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1 Introduction: Semisimple Frobenius manifolds

In his talk at the ICM in Berlin 1998, Dubrovin proposed a surprising conjecture
answering the question which Fano manifolds could have generically semisimple
quantum cohomology. This diploma thesis

• explains this conjecture,

• relates it to mirror symmetry conjectures,

• gives several computations on manifolds that do have semisimple quantum
cohomology, and

• proves (a part of) Dubrovin’s conjecture for a large class of manifolds.

A Frobenius manifold is a complex manifold M equipped with a multipli-
cation ◦ on the tangent bundle TM and a flat metric that satisfy a number
of axioms. In general, one needs infinitely many numbers to describe a sin-
gle Frobenius manifold. However, for those Frobenius manifolds that have a
semisimple point x (i. e., (TxM, ◦) is isomorphic as an algebra to Cn), there
exist two independent classifications. Both classifications identify the germ of
such a Frobenius manifold by a finite number of characteristic numbers. In
other words, semisimple Frobenius manifolds are easier to understand.

1.1 Plan of the paper

In section 3, we recall the basic definitions and notations of Frobenius manifolds
and quantum cohomology from [Man99].

Section 4 gives examples of computations of semisimple quantum cohomol-
ogy. We compute the special coordinates (the classifying data in Yu. I. Manin’s
classification of semisimple Frobenius manifolds) of three families of Fano three-
folds with minimal cohomology.

Section 5 gives a detailed definition of Dubrovin’s monodromy data (that
classifies semisimple Frobenius manifolds). We devote particular care to the
construction of Stokes matrices; here we follow [vdPS03], partly rephrasing it
in a more abstract language.

In the following section 6, we discuss exceptional systems in triangulated
categories, and give the exact statements of Dubrovin’s conjecture.

Section 7 is devoted to the bigger conjectural picture underlying Dubrovin’s
conjecture. This involves the homological mirror conjecture in its assumed
form for semisimple quantum cohomology and total spaces of unfoldings of
hypersurface singularities (7.6), the corresponding numerical mirror symmetry
conjecture as an isomorphism of Frobenius manifolds (as in 7.4.1), and the
explanation of Stokes matrices in the case of unfoldings of singularities. Parts
of this section are directly inspired by the paper [HIV00] by the physicists Hori,
Iqbal and Vafa.

Finally, in section 8, we prove the theorem 8.2.1. Its statement can be
formulated concisely (and almost correctly) as: If we know that Dubrovin’s
conjecture is true for X, then it is true for its blow-up X̂ at a point. The idea
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to the proof is similar to the case of Del Pezzo-surfaces, which was treated in
[BM01].

1.2 Acknowledgements

I would like to thank Gunther Vogel for comprehensive proof-reading and my
brother Tilman Bayer for useful remarks clarifying the exposition; Barbara
Fantechi for suggestions related to footnote 10. Several discussions with Claus
Hertling substantially helped my understanding of section 7. Finally, I am
indebted to my advisor Yuri I. Manin for continued inspiring and encouraging
support.
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2 Deutsche Zusammenfassung

Einführung. Frobenius-Mannigfaltigkeiten wurden 1990 von Boris Dubrovin
als Axiomatisierung (eines Teils) der mathematischen Struktur topologischer
Feldtheorien eingeführt. Eine Frobenius-Mannigfaltigkeit ist im Wesentlichen
eine flache Mannigfaltigkeit mit Metrik und einer Produkstruktur auf dem Tan-
gentialbündel, die bestimmte Axiome erfüllen (cf. Definition 3.1.1 für Details).
Das wichtigste Axiom ist eine Integrabilitätsbedingung, die die Struktur einer
Frobenius-Mannigfaltigkeit erstaunlich starr macht.

Die bekannteste Beispielklasse von Frobenius-Mannigfaltigkeiten entsteht
aus der Quantenkohomologie einer glatten projektiven Varietät V . In diesem
Fall ist die Mannigfaltigkeit einfach der Vektorraum H ∗(V,C). Die Metrik
ist gegeben durch die Poincaré-Paarung. Eine Multiplikation auf dem Tan-
gentialbündel dieser Mannigfaltigkeit bedeutet das Folgende: an jedem Punkt
x ∈ H∗(V,C) ist der Tangentialraum an x natürlich identisch zu H ∗(V,C).
Ein Produkt auf Tx ist also ein Produkt auf der Kohomologie, das aber
von x als Parameter abhängt. Das Produkt ist definiert durch das Gromov-
Witten-Potential, eine erzeugende Funktion aus sogenannten Gromov-Witten-
Invarianten; siehe Definition 3.2.2 und Satz 3.2.3. Dass das hierdurch definierte
Quantenprodukt assoziativ ist, ist eine sehr überraschende und tiefe Aussage.
Man kann es verstehen als deformiertes Cup-Produkt.

Diese Diplomarbeit beschäftigt sich mit solchen Frobenius-Mannigfaltig-
keiten M, bei denen für generisches m ∈ M die Algebrastruktur auf TmM
zerfällt, d. h. dass TmM als Algebra isomorph zu Cn mit komponentenwei-
ser Multiplikation ist. Halbeinfache Frobenius-Mannigfaltikeiten sind aus ver-
schiedenen Gründen einfacher zu verstehen. Ein Grund ist, dass die multiplika-
tive Struktur auch in einer Umgebung von m sehr einfach zerfällt, siehe Propo-
sition 3.1.4. Weiterhin sind Keime solcher Mannigfaltigkeiten vergleichsweise
leicht zu klassifizieren.

Spezielle Koordinaten. Ein sehr einfach zu definierendes Klassikations-
datum sind die sog. speziellen Koordinaten. Sie wurden von Yuri I. Manin
eingeführt und sind in gegeben Fällen auch einfach zu berechnen.

Dies wird in Kapitel an drei Familien dreidimensionaler Fano-Mannigfaltig-
keiten durchgeführt. Diese Familien zeichnen sich dadurch aus, dass ihre Koho-
mologie nur vierdimensional ist, die minimal mögliche Dimension. Von Bon-
dal, Kuznetsov und Orlov wurden für diese Fälle jeweils einzelne Gromov-
Witten-Invarianten berechnet. Mithilfe der Relationen, die sich aus der As-
soziativität der Produktstruktur der zugehörigen Frobenius-Mannigfaltigkeiten
ergeben, lassen sich dann weitere Invarianten rein algebraisch berechnen.

Für die Produktstruktur berechnen wir hier explizit die Zerlegung als Alge-
bra in C4 durch Angabe der vier Idempotenten. Und zwar für den Fall, dass der
oben mit x ∈ H∗(V ) bezeichnete Parameter im Unterraum H2(V ) liegt, bzw.
in dessen erster infinitesimaler Umgebung. Daraus lassen sich die speziellen
Koordinaten berechnen.
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Stokes-Matrizen. Von Dubrovin stammt die Konstruktion eines flachen
Zusammenhangs auf P1 ×M für jede Frobenius-Mannigfaltigkeit M, der auch
erster Strukturzusammenhang der Frobenius-Mannigfaltigkeit genannt wird;
cf. Definition 5.1.1. Dieser Zusammenhang hat einen Pol zweiter Ordnung
entlang {0} × M. Solche Zusammenhänge lassen sich nun wiederum klas-
sifizieren, und das wesentliche Datum dabei sind die sogenannten Stokes-
Matrizen. Zur ihrer Definition ist einiges an Theorie der Differential-Moduln
über dem Differential-Ring C({z}) der Keime komplexer Funktionen (mit
Derivation ∂

∂z ) nötig; eine entscheidende Technik ist dabei die Verwendung von
Funktionen mit asymptotischer Entwicklung nahe 0 in einem Sektor in C. Diese
Theorie wird im Kapitel 5 überblicksartig vorgestellt, die Darstellung folgt (mit
Änderungen) der in [vdPS03].

Gemäß Dubrovin wird erklärt, wie sich diese auf den ersten Strukturzusam-
menhang anwenden lässt.

Dubrovins Vermutung und halbeinfache Spiegelsymmetrie. Das dar-
auffolgende Kapitel berichtet über eine Vermutung von Dubrovin, die besagt,
bei genau welchen Varietäten V halbeinfache Quantenkohomologie zu erwarten
ist. Und zwar sei dies genau für diejenigen der Fall, für die die derivierte Kate-
gorie Db(V ) der kohärenten Garben auf V in einem gewissen Sinne halbeinfach
ist; genauer gesagt, falls es in Db(V ) ein sogenanntes exzeptionelles System von
Objekten gibt, siehe Definition 6.1.1.

