
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connected fibers by Proposition 2.2, the same holds for Ψ|MX(v). Since Θ is normal, Zariski’s Main
Theorem implies that Ψ|MX(v) is an open embedding. Since Θ is singular at the origin, we must
have Ψ(MX(v)) ⊂ Θ− {0}.

By definition, c̃2(KP ) = H2 and we get Ψ(KP ) = 0. Thus Ψ−1(0) = MX(v) \MX(v) and the
image of MX(v) is indeed Θ \ {0} by Proposition 2.2. �

We can finish the proof of Theorem 7.1 with the following Lemma.

Lemma 7.5. The formal neighborhood of 0 ∈ Θ is isomorphic to the vertex of the affine cone over
X ⊂ P4. Moreover, we have an isomorphism MX(v) = Bl0(Θ). Thus, X is the union of all rational
curves on MX(v), and the unique divisor contracted by any morphism to a complex abelian variety.

Proof. The first two claims are scheme-theoretic enhancements of the set-theoretic statements in
the previous Lemma, that hold for any contraction of a divisor with ample conormal bundle to a
point. We will only sketch the arguments.

Since the normal bundle of X ⊂MX(v) is anti-ample, by Artin’s contractibility criterion [Art70,
Corollary 6.12] there is a contraction Ψ′ : MX(v) → N to an algebraic space N of finite type over
C that is an isomorphism away from X, and contracts X to a point 0 ∈ N . Moreover, by Artin’s
construction in [Art70, Theorem 6.2], the formal neighborhood of 0 ∈ N is given by the affinization
of the formal neighborhood of X ⊂ MX(v). More precisely, if I is the ideal of X, then it is given
by

Spec lim←−
n

H0(X,OMX(v)/I
n+1) = Spec lim←−

n

⊕
0≤k≤n

H0(X,OX(k)),

i.e., the completion of the vertex of the affine cone over X. Since the image of every infinitesimal
neighborhood of X under Ψ is affine, it factors via its affinization. Taking the limit, we see that
Ψ factors via Ψ′ both in the formal neighborhood of X, and in its complement. Hence (e.g. by
[Art70, Theorem 3.1]) we get an induced morphism j : N → Θ factoring Ψ. As j is bijective on
points and with normal target, it is an isomorphism.

For the last claim, note that X is uniruled, hence the union U of all rational curves in MX(v)
contains X. If there was any other rational curve C not contained in X, then Ψ: C → Θ is a
non-constant map from a rational to an abelian variety, a contradiction. �

Corollary 7.6. If X1 and X2 are smooth projective threefolds with J(X1) = J(X2) as principally
polarised abelian varieties, then X1 = X2.

Proof. As in the classical argument, this is an immediate consequence of the description of the
singularity of the theta divisor in Lemma 7.5. �

8. Kuznetsov component

The bounded derived category of a cubic threefold X admits a semi-orthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(1)〉

whose non-trivial part Ku(X) is called the Kuznetsov component. The goal of this section is to
give a new proof of the following Theorem.

Theorem 8.1. Let X1 and X2 be smooth cubic threefolds. Then Ku(X1) and Ku(X2) are equivalent
as triangulated categories if and only if X1 and X2 are isomorphic.

Let S be the Serre functor of Ku(X). By [Kuz04, Lemma 4.1 and Lemma 4.2], for any object
F ∈ Ku(X), we have

(8) S(F ) = LOX
(F ⊗OX(H))[1]
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where LOX
is the left mutation functor with respect to OX . By [BMMS12, Proposition 2.7], the

numerical Grothendieck group N (Ku(X)) is a two-dimensional lattice

N (Ku(X)) ∼= Z2 ∼= Z[I`]⊕ Z[S(I`)]
where I` is the ideal sheaf of a line ` in X. With respect to this basis, the Euler characteristic
χ(−,−) on N (Ku(X)) has the form [

−1 −1
0 −1

]
.