Ferner vermutet Dubrovin, dass sich in diesem Fall auch die Stokes-Matrix
der Frobenius-Mannigfaltigkeit zu V aus der halbeinfachen Struktur von Db(V )
ablesen lässt. Das Kapitel 7 versucht zu erklären, warum dies aus dem Kontext
der Spiegelsymmetrie zu V zu erwarten ist:

Zu einer solchen Varietät V ist der Spiegelpartner eine affine Varietät
Y mit einer gegebenen Funktion f auf Y mit isolierten Singularitäten. Aus
den Deformationen dieser Funktion f , die Entfaltungen der Singularitäten
liefern, entsteht eine Frobenius-Mannigfaltigkeit. Spiegelsymmetrie würde be-
sagen, dass diese Frobenius-Mannigfaltigkeit isomorph zu der der Quantenko-
homologie von V ist; im Fall von Pn ist dies von Barannikov bewiesen wurden
(cf. Satz 7.4.1). Wir versuchen zu zeigen (ohne vollständigen Beweis), dass die
Stokes-Matrix dieser Frobenius-Mannigfaltigkeit identisch zu der rein topolo-
gisch aus der Milnor-Faserung von f definierten Seifert-Matrix ist.

Daraus, und aus einer weiteren Spiegelsymmetrievermutung analog zu Kont-
sevichs homologischer Spiegelsymmetrie, würde Dubrovins Behauptung über
Stokes-Matrizen folgen.

Aufblasungen. Das eigentlich neue Resultat dieser Arbeit ist Satz 8.2.1.

Es sei X eine n-dimensionale projektive Varietät, und X̃ die Aufblasung
von X an einem Punkt x ∈ X; sei E ⊂ X̃ der exzeptionelle Divisor (Faser über
x) der Abbildung X̃ → X, mit demselben Buchstaben bezeichnen wir auch die
zugehörige Kohomologieklasse in H2(X̃). Es ist H∗(X̃) ∼= H∗(X) ⊕ C · E ⊕
C · E2 ⊕ . . .C · En−1, und damit ist auch das Cup-Produkt in H∗(X̃) (fast)
vollständig beschrieben.
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Für das deformierte Cup-Produkt der Quantenkohomologie stellt sich nun
folgende Frage:

Wenn die Frobenius-Mannigfaltigkeit der Quantenkohomologie von
X halbeinfach ist, gilt dann dasselbe auch für X̃?

Falls nämlich die Halbeinfachheit für X gilt, müsste gemäß Dubrovins Vermu-
tung Db(X) ein exzeptionelles System haben. Dasselbe gilt dann nach einem
Resultat von Bondal auch für die Kategorie Db(X̃). Folglich müsste auch X̃
halbeinfache Quantenkohomologie haben.

Damit ist obige Frage ein ernsthafter Test für Dubrovins Vermutung. Unter
zwei technischen Zusatzvoraussetzungen beantwortet unser Satz diese Frage
positiv. Der Beweis beruht wesentlich auf Resultaten von Gathmann, die die
Gromov-Witten-Invarianten von X̃ und X in Beziehung setzen. Ein Verschwin-
dungssatz von ihm ermöglicht eine partielle Kompaktifizierung des Parameter-
raums, für den das Quantenprodukt definiert ist. Entlang des neu hinzugefügten
Divisors zerfällt das Quantenprodukt von X̃ in die direkte Summe eines halb-
einfachen Anteils und eines Anteils isomorph zum Quantenprodukt von X.
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3 Definitions and Notations

3.1 Frobenius Manifolds

To fix definitions and notations, we collect here the relevant definitions from
[Man99].

Definition 3.1.1. A Frobenius manifold with flat identity is a complex mani-
fold Mn endowed with the following structures on the tangent sheaf TM:

• A non-degenerate symmetric bilinear form g : TM⊗ TM → OM, called
the metric.

• A commutative, associative multiplication

◦ : TM⊗ TM→ TM.

• A section e of TM which is a unit with respect to ◦.

They satisfy the following axioms:

• The metric is multiplication invariant, i. e. for all tangent vectors X,Y,Z
we have:

g(X ◦ Y,Z) = g(X,Y ◦ Z)

• The metric g is flat.

• If A denotes the symmetric tensor A(X,Y,Z) := g(X ◦ Y,Z), there is
(everywhere locally) a potential Φ such that for all flat vector fields X,Y,Z
we have

XY ZΦ = A(X,Y,Z).

Many Frobenius manifolds come together with a grading, which is expressed
by the existence of an Euler field:

Definition 3.1.2. An Euler field E with conformal weight D is a vector field
on M such that

LieE(g) = Dg and LieE(◦) = d0 · ◦

for some constant d0.

Here Lie denotes the usual Lie derivative of tensor fields.
In the cases we consider the constant d0 is always 1 and will therefore be

omitted.

Definition 3.1.3. A point m ∈M is called semisimple if (TmM, ◦) is semisim-
ple as an algebra. By this we mean that it is isomorphic, as a C-algebra, to Cn
with component-wise multiplication.

A connected Frobenius manifold is called generically semisimple if it contains
a semisimple point. (In this case, the set of semisimple points is necessarily an
open and dense subset of M.)
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One can reformulate this using the spectral cover map: Since (TM, ◦) is a
sheaf of rings onM, we obtain a scheme Spec(TM, ◦) with a natural projection

Spec(TM, ◦)→M.

This is called the spectral cover map. It is a finite flat morphism of degree
n. Semisimple points are those where the map is unramified (or equivalently,
étale) in the whole fibre. Generic semisimplicity means that the spectral cover
map is generically unramified.

If we forget the metric, the structure of a Frobenius manifold with Euler
field at a semisimple point is very easy to understand:

Proposition 3.1.4. Let m be a semisimple point. There exist coordinates
u1, . . . , un, called canonical coordinates, in a neighbourhood U of m such that
at each point m′ ∈ U
• the vector fields ∂

∂ui
yield the decomposition of (Tm′M, ◦) into a semisim-

ple algebra,1 and

• the eigenvalues of E◦ at each point are (u1(m′), . . . , un(m′)).

They are unique up to reordering.

So the classification of semisimple germs of Frobenius manifolds is essentially
the classifications of metrics compatible with the multiplication and Euler field
given as in this proposition. A rather straightforward way to define invariants
of such a germ consists of the special coordinates:

Definition 3.1.5. Let m ∈M be a semisimple point with canonical coordinates
u1, . . . , un. With ηi := g( ∂

∂ui
, ∂
∂ui

), we call u0
i = ui(m), η0

i = ηi(m) and η0
ij :=

∂
∂uj
|mηi the special coordinates of the germ (M,m) of a Frobenius manifold.

These easy to define invariants, together with the values of the canonical
coordinates at m, actually classify semisimple germs of Frobenius manifolds.
The proof uses the so-called second structure connection, see [Man99, II.3]. An
alternative way to classify these germs is due to Dubrovin; we explain it in
section 5.

3.2 Quantum Cohomology

This section will recall the definitions of Quantum Cohomology to fix notations.
For more details, we refer to [Man99].

Throughout this section let V be a smooth projective variety over C. By ∆i

we will denote cohomology classes, and β will always be an (effective) homology
class in H2(V ).

Definition 3.2.1. We denote the correlator in the quantum cohomology of V
by

〈∆1 . . .∆n〉β.
1This means that the tangent vectors ∂

∂ui
are idempotents satisfying ∂

∂ui
◦ ∂
∂uj

= 0 for

pairs i 6= j.
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This is the number of appropriately counted stable maps

f : (C, y1, . . . , yn)→ V

where

• C is a semi-stable curve of genus zero,

• y1, . . . , yn are marked points on C,

• the fundamental class of C is mapped to β under f ,

• and ∆1, . . . ,∆n are cohomology classes representing conditions for the
images of the marked points.

Such a correlator vanishes unless

k(β) := (c1(V ), β) = 3− dimV +
∑

(
ai
2
− 1) (1)

where ai = |∆i| are the degrees of the cohomology classes.

We will not say anything about the definition of the correlators, nor will we
list the set of axioms they satisfy; instead, we refer to [Man99, section III.5].

From these invariants, we derive the potential of quantum cohomology:

Definition 3.2.2. Let ∆0,∆1, . . . ,∆r be a homogeneous basis of H∗(V ) with
∆0 being the unity in H0(V ).

Then we define

Φ(x0, x1, . . . , xr) :=
∑

β

∞∑

n=0

1

n!
〈(x0∆0 + x1∆1 + · · · + xn∆n)⊗n〉β ,

where we pretend for a moment that this series converges in a non-empty do-
main in H∗(V ).

A more compact way to write this is Φ = 〈e
P
xi∆i〉.

Theorem 3.2.3. The domain of convergence of Φ on H ∗(V ) becomes a Frobe-
nius manifold by

• letting the pairing g(X,Y ) be the Poincaré pairing (where we have, of
course, identified the tangent space with H∗(V )),

• and defining the multiplication via the potential Φ:

g(X,Y ◦ Z) := XY ZΦ

(which defines Y ◦ Z uniquely as g is non-degenerate).

While the flatness and the multiplication invariance of the metric are obvious
in this construction, the associativity of the multiplication is surprising.
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As an explicit formula for the multiplication we get

∆i ◦∆j =
∑

k

(∂i∂j∂kΦ) ∆k

= ∆i ∪ ∆j +
∑

β 6=0

∑

k 6=0

〈∆i∆j∆ke
P
l xl∆l〉β∆k,

where ∆k are the elements of the dual basis with respect to the Poincaré pairing.
The cohomology classes of H2(V ) play a special role in quantum cohomology

due to the divisor axiom (see [Man99, III.5.3]). This allows us to rewrite the
above formula as follows:

∆i ◦∆j = ∆i ∪ ∆j +
∑

β 6=0

∑

k 6=0

〈∆i∆j∆ke
P
l:|∆l|>2 xl∆l〉β∆ke

(
P
l:|∆l|=2 xl∆l,β)

.

It is convenient to replace the coordinates xi that have |∆i| = 2 with qi = exi .

Also we write qβ as shorthand for
∏
i:|∆i=2| q

(∆i,β)
i . So we finally get:

∆i ◦∆j = ∆i ∪ ∆j +
∑

β 6=0

∑

k 6=0

〈∆i∆j∆ke
P
l:|∆l|>2 xl∆l〉β∆kqβ. (2)

Now qβ can be regarded as a generic character of H2(V )/torsion. Also, if we
view this as a formula in the Novikov ring generated by qβ, we eliminate the
possible problems of non-convergence that we have ignored so far:

Consider the polynomial ring N associated to the semi-group of effective
classes β ∈ H2(V )/torsion, i. e. the ring generated by the monomials qβ. As
this semi-group has indecomposable zero, we can take the formal completion
N̂ . This is the Novikov ring.

Instead of a Frobenius manifold in the sense of the definition in section 3.1 we
then get a formal Frobenius manifold : Instead of the ringOH∗(V ) of functions on

H∗(V ), all structures are defined over A := OH∗(V )⊗N N̂ . Here N is considered
as a subring of OH∗(V ) via the map

qβ 7→
(∑

i

xi∆i 7→ e

“P
i:|∆i|=2 xi∆i,β

”)
.

The notion of generic semisimplicity also makes sense for formal Frobenius
manifolds: It means that the structure map (H∗(V )⊗A, ◦)→ A is generically
semisimple, or equivalently generically unramified, or that it admits a semisim-
ple point.
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4 Semisimple Computations

4.1 Fano manifolds with minimal (p, p)-cohomology

The finite family of numbers (u0
i , η

0
i , η

0
ij) defined in section 3.1 essentially co-

incides with what was called special coordinates of the tame semisimple germ
of a Frobenius manifold, cf. [Man99, II.7.1.1]. In this subsection, we will show
how to calculate them for the

⊕
Hp,p(V )-part of the quantum cohomology of

those Fano manifolds for which dimHp,p(V ) = 1 for all 1 ≤ p ≤ dimV =: r.
This generalizes the computation for projective spaces done in [Man99, II.4].

We will work with a homogeneous basis ∆p ∈ Hp,p(V ) consisting of rational
cohomology classes satisfying the following conditions: ∆0 = the dual class
of [V ], ∆1 = c1(V )/ρ is the ample generator of PicV , and ρ is called the index
of V. Furthermore, ∆r−p is dual to ∆p with respect to the Poincaré paring, that
is (∆p,∆r−p) = 1, ∆r = the dual class of a point. The dual coordinates are
denoted x0, . . . , xr. From the axioms for Gromov-Witten invariants (cf. [Man99,
III.5.3, (vii)]) it follows that the non-vanishing correlators with β = 0 are the
coefficients of the cubic self-intersection form

(x0∆0 + · · ·+ xr∆r)
3.

We put

[d; a1, . . . , ak] := 〈∆a1 . . .∆ak〉d∆r−1 .

These symbols satisfy the following relations:

1. If r ≥ 3, [d; a1, . . . , ak] 6= 0 and d > 0, then necessarily

k > 0, ai > 0 for all i, and dρ =

k∑

i=1

(ai − 1) + 3− r (3)

(see (1)).

2. [d; a1, . . . , ak] is symmetric with respect to the permutations of a1, . . . , ak.

3. [d; 1, a2, . . . , ak] = d [d; a2, . . . , ak] (divisor axiom).

4. Associativity relations, expressing the associativity of the multiplication
(2).

The multiplication table in the first infinitesimal neighborhood of H 2(V )
(i. e. modulo J2, where J = (x2, x3, . . . , xr)) involves only up to four-point
correlators and looks as follows:

∆a ◦∆b = ∆a ∪ ∆b

+
∑

d≥1

∑

c≥1


[d; a, b, c] +

∑

f≥2

[d; a, b, c, f ]xf


 ∆r−cqd . (4)



16 4 SEMISIMPLE COMPUTATIONS

Finally, the (restricted) Euler field of weight 1 is

E =

r∑

p=0

(1− p)xp∆p + ρ∆1

Now if there exists a tame semisimple point in H 2(V ), the multiplication
in the first order neighbourhood of H2(V ) determines the special coordinates
(see 3.1.5) and hence the full quantum cohomology of V (see [BM01, Theorem
1.8.3]). Then the eigenvalues of E◦ at the generic point of H 2 are pairwise
distinct and determine the canonical coordinates of this point. We have to
calculate in the first infinitesimal neighborhood of H 2 and therefore we consider
all the relevant quantities as consisting of two summands: restriction to H 2 and
the linear (in xa) correction term; so we write

ui := u
(0)
i + u

(1)
i .

The remaining special coordinates are given by the following formulas.

Theorem 4.1.1. Put

ei :=

∏
j 6=i(E − uj)∏
j 6=i(ui − uj)

= e
(0)
i + e

(1)
i .

where the multiplication is understood in the sense of quantum cohomology with
the coefficient ring extended by (ui) and (ui − uj)−1.

Then we have on H2:

ηi = e
(0)
i (xr), ηij = e

(0)
i ej (xr) (5)

where the ei are considered as vector fields acting upon coordinates via ∆a =
∂/∂xa.

Proof. The elements ei are the basic pairwise orthogonal idempotents in the
quantum cohomology ring at the considered point satisfying E ◦ ei = uiei. The
metric potential η is xr.

Here is an efficient way of computing e
(1)
i . First, compute ωi defined by the

identity in the first neighborhood:

e
(0)
i ◦ e

(0)
i = e

(0)
i + ωi. (6)

Then we have
e

(1)
i = − ωi

2e
(0)
i − 1

= ωi ◦ (1− 2e
(0)
i ) (7)

where the division resp. multiplication is again made in the first neighborhood.
In fact, this follows from (6) and

(e
(0)
i + e

(1)
i )◦2 = e

(0)
i + e

(1)
i .

2
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4.2 Fano threefolds with minimal cohomology

4.2.1 Notation

Let V be a Fano threefold. We keep the general notation of the last section,
but now consider only the case r = 3. Besides the index ρ, we consider the
degree δ := (c1(V )3)/ρ3 of V.

There exist four families of Fano threefolds V = Vδ with cohomology
Hp,p(V,Z) ∼= Z for p = 0, . . . , 3 and Hp,q(V,Z) = 0 for p 6= q. Besides V1 = P3

and the quadric V2 = Q, they are V5 and V22, with degree as subscript; their
indices are, respectively, 4, 3, 2, 1. One can get a V5 by considering a generic
codimension three linear section of the Grassmannian of lines in P4 embedded
in P9.

The nonvanishing β = 0 correlators are coefficients of the cubic self-
intersection form

(x0∆0 + · · ·+ x3∆3)3 = δx3
1 + 3x2

0x3 + x0x1x2 .

In this section, we will deal only with Q, V5 and V22, since projective spaces
of any dimension were treated by various methods earlier: see [Man99, II.4]
for special coordinates, [Dub98, 4.2.1] and [Guz99] for monodromy data, and
[Bar01] for semiinfinite Hodge structures.

4.2.2 Tables of correlators

The following tables provide the coefficients of the multiplication table (4).
It suffices to tabulate the primitive correlators, where primitivity means

that ai > 1 and ai ≤ ai+1. The symmetry and the divisor identities furnish the
remaining correlators.

Manifold Q:
[1; 2,3] [1; 2,2,2] [2; 3,3,3] [2; 2,2,3,3]

1 1 1 1
Manifold V5:
[1; 3] [1; 2,2] [2; 3,3] [2; 2,2,3] [3; 3,3,3] [2; 2,2,2,2] [3; 2,2,3,3] [4; 3,3,3,3]

3 1 1 1 1 1 2 3
Manifold V22:
[1; 2] [2; 3] [2; 2,2] [3; 2,3] [4; 3,3] [3; 2,2,2] [4; 2,2,3] [5; 2,3,3]

2 6 1 3 10 1 4 16

[6; 3,3,3] [4; 2,2,2,2] [5; 2,2,2,3] [6; 2,2,3,3] [7; 2,3,3,3] [8; 3,3,3,3]
65 2 9 41 186 840

The tables were compiled in the following way. First, (3) furnishes the
list of all primitive correlators that might be (and actually are) non-vanishing.
Second, several correlators corresponding to the smallest values of n in (3) must
be computed geometrically: n = 2 for Q, and n = 1, 2 for V5, and V22. These
values were computed by A. Bondal, D. Kuznetsov and D. Orlov. Third, the
associativity equations uniquely determine all the remaining correlators, in the
spirit of the First Reconstruction Theorem of [KM94].
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4.2.3 Canonical coordinates

The canonical coordinates on H2 ∩ {x0 = 0} expressed in terms of the flat
coordinates are the roots u0, . . . , u3 of the following characteristic equations of
the operator E◦:

Q : u4 − 108 q u = 0,

V5 : u4 − 44 q u2 − 16 q2 = 0,

V22 : (u+ 4 q) (u3 − 8 qu2 − 56 q2u− 76 q3) = 0. (8)

If x0 6= 0, one must simply add x0 to the values above.
Question. Find “natural” functions f(z) whose critical values at 0 are

roots of (8) and whose unfolding space carries an appropriate flat metric.