For any line ` in X, we know ch(I`) = (1, 0,−1
3H

2, 0). The Chern character of our second basis
vector of ch(Ku(X)), and the action of the Serre functor S on our chosen basis are given as follows.

Lemma 8.2. We have ch(S(I`)) = (2,−H,−1
6H

2, 1
6H

3) and ch(S2(I`)) = (1,−H, 1
6H

2, 1
6H

3).

Thus, the class [S2(I`)] in N (Ku(X)) is equal to [S(I`)]− [I`].
Proof. By (8) we have [S(E)] = −[E(H)] + χ(E(H))[OX ] for E ∈ Ku(X). Hence ch(I`(H)) =
(1, H, 1

6H
2,−1

6H
3) and χ(I`(H)) = 3 imply the formula for ch(S(I`)). The formula for ch(S2(I`))

follows from the last claim, which in turn follows from the Euler characteristic form above with

χ(I`, S
2(I`)) = χ(S2(I`), S(I`)) = χ(S(I`), I`) = 0 = χ([I`], [S(I`)]− [I`]) and

χ(S(I`), S
2(I`)) = χ(I`, S(I`)) = −1 = χ([S(I`)], [S(I`)]− [I`]). �

For a point P ∈ X, the sheaf KP which is defined through the sequence (2), lies in the Kuznetsov
component Ku(X).

Lemma 8.3. Let [A] be a class in N (Ku(X)) such that χ([A], [A]) = −3. Then, up to a sign, [A]
is either [KP ] = [I`] + [S(I`)], or [S(KP )] = −[I`] + 2[S(I`)], or [S2(Kp)] = −2[I`] + [S(I`)].

Let σ0
α,−1/2 =

(
Coh0

α,−1/2(X), Z0
α,−1/2

)
be the weak stability condition on Db(X) constructed in

[BLMS17, Proposition 2.14]. Here Coh0
α,−1/2(X) is the usual double tilt and

(9) Z0
α,− 1

2

(E) = H2 · ch−
1
2

1 (E) + i

(
H · ch−

1
2

2 (E)− α2

2
H3 · ch0(E)

)
.

As proven in [BLMS17, Theorem 6.8], for 0 < α � 1, it induces the stability condition σ(α) =
(A(α), Z(α)) on Ku(X) where

A(α) := Coh0
α,− 1

2

(X) ∩Ku(X) and Z(α) := Z0
α,− 1

2

|Ku(X).

Lemma 8.4. There is an embedding MX(v) ↪→Mσ(α)

(
[I`]+ [S(I`)]

)
from the moduli space MX(v)

for v = ch(I`) + ch(S(I`)) = (3,−H,−H2/2, H3/6) to Mσ(α)

(
[I`] + [S(I`)]

)
which parameterises

σ(α)-semistable objects in Ku(X) of class [I`] + [S(I`)] ∈ N (Ku(X)).

Proof. According to Lemma 6.5 there is no wall for objects of Chern character v to the left of the
vertical wall. Thus, E is να,−1/2-stable for any α > 0. Since σ0

α,−1/2 is just a rotation of να,−1/2,

we obtain that E is σ0
α,−1/2-stable. By Theorem 6.1, part (ii), the sheaf E ∈ Ku(X) lies in the

Kuznetsov component. Thus, E is σ(α)-stable. Note that the object E could be destabilised by
objects with Z0

α,− 1
2

= 0 after rotation. But we know these are all sheaves supported in dimension

zero and would not be in Ku(X) and therefore, E is stable after restriction to Ku(X). �

[PY20, Corollary 5.6] implies that the stability condition σ(α) is S-invariant, i.e., S·σ(α) = σ(α)·g̃
for g̃ ∈ G̃L

+
(2,R). Thus, there is an isomorphism

S : Mσ(α)

(
2[I`]− [S(I`)]

)
→Mσ(α)

(
[I`] + [S(I`)]

)
E 7→ S(E)(10)
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The following Proposition is a slight strengthening of [APR19, Theorem 1.2] which describes all
elements of the moduli space. The idea of the proof is the same as [APR19, Lemma 2.2].