4.2.4 Multiplication tables, idempotents, and metric coefficients

The remaining special coordinates ηi, ηjk were calculated using the multiplica-
tion tables in the first neighborhood of H2 obtained by specializing (4). We

calculated e
(0)
i by determining the eigenvectors of ad E; then we used equation

(7) to get e
(1)
i .

Manifold Q:

∆2
1 = 2 ∆2 + q∆1x3 + q∆0x2,

∆1∆2 = ∆3 + q∆0 + q∆2x3 + q∆1x2,

∆1∆3 = q∆1 + q∆2x2 + 2q2∆0x3,

∆2
2 = q∆1 + q∆2x2 + q2∆0x3,

∆2∆3 = q∆2 + q2∆0x2 + q2∆1x3,

∆2
3 = q2∆0 + q2∆1x2 + 2q2∆2x3.

Let ξi, i = 1, . . . , 3 be the three roots of ξ3 = 4q. Then the respective
idempotents have the following form:

e0 =
1

2
∆0 −

1

2q
∆3 +

x2

4
∆1 +

x3

2
∆2

and, for i = 1, . . . , 3,

ei =
1

6
∆0 +

ξ2
i

12q
∆1 +

ξi
6q

∆2 +
1

6q
∆3 −

ξix2

36
∆0

−
(
x2

12
+
ξix3

12

)
∆1 −

(
ξ2
i x2

18q
+
x3

6

)
∆2 −

(
ξix2

27q
+
ξ2
i x3

12q

)
∆3.

Probably the most direct and efficient test of our computations is to simply
compute the pairwise products of these idempotents using the multiplication
table above. This verifies the formulas of the ej while checking at the same
time that our multiplication table yields an associative product.

Note that ∆i = ∂
∂xi

and ∂
∂x1

q = q since we identify q with ex1 to get
a proper (non-formal) Frobenius manifold. So we get as special coordinates
(where i, j ∈ {1, 2, 3}):
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η0 = − 1

2q
, ηi =

1

6q
, η00 = 0,

ηi0 =
ξ2
i

12q
∆1

(−1

2q

)
=

ξ2
i

24q2
, η0i =

−1

2q
∆3

(
−ξ

2
i x3

12q

)
=

ξ2
i

24q2
,

ηij =
ξ2
i

12q
∆1

(
1

6q

)
− ξi

6q
∆2

(
ξjx2

27q

)
− 1

6q
∆3

(
ξ2
jx3

12q

)
= − ξ2

i

72q2
− ξiξj

162q2
−

ξ2
j

72q2
.

The symmetry of ηij is just an additional check of our computations, as we
know in general that ei are commuting vector fields.

Manifold V5:

∆2
1 = 5∆2 + 3q∆0 + 3q∆2x3 + q∆1x2 + 4q2∆0x3,

∆1∆2 = ∆3 + q∆1 + q∆2x2 + 2q2∆1x3 + 2q2∆0x2,

∆1∆3 = 3q∆2 + 2q2∆0 + 4q2∆2x3 + 2q2∆1x2 + 3q3∆0x3,

∆2
2 = q∆2 + q2∆0 + 2q2∆2x3 + q2∆1x2 + 2q3∆0x3,

∆2∆3 = q2∆1 + 2q2∆2x2 + 2q3∆1x3 + 2q3∆0x2,

∆2
3 = 2q2∆2 + q3∆0 + 3q3∆2x3 + 2q3∆1x2 + 3q4∆0x3.

Let ui be the roots of u4 − 44 q u2 − 16 q2. The idempotents are given by

4000q3ei = 1440q3∆0 − 20q2ui
2∆0 + 70qu3

i∆1 − 3040q2ui∆1

−880q2∆2 + 40qui
2∆2 + 4920qui∆3 − 110ui

3∆3

−1968uiq
3x2∆0 + 44ui

3q2x2∆0 + 352q4x3∆0 − 16ui
2q3x3∆0

+176q3x2∆1 − 8q2ui
2∆1x2 − 5412uiq

3∆1x3 + 121ui
3q2∆1x3

−2864uiq
2x2∆2 + 62qui

3x2∆2 + 1056q3∆2x3 − 48x3ui
2q2∆2

−16qu2
i x2∆3 + 6036q2uix3∆3 + 352q2x2∆3 − 138qui

3x3∆3.

The special coordinates ηii are

ηii =
−964 q + 21ui

2

800 q3
=
−251± 105

√
5

400 q2
.

Now since the Galois group of u4 − 44 q u2 − 16 q2 obviously does not act
transitively on the pairs of roots, we have to distinguish two cases in determining
the ηij. So we fix a root u1; the other roots are given by u2 = −u1 and
u2

3,4 − 11 q + u2
1 = 0. We calculated

η12 = η21 =
932 q − 21u1

2

800 q3
=

47∓ 21
√

5

80 q2
and

η13 =
−3u3u1 + 4 q

200q3
.

All other coordinates are obtained from these via Galois permutations.
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Manifold V22:

∆2
1 = 22∆2 + 2q∆1 + 24q2∆0

+2q∆2x2 + 48q2∆2x3 + 4q2∆1x2

+27q3∆1x3 + 27q3∆0x2 + 160q4∆0x3,

∆1∆2 = ∆3 + 2q∆2 + 2q2∆1 + 9q3∆0

+4q2∆2x2 + 27q3∆2x3 + 3q3∆1x2

+16q4∆1x3 + 16q4∆0x2 + 80q5∆0x3,

∆1∆3 = 24q2∆2 + 9q3∆1 + 40q4∆0

+27q3∆2x2 + 160q4∆2x3 + 16q4∆1x2

+80q5∆1x3 + 80q5∆0x2 + 390q6∆0x3,

∆2
2 = 2q2∆2 + q3∆1 + 4q4∆0

+3q3∆2x2 + 16q4∆2x3 + 2q4∆1x2

+9q5∆1x3 + 9q5∆0x2 + 41q6∆0x3,

∆2∆3 = 9q3∆2 + 4q4∆1 + 16q5∆0

+16q4∆2x2 + 80q5∆2x3 + 9q5∆1x2

+41q6∆1x3 + 41q6∆0x2 + 186q7∆0x3,

∆2
3 = 40q4∆2 + 16q5∆1 + 65q6∆0

+80q5∆2x2 + 390q6∆2x3 + 41q6∆1x2

+186q7∆1x3 + 186q7∆0x2 + 840q8∆0x3.

Now let ui, i = 1, . . . , 3 be the roots of u3 − 8qu2 − 56q2u− 76q3. Then the
respective idempotents are given by

5324 q4 ei =
(
−71742q4 − 24552q3ui + 2354q2ui

2
)

∆0

+
(
−30272q3 − 10186q2ui + 979qui

2
)

∆1

+
(
−118712q2 − 38126qui + 3696ui

2
)

∆2

+

(
49346q + 16192ui − 1562

ui
2

q

)
∆3

+
(
−130876q5 − 43283uiq

4 + 4168ui
2q3
)
x2∆0

+
(
−483464q6 − 161648uiq

5 + 15528ui
2q4
)
x3∆0

+
(
−38977q4 − 12940uiq

3 + 1245ui
2q2
)
x2∆1

+
(
−145898q5 − 48889uiq

4 + 4694ui
2q3
)
x3∆1

+
(
−143992q3 − 46818uiq

2 + 4522ui
2q
)
x2∆2

+
(
−491334q4 − 164832uiq

3 + 15822ui
2q2
)
x3∆2

+
(
35042q2 + 11348uiq − 1098ui

2
)
x2∆3

+
(
112272q3 + 37824uiq

2 − 3633ui
2q
)
x3∆3.
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The remaining idempotent is

e0 =
∆0

2
+

2∆2

q2
− ∆3

2q3
+ qx2∆0 + 2 q2x3∆0

+
x2

4
∆1 +

qx3

2
∆1 +

2x2

q
∆2 +

3x3

2
∆2 −

x2

2q2
∆3.

From this we compute the special coordinates

η0 = − 1

2q3
, ηi = 49346q + 16192ui − 1562

ui
2

q
,

η00 = − 1

q4
, ηi0 = η0i = −−2536q2 − 688uiq + 69ui

2

968 q6
,

ηii =
−3412q2 − 260uiq + 41ui

2

484 q6

ηij =
404

121 q4
− 34

121

ui + uj
q5

+
13

968

ujui
q6

.
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5 Dubrovin’s Monodromy data

5.1 The first structure connection

When Dubrovin introduced the notion of Frobenius manifolds in [Dub96], one
of the first observations he made concerned the existence of a flat meromorphic
connection on P1×M, called first structure connection in [Man99]. Its flatness
is equivalent to the axioms of a Frobenius manifold with Euler field, and given
this connection, the Frobenius manifold structure can be reconstructed if the
unit field and the Euler field are known.