Proposition 8.5. Any σ(α)-semistable object in Ku(X) of class 2[I`]− [S(I`)] is of the form G[2k]
for k ∈ Z where G is either equal to GP (−H) described in (4) for a point P ∈ X, or OY (D −H)
where D is a Weil-divisor on some Y ∈ |H|.

Proof. Lemma 8.2 implies ch(G) = (0, H,−1
2H

2,−1
6H

3). Since G is σ(α)-semistable, its shift G[2k]
lies in the heart A(α) for some k ∈ Z. We know its image under the stability function Z(α) is
equal to −H3, so it has maximum phase in the heart A(α) which immediately implies G[2k] is
σ0
α,−1/2-semistable. We claim that G[2k] has no subobject Q ∈ Coh0

α,−1/2 with Z0
α,−1/2(Q) = 0,

so it is να,−1/2-semistable. Assume for a contradiction that there is such a subobject Q. By the

definition of Coh0
α,−1/2(X), it is a sheaf supported in dimension zero. Thus, hom(OX , Q) 6= 0. Since

OX ∈ Coh0
α,−1/2(X), we have hom(OX , (G[2k]/Q)[−1]) = 0. Therefore, hom(OX , G[2k]) 6= 0 which

is not possible because G[2k] ∈ Ku(X). Finally, since G[2k] is να,−1/2-semistable for 0 < α � 1,
the claim follows by Proposition 6.2, (ii). �

Remark 8.6. Since the class 2[I`]− [S(I`)] is primitive in N (Ku(X)), any σ(α)-semistable object
of this class is σ(α)-stable if we choose α sufficiently small.

We now describe the image of the semistable objects G ∈Mσ(α)

(
2[I`]− [S(I`)]

)
under the Serre

functor S. If G = GP (−H), then by (4), we know there is a distinguished triangle

OX [1]→ GP → IP (H)→ OX [2]

which gives LOX
(GP ) = LOX

(IP (H)) = KP [1], so

(11) S(GP ) = KP [2].

If G = OY (D−H), then G(H) = OY (D) is of class
(
0, H, 1

2H
2,−1

6H
3
)
, and lies in a distinguished

triangle

O⊕3
X → OY (D)→ ED[1]→ O⊕3

X [1].

Thus,

(12) S(G) = LOX
(OY (D))[1] = LOX

(
ED[1]

)
[1] = ED[2].

Combining (11) and (12) with Lemma 8.4 implies the next result.

Theorem 8.7. The moduli space Mσ(α)

(
[I`] + [S(I`)]

)
is isomorphic to the moduli space MX(v)

parametrising Gieseker-stable sheaves of class v.

The next step is to show that we can replace σ(α) by any S-invariant stability condition on
Ku(X).

Lemma 8.8. [PY20, Lemma 5.8 and 5.10] Let σ be an S-invariant stability condition on Ku(X)
and F ∈ Ku(X) be σ-semistable of phase φ(F ). Then

(i) φ(F ) < φ(S(F )) < φ(F ) + 2.
(ii) dim Ext1(F, F ) ≥ 2.

For cubic threefolds, we also have a weak version of Mukai Lemma for K3 surfaces.

Lemma 8.9. (Weak Mukai Lemma) [PY20, Lemma 5.11] Let σ be an S-invariant stability con-
dition. Let A → E → B be a triangle in Ku(X) such that hom(A,B) = 0 and the σ-semistable
factors of A have phase greater than or equal to the phase of the σ-semistable factors of B. Then

dimC Ext1(A,A) + dimC Ext1(B,B) ≤ dimC Ext1(E,E).
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Proposition 8.10. Let σ1 and σ2 be two S-invariant stability conditions on Ku(X). An object
E ∈ Ku(X) of class [I`] + [S(I`)] is σ1-stable if and only if it is σ2-stale.

Proof. By [PY20, Proposition 4.6], I` and S(I`) are σ-stable with respect to any S-invariant sta-
bility condition. Thus, Lemma 8.8 implies that

(13) φσ(I`) < φσ(S(I`)) < φσ(I`) + 2.