Definition 5.1.1. The first structure connection of a Frobenius manifold with
Euler field is a flat connection with singularities on the pullback p∗TM of the
tangent bundle to P1 ×M via the projection p : P1 ×M→M.

If X ∈ T (P1×M) is a horizontal tangent vector at a point (λ,m) ∈ C×M,
which we identify with the tangent vector p∗X in M, then the connection is
given by

∇XY = ∇0,XY + λX ◦ Y,
where ∇0 is the Levi-Civita connection on M.

In λ-direction, the connection is given by

∇ ∂
∂λ
Y = E ◦ Y − 1

λ

(
D

2
id +[E, ·]

)
(Y )

where E is the Euler field and Y is assumed to be the pull-back of a flat section
(with respect to the ordinary Levi-Civita connection on M) of TM.2

By restricting to any fibre {m} × P1 we get a connection on P1 with singu-
larities at 0 and ∞. It has a regular singular point (in the sense of [Del70]) at
λ = 0. Such a regular singular point is characterized by its monodromy. The
singularity at λ = ∞ has order 2.3 Such singularities are classified by Stokes
matrices, which we will explain in the following section.

5.2 Stokes matrices of an irregular singular point of a differen-
tial equation

Consider a differential equation of the form

∂ξ = Aξ, (9)

where A is a n× n-matrix of meromorphic functions and ξ is a column vector.
The singular points are by definition the singularities of A; they are called regu-
lar singular if A has a simple pole. Regular singular points arise very naturally
as singularities of Gauß-Manin connections. However, the first structure con-
nection of a Frobenius manifold has an irregular singularity (i. e., the matrix A

2This deviates from [Man99, Definition 2.5.1] to match Dubrovin’s definition, e. g. [Dub99,
(2.28)]. It also matches Hertling’s definition in [Her02, Definition 4.6] with s = − 1

2
. If D is

an even integer, this is gauge equivalent to [Man99, Definition 2.5.1] by the rational gauge

transformation Y 7→ z
D
2 Y .

3This corresponds to k = 1 in the notation of the following section.
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has a second-order pole); the gauge equivalence class of this singularity will be
part of Dubrovin’s classification data of semisimple Frobenius manifolds. Such
an irregular singularity can also arise geometrically in a twisted version of the
Gauß-Manin connection; this is used to construct Frobenius manifolds from
hypersurface singularities.

Let C({z}) be the field of germs of meromorphic function on the complex
plane at z = 0, and let C((z)) be the field of formal Laurent series. Different
differential equations over C({z}) having an irregular singular point can become
gauge equivalent after base change to C((z)). So the classification of irregular
singular differential equations over C({z}) can be split in two parts, which are

• classifying differential equations over C((z)), and

• classifying differential equations over C({z}) that become isomorphic to
a given differential equation over C((z)) after base change.

The datum of Stokes matrices is one possible classification datum for the
second step.

Differential modules and differential equations. As we will freely change
our point of view between differential modules and that of differential equations
(or rather their gauge equivalence classes), we feel obliged to spell out precisely
how to pass from one to another.4

Definition 5.2.1. A differential ring is a ring R (commutative, with iden-
tity) equipped with a derivation ∂ : R → R satisfying the Leibniz rule ∂(rr ′) =
∂(r)r′ + r∂(r′).

We will consider the differential rings C((z)), C({z}) with ∂
∂z as the structure

derivation.

Definition 5.2.2. A differential module over a differential ring R is a locally
free R-module M equipped with a derivation ∂M : M →M satisfying the Leibniz
rule ∂M (r.m) = ∂(r).m+ r.∂M (m).

Definition 5.2.3. A matrix differential equation over R is an equation of the
form

∂ξ = Aξ

where A is a n × n-matrix over R. Two such equations given by matrices A
and A′ are called gauge equivalent if one can be obtained from the other by a
gauge transformation ξ = Fξ ′: This is the case iff A′ = F−1(AF + ∂F ) with F
an invertible n× n-matrix over R.

Of course, we always think of the indeterminate ξ as a column vector with
entries in (some extension of) R.

4Some proofs will require coordinates, and hence the point of view of differential equations,
yet at least in my case the word “differential module” is more likely to trigger some conceptual
thinking—my apologies go to those readers whose mathematical thinking would not need this
specific abstract nonsense.
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We can pass from 5.2.3 to 5.2.2 by defining M to be Rn and its derivation
as ∂Mξ := ∂ξ − Aξ. If the ground ring is a field (or the differential module is
free as an R-module), we can go the other way by choosing a basis ξ1, . . . , ξn
of M ; then A is the matrix expressing ∂Mξ1, . . . , ∂M ξn in terms of this basis.
Another choice of a basis yields a gauge equivalent differential equation.

In this dictionary, fundamental matrix solutions of the differential equation
correspond to trivializations of the differential module.

If, instead of a differential ring, we are given a topological space equipped
with a sheaf of differential rings O, it is immediately clear what we mean by a
sheaf of differential modules over the sheaf O. We will call this a differential
O-module.

We can get differential modules from a connection on an O-module M: If
we choose any vector field X, we get derivations on O and M by ∂ : f 7→ Xf
and ∂M : s 7→ ∇Xs. In our case of the first structure connection on P1, this will
be a coordinate vector field ∂

∂z .
Note that we also have to choose one such vector field X. In that sense, the

whole theory is one-dimensional.

Differential modules over C((z)). From now on, δ will denote the differ-
ential operator

δ = z
∂

∂z
.

Over the field C((z)) of formal Laurent series, the following theorem com-
pletely classifies differential modules:

Theorem 5.2.4. [vdPS03] Let M be a finite dimensional differential module

over C((z)). Then there is a finite algebraic extension C((z
1
k )), such that after

base change M becomes a split differential module: M is isomorphic to the
direct sum of differential modules Mi given by an equation of the form

δξ = (qi + Ci)ξ

where qi is a polynomial in z−
1
kC[z−

1
k ] and C ∈ Matn×n(C) is a n× n-matrix

(and δ is defined as above). The qi are unique, and the matrices Ci are unique
up to shifts by integers.

The fundamental short exact sequence. The whole theory of Stokes ma-
trices is based upon a short exact sequence of sheaves on S1. Here S1 is identified
with the set of rays in the complex plane starting in the origin, and hence an
open set U ⊂ S1 is seen as an open sector.

In the following, we will omit the proofs of all analytical lemmata and
only focus on the algebraic structure of the theory. The exposition is close to
[vdPS03], where all proofs can be found.

Definition 5.2.5. The sheaf A of functions with asymptotic expansion is de-
fined as follows: If U ⊂ S1 is a connected open subset, then A(U) consists of
germs at zero of functions f on the open sector U such that there exists an
asymptotic expansion

∑
n≥n0

cnz
n of f ; this means that for every closed subset
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W ⊂ U there exist constants C(N,W ) such that on an open neighbourhood of
zero in W we have

|f(z)−
N−1∑

n=n0

cnz
n| < C(N,W )zN .

Note that the asymptotic expansion, if it exists, is uniquely defined by f ,
so there is a canonical map α from A to the constant sheaf C((z)). However,

the asymptotic expansion does not define f uniquely, and the map A α→C((z))

has a kernel A0 which consists of germs of rapidly vanishing functions. Typical
sections of A0 are of the form eaz

−k
in a sector where az−k has negative real

part.

Note that

A(S1) = C({z}) and A0(S1) = 0;

also, the following holds:

Lemma 5.2.6. [vdPS03, proposition 7.22] The map of sheaves α : A→ C((z))

is surjective; more precisely, α(U) : A(U)→ C((z))(U) is surjective iff U 6= S 1.

Thus there is a short exact sequence

0→ A0 → A α→C((z))→ 0

of sheaves on S1.

The additive Stokes phenomenon: The one-dimensional case. Let
q = akz

−k + · · · + a1z
−1 be an arbitrary polynomial. Consider the differential

equation

(δ − q)v̂ = w

where w ∈ C({z}) is a given germ of a meromorphic function and v̂ ∈ C((z))
is a given formal solution. We want to know whether this formal solution can
be lifted over an open sector U ⊂ S1 to a solution v ∈ A(U) which has v̂ as an
asymptotic expansion.

To reduce this to a purely algebraic problem we need one more lemma:

Lemma 5.2.7. [vdPS03] There is a short exact sequence

0→ ker(δ − q|A0)→ ker(δ − q|A)→ ker(δ − q|C((z)))→ 0

of sheaves on S1. Furthermore, the map δ − q locally acts surjectively on each
of the sheaves A, A0 and C((z)).

Proof. We omit the proof of the second part of the assertion. The first part
follows from the second by the 9-lemma (applied to the diagram given in the
proof of the next lemma).

From this, the following is easily deduced:
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Proposition 5.2.8. If U ( S1 is a proper subset, then the existence of a lift
of v̂ to v ∈ A(U) solving (δ − q)v = w is controlled by H 1(U, ker(δ − q|A0)).

Any two lifts differ by an element of H0(U, ker(δ − q|A0)).

Proof. We will give a detailed proof, which only needs some diagram chasing
within the following diagram, and omit similar proofs in later situations:

0

��

0

��

0

��

0 // ker(δ − q)|A0

��

// ker(δ − q)|A

��

α // ker(δ − q)|C((z))

��

// 0

0 // A0

δ−q
��

// A
δ−q

��

α // C((z)) 3 v̂

δ−q
��

// 0

0 // A0

��

// A 3 w

��

α // C((z))

��

// 0

0 0 0

Let v1 ∈ A(U) be any lift of v̂ which exists by lemma 5.2.6. We have
α(δ − q)v1 = (δ − q)v̂ = α(w). Hence we get an element r ∈ A0(U) defined as
r := (δ − q)v1 − w.

Now if r is mapped to zero in the canonical map H0(U,A0)→ H1(U, ker(δ−
q)|A0), we can find a preimage r′ ∈ H0(U,A0) unique up to elements in
H0(U, ker(δ − q)|A0) such that (δ − q)r′ = r. Then v := v1 + r′ is the de-
sired solution.

By reversing our arguments, we get the converse statement.

This lemma asks us to understand the sheaf ker(δ − q)|A0 , the sheaf of
rapidly vanishing flat sections.

Lemma 5.2.9. Let ak be the leading coefficient of q, i. e. q = akz
−k + · · · +

a1z
−1. Let ij : Uj ↪→ S1, j = 1, . . . , k be the connected components of the open

subset in which Re(akz
−k) > 0, ordered counter-clockwise.

There is an isomorphism of sheaves

ker(δ − q)|A0
∼=
⊕

j

ij !CUj

where CUj is the constant sheaf C on Uj and ij ! denotes the extension by zero.

Proof. All germs of holomorphic functions solving the differential equation
(δ − q)f = 0 are multiples of the solution

f(z) = e−
ak
k
z−k−···−a1z−1

.

These solutions are in A0(U), i. e. are rapidly decreasing for z → 0, if and
only if Re(−ak

k z
−k) < 0 for z ∈ U .
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The border lines of the sectors Uj are called the Stokes rays of the differential
equation.

From the cohomology of the sheaf CS1 and of the cokernel of ker(δ−q)|A0 ↪→
CS1 (which is the direct sum

⊕
j ij∗CVj where Vj is the closed sector in between

Uj and Uj+1), we can immediately compute the cohomology of ker(δ − q)|A0):

Corollary 5.2.10. Let U ( S1 be a closed, connected subsector. If U is con-
tained in one of the Uj defined in lemma 5.2.9, then

H0(U, ker(δ − q)|A0) ∼= C,

otherwise it is zero.
Further, if l is the number of j such that Uj is contained in U , we have

H1(U, ker(δ − q)|A0) ∼= Cl.

U

U1

U2

U3

4

U5

U6

kRe(a  z    )=0-k

U
U’

Figure 1: Stokes sectors with k = 6.

Now assume that U,U ′ are two closed connected sectors such that their
intersection is non-empty, and such that both of them are neither completely
contained in a sector Uj , nor do contain one of these sectors; see fig. 1. This
ensures that

H0(U, ker(δ − q)|A0) = H0(U ′, ker(δ − q)|A0) =

= H1(U, ker(δ − q)|A0) = H1(U, ker(δ − q)|A0) = 0.

By lemma 5.2.8 we have unique lifts v, v ′ over U,U ′ of v̂ solving the same
differential equation (δ − q)v̂ = w. However, on the intersection U ∩ U ′ they
need not coincide. This is called the additive Stokes phenomenon.

So, in our language the additive Stokes phenomenon is a Čech-cocycle rep-
resentation of an element in

H1(U ∪ U ′, ker(δ − q)|A0)

given in the covering (U,U ′).
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Higher dimensional additive Stokes phenomena. The preceding section
is easily generalized to the case of a higher-dimensional differential equation:
We consider the differential equation

(δ −A)v̂ = w (10)

where A is a n×n-matrix with coefficients in C({z}), w ∈ C({z})n is fixed and
v̂ ∈ C((z))n is a given solution; again we are considering the problem whether
there exists a lift of v̂ to an element v ∈ A(U)n that has v̂ as asymptotical
expansion.

As in the one-dimensional case, we omit the proof of the

Lemma 5.2.11. [vdPS03, Theorem 7.12] Let A be any n×n-matrix with entries
in C({z}).

The operator δ−A yields surjective endomorphisms of the sheaves An, (A0)n

and C((z))n. There is a short exact sequence

0→ ker(δ −A)|(A0)n → ker(δ −A)|An → ker(δ −A)|C((z))n → 0

of sheaves on S1.

With the same proof as in the last section, we get from this:

Proposition 5.2.12. Consider the differential equation (10), and let U ( S 1

be a proper open subset. Then existence and non-uniqueness of a lift v ∈ A(U)n

of v̂ that solves the same differential equation are controlled by the cohomology
H0 and H1 on U of the sheaf ker(δ −A)|(A0)n .

At the moment, we can not yet compute the cohomology of this sheaf; we
only note that such a lift exists locally, i. e. if U is sufficiently small.

Of course, we can rephrase the statements of this section in the language of
differential modules: If M is a differential module over C({z}), we can associate

to it in an obvious manner the sheaves of differential modules M0, M and M̂
on S1 over the sheaves of rings A0, A and C((z)), respectively. If M0f ,Mf

and M̂f , denote the respective subsheaves of flat sections (which we wrote as
M0f = ker(δ − A)|(A0)n etc.), then the short exact sequence of lemma 5.2.11
reads as

0→M0f →Mf → M̂f → 0.

Everything else translates in a similar way.

The key idea. Given a differential module N over C({z}), we want to un-
derstand which differential modules become isomorphic to N after base change
to C((z)).

In coordinates, if M and N are given by differential equations δ − A and
δ − B, a formal isomorphism of M and N means the following: There exists a
matrix F̂ ∈ GL(n,C((z))) that satisfies the differential equation

δF̂ = AF̂ − F̂B. (11)
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(This differential equation is equivalent to the statement that F̂ gives a gauge
equivalence between the two differential equations (δ−B)ξ = 0 and (δ−A)F̂ ξ =
0.)

Now the essential idea of the theory of Stokes matrices is to apply the theory
developed in the previous two sections to the differential equation (11). So we
treat the n× n-matrix F̂ as a column vector with n2 entries, and we note that
(11) is of the same form as (10). We immediately get from the remark after
proposition 5.2.12 that, locally in S1, we can find a matrix solution F of (11)
with entries in A(U) that has F̂ as asymptotic expansion.

We can rephrase this more abstractly. Let M and N be the sheaves of dif-
ferential modules over the sheaf of rings A associated to M and N , respectively.

Lemma 5.2.13. Locally in S1, the differential A-modules M and N are iso-
morphic (as differential A-modules).

This fact encourages directly the following definition and proposition:

Definition 5.2.14. Given the differential A-module N , let AutN be the sheaf
of A-module automorphisms of N . It has a subsheaf (AutN )f of flat sections
which consists of the automorphisms of N as a differential A-module.

The sheaf Aut0N will denote the subsheaf of endomorphisms that have the
identity as asymptotic expansion (that is, expressed in an arbitrary A-basis,
the endomorphism is represented by a matrix that has the identity matrix as
asymptotic expansion). Of course (Aut0N )f denotes the corresponding subsheaf
of flat sections.

Since the differential module M is obviously determined by its associated
sheaf M, one gets nearly automatically the

Proposition 5.2.15. Let N be a differential module over C({z}). Every dif-
ferential module M over C({z}) that is formally isomorphic to N is determined
by an element in H1(S1, (Aut0N )f ).

Proof. We fix an isomorphism F : M̂
∼→ N̂ . We cover S1 by open subsets Ui

such that on each Ui, we have M|Ui ∼= N|Ui by a chosen isomorphism γi;
we require that γi has F̂ as asymptotic expansion. On the overlaps Ui ∩ Uj ,
we get elements γij = γi ◦ γ−1

j as usual. By our choices, the automorphisms

γij have Id as asymptotic expansion: γij ∈ (Aut0N )f (Ui ∩ Uj). So the γij
yield a Čech-cocycle in H1(S1, (Aut0N )f ), from which the sheaf M can be
reconstructed.

The Malgrange-Sibuya Theorem. The proof of the following theorem is
more involved than the proofs so far (and omitted here); the result is a major
step in the classification of irregular differential modules:

Theorem 5.2.16. The natural map H1(S1,Aut0N ) → H1(S1,AutN ) has
image {1}.

(Remember that sections of AutN are just the A-module endomorphisms
of the A-module N ; so in fact we have AutN ∼= GL(n,A).)
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Corollary 5.2.17. Given a differential module N over C({z}), there is a 1 : 1-
correspondence between

• differential modules M over C({z}) equipped with an isomorphism
M ⊗C({z}) C((z)) ∼= N ⊗C({z}) C((z)), and

• elements of H1(S1, (Aut0N )f ).