Take a σ1-stable object E ∈ Ku(X) of class [I`] + [S(I`)]. Since σ1 is S-invariant, Lemma 8.8 gives

φσ1(E) < φσ1(S(E)) < φσ1(E) + 2.

Thus, for i < 0 or i ≥ 2, we get

hom(E,E[i]) = hom(E[i], S(E)) = 0.

Since E is σ1-stable, we get hom(E,E) = 1 which gives

hom(E,E[1]) = −χ(E,E) + 1 = 4.

Suppose now for a contradiction that E is σ2-unstable. There is a distinguished triangle of desta-
bilising objects F1 → E → F2 → F1[1] with respect to σ2. We may assume F1 is σ2-semistable.
Thus, Lemma 8.8 implies that

(14) hom(F1, F1[1]) ≥ 2.

Since the phase of F1 is bigger than the phase of σ2-semistable factors of F2, we have

(15) hom(F1, F2) = 0.

Thus, Weak Mukai Lemma 8.9 implies

hom(F1, F1[1]) + hom(F2, F2[1]) ≤ hom(E,E[1]) = 4.

By (14), we get hom(F2, F2[1]) ≤ 2. If hom(F2, F2[1]) = 0 or 1, then all its σ2-semistable factors
would satisfy the same property by Weak Mukai Lemma 8.9 which is not possible by Lemma 8.8.
Therefore,

hom(F1, F1[2]) = hom(F2, F2[1]) = 2

and [PY20, Lemma 5.12] implies that F1 and F2 are σ2-stable. This gives χ(Fi, Fi) = −1 for
i = 1, 2, so [Fi] is either ±[I`], or ±[S(I`)], or ±([S(I`)]− [I`]). Since there are only 2 stable factors
and the object E is of class [I`] + [S(I`)], the destabilising objects must be of class [I`] and [S(I`)].
Thus, [PY20, Proposition 4.6] implies that the destabilising objects are I`[2k] and S(I`′)[2k′] for
two lines `, `′ and integers k, k′ ∈ Z.

Let F1 = I`[2k] and F2 = S(I`′)[2k′]. Since E is σ1-stable, we have φσ1(F1) < φσ1(F2), thus (13)
gives k ≤ k′. But F1 and F2 are the destabilising objects with respect to σ2, hence φσ2(F1) > φσ2(F2)
and (13) gives k′ + 1 ≤ k which is not possible. By a similar argument, we reach a contradiction
if F1 = S(I`′)[2k′] and F2 = I`[2k]. Finally, note that E cannot be strictly σ2-semistable because
the phases of I`[2k] and S(I`)[2k′] cannot be equal by (13). �

Proof of Theorem 8.1. As a cubic threefold has free Picard group of rank one, the first implication is
obvious. As for the second implication, assume there is an exact equivalence Φ: Ku(X1)→ Ku(X2).
Lemma 8.3 implies that, up to composing with a power of the Serre functor of Ku(X1) and shift
functor, we may assume [Φ∗(KP )] = [KP ′ ] for points P, P ′ in X1 and X2, respectively. Take an
S-invariant stability condition σ on Ku(X1). Theorem 8.7 and 8.10 imply that

(16) MX1(v) ∼= Mσ

(
Ku(X1), [KP ]

) ∼= Mφ·σ
(

Ku(X2), [KP ′ ]
)
.

Since the Serre functor commutes with auto-equivalences, φ ·σ is an S-invariant stability condition
on Ku(X2). Thus, Theorem 8.7 gives

Mφ·σ
(

Ku(X2), [KP ′ ]
) ∼= MX2(v).
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Combining this with (16) gives MX1(v) ∼= MX2(v). By Lemma 7.5, we know X1 and X2 are the
unique exceptional divisors of MX1(v) and MX2(v) which get contracted by any map to a complex
abelian variety. Thus, X1

∼= X2. �
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