Proof. By proposition 5.2.15, it only remains to show that to every element
γ ∈ H1(S1, (Aut0N )f ), we can find a differential module M which is sent to γ
in the map described in this proposition.

By the short exact sequence

1→ Aut0N → AutN → ÂutN → 1

and the Malgrange-Sibuya Theorem we can find a global section F̂ ∈
H0(S1, ÂutN ) ∼= GL

(
n,C((z))

)
which is mapped to the same element in

H1(S1,Aut0N ) as γ; the choice of F̂ is unique up to elements inH0(S1,AutN ),
which will not affect the differential module we are going to construct.

If N corresponds to the matrix differential equation δ − B, we would like
to define M via the differential equation δ − A = F̂−1(δ − B)F̂ ; however, it
is unclear whether the matrix A defined by this equation will have convergent
entries. So we will again use our fundamental short exact sequence to construct
A:

We can cover S1 by open sets Ui such that on each open set, F̂ can be lifted
to an element Fi ∈ (AutN )(Ui) having F̂ as asymptotic expansion; we can
choose the Fi in such a way that (FiF

−1
j )ij is a Čech-cocycle representing γ in

H1(S1, (Aut0N )f ). We define Ai ∈ GL(n,A(Ui)) on Ui by the equation

δ −Ai = F−1
i (δ −B)Fi.

By our choice, the FiF
−1
j define differential automorphisms of N on Ui∩Uj,

hence they commute with δ −B. Thus we get

F−1
i (δ −B)Fi = F−1

j (δ −B)Fj,

which implies Ai|Ui∩Uj = Aj |Ui∩Uj . So the Ai glue to a well-defined global
section A ∈ H0(S1,GL(n,A)) = GL(n,C({z})) which defines the differential
module M as desired.

Stokes matrices with respect to adjacent sectors. We make the follow-
ing simplifying assumption:

Assumption 5.2.18. We assume that after base change to C((z)), the differ-
ential module M splits: We have

M ⊗C C((z)) ∼=
⊕

i

Qi ⊗C C((z))

where each Qi is isomorphic to the one-dimensional differential module associ-
ated to the scalar differential equation (δ − qi), and each qi ∈ z−1C[z−1] is a
polynomial in z−1 of the same degree k for all i. Further, we assume that for
all pairs i 6= j, the polynomial qi − qj is of degree k as well.
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This assumption contains three simplifications (compare with Theo-
rem 5.2.4):

• In general, such a decomposition exists only after adjoining some root k
√
z

to C((z)),

• the decomposition could contain higher dimensional irreducible modules
associated to a differential equation of the form δ − qi + Ci with some
constant n× n-matrix Ci, and

• the qi and their differences qi − qj could have different degrees.

While the first two simplifications rather just shorten our notation, the third
does make a substantial difference. Without it, one needs a filtration on the
sheaves A0,A,C((z)) such that (very roughly speaking) each filtration step
only notices the effects of those summands Qi where qi is a polynomial of fixed
degree; the main ingredient is then the so-called multisummation theorem.

Let N be the differential module N =
⊕

iQi over C(z). We are given an

element γ̂ of Ĥom(M,N); it corresponds to the matrix F̂ of equation (11). As
in the additive Stokes phenomenon, we are looking for sectors U on which γ
can be lifted uniquely to an element γ(U) ∈ Hom(M,N ). Since we obviously

have ̂Hom(M,N) ∼= ̂End(N), the following lemma will be useful:

Lemma 5.2.19. Assume that the differential modules L, L̄ are formally isomor-
phic. Then the associated sheafs L0f and L̄0f of rapidly vanishing flat sections
are isomorphic.

We apply this to L = Hom(M,N) and L̄ = End(N). Using our assumptions,
it is easy to describe the sheaf (EndN)0f :

Lemma 5.2.20. Let N =
⊕

iQi be as above. Each Qi is the one-dimensional
differential module associated to the differential equation δ − qi with

qi = aikz
−k + · · ·+ ai1z

−1.

For each pair i 6= j let fij be the standard solution to the differential equation
(δ + qi − qj)fij = 0 which is given by

fij = e
aik−ajk

k
z−k+···.

Now let Uij be the union of the k sectors where fij has zero as asymptotical
expansion, i. e. where Re(aik − ajk)z−k < 0.

The claim is that

(EndN)0f =
⊕

i6=j
(iUij )!C.

Proof. Indeed, there are no non-zero rapidly vanishing differential endomor-
phisms of Qi, and gauge transformations from the differential equation δ − qi
to δ − qj are exactly given by (a constant multiple of) such a function fij.
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So if U neither does contain nor is contained in any of the k connected
components of Uij for any pair i, j, we have

H0(U, (Hom0(M,N))f ) = H1(U, (Hom0(M,N))f ) = 0. (12)

This is satisfied for almost all connected sectors U of length π
k .

Now suppose we have two such connected sectors U and U ′ with non-empty
connected overlap U ∩U ′. By proposition 5.2.12 there are unique lifts γU , γU ′ of
γ on these open sets. Their difference γ−1

U ′ ◦ γU is an element of (Aut0N )f (U ∩
U ′).

After adjoining the solutions fi = e
−aik
k

z−k+··· of the differential equations
δ − qi, i = 1 . . . n to our base field, the sheaf N has a canonical basis of flat
sections. This yields an isomorphism (AutN )f (U ∩ U ′) ∼= GL(n,C) by repre-
senting each automorphism with respect to this flat basis.

We need to identify the image of (Aut0N )f (U ∩ U ′) in GL(n,C). From
lemma 5.2.20 it is clear that it consists of n× n-matrices K that

• have Kii = 1 on the diagonal, and

• whose non-diagonal entries Kij vanish unless U ∩ U ′ ⊂ Uij .
Now let us consider γ−1

U ′ ◦ γU ∈ (Aut0(N ))f (U ∩ U ′). Under the above
isomorphism, this yields a matrix S of complex numbers satisfying the two
conditions described above. The matrix S is the Stokes matrix of M with
respect to the sectors U and U ′.

Stokes matrices. Now we know everything to go ahead and actually con-
struct the collection of Stokes matrices associated to a differential module M
satisfying the assumption 5.2.18:

1. Choose an isomorphism M̂ ∼=γ
⊕̂n

i=1Qi = N̂ as in 5.2.18. This includes
the choice of an ordering of the irreducible modules.

2. Choose an appropriate covering U1, . . . , Um of S1 by connected open sec-
tors Uj . Each Ui must satisfy the condition necessary to ensure (12); this
is automatically true if they are of size marginally larger than π

k and in
general position. We will assume that they are ordered counter-clockwise
on S1.

To produce such a covering, we start with an arbitrary U1 satisfying the
condition. Having chosen U1, . . . , Ul−1 or U ′1, . . . , U

′
l−1 respectively, we

can either

(a) choose U ′l “as close as possible” to U ′l−1—by this we mean that U ′l ∩
U ′l−1 is only contained in Uij (defined in proposition 5.2.20) for a
single pair i, j (or several pairs only if the corresponding sectors Uij
and Ui′j′ coincide)—, or we can

(b) choose Ul “as far away as possible” from Ul−1. This means that
Ul ∩ U ′l−1 is contained in as many sectors Uij as possible, i. e. in all
such sectors that contain the relevant border line of Ul−1.
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The two different coverings obtained by starting with the same open sector
U1 = U ′1 are shown in figure 5.2.

U21
U23

U32

U32

U13

U13

U31

U’1

U3

U4

U31

U21U23

U12

U12

U2

1U  =

U’

U’

U’

U’2

3

4

5

Figure 2: The two coverings (with k = 2 and n = 3): {U1, U2, U3, U4} and
{U ′1, U ′2, U ′3, U ′4, U ′5, . . . }

As explained in the previous section, we get a Stokes matrix Sl associated to
each pair of sectors Ul, Ul+1 (respectively a matrix Kl from U ′l , U

′
l+1). It is the

matrix representation of γUl ◦ γ−1
Ul−1

with respect to the flat basis of N|Ul∩Ul+1
.

Using (2a), we get 2k ·
(n

2

)
of these matrices, compared to only 2k if we choose

method (2b).
The procedure using (2a) is more canonical: Every choice of U1 will

produce—up to cyclic reordering—the same Stokes matrices S1, . . . , Sm. Each
such matrix will have only one non-zero off-diagonal entry at i, j where
Ul ∩ Ul−1 ⊂ Uij (unless some of the sectors Uij are identical).

We will follow Dubrovin’s terminology (see [Dub99]) and call the matrices
Kl obtained by method (2a) Stokes factors; then only the matrices Sl that we
get using method (2b) will be called Stokes matrices. Up to reordering of the
basis, the latter are alternatingly upper and lower triangular matrices. Stokes
matrices and Stokes factors can easily be reconstructed from each other purely
algebraically. This is due to the constraints on the matrices Kl and the relations
between the two sets of matrices:

Si = Ki·(n2)
·Ki·(n2)−1 · . . . · · ·K(i−1)·(n2)+1.

5.3 Stokes matrices of a Frobenius manifold

As we explained in the beginning of this chapter, the Stokes matrices of a
generically semisimple Frobenius manifold are the Stokes matrices at λ =∞ of
its first structure connection.

So assume that we have chosen a semisimple pointm ∈M. Let u1, . . . , un be
the canonical coordinates. We assume that they are pairwise distinct; otherwise
the assumption 5.2.18 would not hold.

Now consider the first structure connection of M restricted to {m} × P1.
The idempotents ∂

∂ui
form a natural basis of p∗TM|{m}×M.
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Let z = 1
λ . At z = 0, the connection yields a differential module M over

C({z}). Recalling the definition of the first structure connection, we see that
its differential equation is

δv =
1

z
E ◦ v − [E, v].

(Here [E, v] denotes the Lie bracket of E with the flat extension of v ∈ TmM
to a neighbourhood of m.)

Let Qi be the one-dimensional differential module associated to the equation

δv =
ui
z
v.

We see immediately that M and
⊕n

i=1Qi are isomorphic up to O(1) via the
isomorphism of vector spaces γ̃ that sends ∂

∂ui
to 1 ∈ Qi. In fact, there exists

a unique formal isomorphism

M ⊗ C((z))
γ∼=

n⊕

i=1

Qi ⊗ C((z)) (13)

of differential modules that agrees with γ̃ up to higher orders of z: γ = γ̃+O(z).
The proof is easy but not very enlightening (cf. [Dub99, lemma 4.3]): It just
constructs γ step by step as a power series.

So we have found a natural choice for step (1) in the construction of Stokes
matrices as described above; using step (2a) above we only lack a choice of U1.

There is no natural choice here. We can just note that U1 will be a connected
open sector of size approximately π. Then U2 is a sector of similar size that
has small overlaps with U1 at both ends. Together, they cover S1. From the
two connected components of U1 ∩U2, we get two Stokes matrices S1, S2 of our
Frobenius manifold.

These two matrices are related via

S2 = ST1 . (14)

This follows from the good behaviour of γ with respect to the metric that M
inherits from the metric of the Frobenius manifold.

Dubrovin constructs U1 by choosing an oriented “admissible” line l; admis-
sible means that the line does not meet any of the rays bordering a sector of
any Uij, i 6= j. The figure 5.3 shows better than any explanation how to get the
covering U1, U2 from the line l.

Note that the remarks at the end of section 5.2 imply that one can explicitly
write down how the Stokes matrix S changes if the line l is moved around. This
is spelled out in [Dub99, lemma 4.8].

Note the other choice we have made: the idempotents ∂
∂ui

are unique only

up to a factor of −1. Changing ∂
∂ui

to − ∂
∂ui

evidently changes the Stokes matrix
by multiplying the i-th row and column with −1.
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Figure 3: The admissible line l and the covering {U1, U2}

5.4 Dubrovin’s monodromy data

Dubrovin’s monodromy data is a list of invariants of the first structure con-
nection (more precisely of a fibre {m} × P1 of the connection) that suffice to
characterize it.

The Stokes matrix S = S1, together with the canonical coordinates, classifies
the singularity at λ =∞ of the first structure connection. More precisely, from
this we can reconstruct the connection ∇U∞ in a neighbourhood U∞ of infinity.

Dubrovin’s list begins with a vector space V that is identified with the space
of flat sections of the connection (and will become the tangent space TmM) and
a symmetric bilinear form g on V that will become the metric of the Frobenius
manifold.

As mentioned before, the singularity of the connection at λ = 0 is a regular
singularity. A classical invariant of such a point is the residue endomorphism
µ ∈ End (V ) of the connection ∇ ∂

∂λ
(as defined in [Del70, II.1.16]).

As can be read off from the definitions, we have µ = −D
2 id−[E, ·]. This

endomorphism is antisymmetric with respect to the metric g, and we assume
that it is diagonalizable.

Further, Dubrovin defines an endomorphism R by the following properties:

• It can be written as a finite sum R = R1 + R2 + . . . , such that the
first structure connection is gauge equivalent (by a gauge transformation
holomorphic on C) to

∇ ∂
∂λ
v = ∂λv + (

1

λ
µ+R1 + λR2 + λ2R3 + . . . )v.

• The endomorphisms R2k+1 are symmetric with respect to g, the R2k are
antisymmetric.

• Let V =
⊕

r Vr be the isotypical decomposition of V with respect to µ,
i. e. µ|Vr = r · id. Then Rk(Vr) ⊂ Vr+k.
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The tuple (V, g, µ,R) fully describes the restriction ∇|C of the connection
to C.

Finally, we have to understand how ∇|C and ∇U∞ glue to the connection
∇ on P1. This glueing is determined by the identification of the spaces of flat
sections on any simply connected subset of C ∩ U∞.

Around λ =∞, we have a canonical basis of flat sections on the open sector
U1 in the

(
z = 1

λ

)
-plane: the lift γ1 of the formal isomorphism γ defined in

equation (13) is holomorphic on U1. The space of flat sections of
⊕

iQi (as

defined in section 5.3) is identified with Cn via Cn 3 ei 7→ e−
ui
z · 1 ∈ Qi.

From λ = 0, the space of flat sections around any point is identified with V .
Thus the glueing of the two connections is given by an isomorphism C : Cn → V .
Dubrovin calls this the central connection matrix.

This completes the list of Dubrovin’s monodromy data. An immediate good
argument in favor of their usefulness is the following theorem:

Theorem 5.4.1. [Dub99] With a consistent choice of the oriented line l ⊂ C,
the monodromy data (V, g, µ,R, S,C) does not depend on the choice of the base
point m ∈M.

It is not clear for which set of data (V, g, µ,R, S,C) a Frobenius manifold
exists. One relation is obtained by comparing the monodromy around ∞ with
that around 0. However, there are further implicit relations that can only
be phrased by the solvability of a Riemann-Hilbert boundary value problem:
Starting with arbitrary values, it is not clear whether the identification of flat
sections specified by C extends to glue the sheaves V ⊗ OC and

⊕
iQi to a

globally free sheaf on P1.
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6 Exceptional systems and Dubrovin’s conjecture

6.1 Exceptional systems in triangulated categories

We consider a triangulated category C. We assume that it is defined over a
ground field k, i. e. for each pair of objects A, B, the morphisms HomC(A,B)
form a k-vector space. In our examples, C will always be the bounded derived
category Db(X) of coherent sheaves on a variety X/k.

In a way, exceptional objects in triangulated categories are a substitute for
simple objects in abelian categories; an exceptional system vaguely corresponds
to the list of simple objects in a semisimple abelian category.

Definition 6.1.1. • An exceptional object in C is an object E such that the
endomorphism complex of E is concentrated in degree zero and equal to k:

RHom•(E , E) = k[0]

• An exceptional collection is a sequence E0, . . . , Em of exceptional objects,
such that for all i > j we have no morphisms from Ei to Ej:

RHom•(Ei, Ej) = 0 if i > j

• An exceptional collection of objects is called a complete exceptional col-
lection (or exceptional system), if the objects E0, . . . , Em generate C as a
triangulated category: The smallest subcategory of C, that contains all Ei,
and is closed under isomorphisms, shifts and cones, is C itself.

The basic example is the bounded derived category Db(Pn) on a projective
space with the series of sheaves O(i),O(i + 1), . . . ,O(i + n) (for any i). This
was first observed (together with the special case of the Theorem 6.1.2) by
Bĕılinson (cf. [Bĕı84]). Later, exceptional systems were studied by a group at
the Moscow University, see e. g. the collection of papers in [Rud90].

The length of an exceptional system in Db(X) always equals the dimension
of the cohomology of X, in fact an exceptional collection is complete if and only
if its length is dimkH

∗(X).
To justify our vague claim about the correspondence to semisimple abelian

categories we cite the following theorem, which is due to Bondal. It may be
considered as a derived non-commutative analogue to the classical theorem on
the structure of semisimple abelian categories:

Theorem 6.1.2. [Bon89, Theorem 6.2] Assume that the exceptional system
E0, . . . , Em of the category C satisfies the following additional property: For
each i < j, the complex RHom•(Ei, Ej) is concentrated in degree zero.

Let A be the algebra of endomorphisms of
⊕

i Ei. Then C is equivalent to
the derived category Db(A) of right A-modules.

It seems very plausible that it is possible to drop this additional assumption
if we replace

• the triangulated category C by a differential graded category and
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• the endomorphism algebra A by the DG algebra of endomorphisms of⊕
i Ei.

Indeed, this has been proven (but not yet published) by B. Keller. A version
with A∞-algebras and A∞-categories is possible as well.

Examples of varieties that do have an exceptional system include projective
spaces or, more generally, flag varieties.

6.2 Dubrovin’s conjecture

We are now ready to give the precise formulation of Dubrovin’s conjecture.

Conjecture 6.2.1. [Dub98] Let X be a Fano variety.

Claim 1: The quantum cohomology of X is generically semisimple if and
only if there exists an exceptional system in its derived category Db(X).

Claim 2: In this case, define the Stokes matrix Sij via the Euler characteristics
of the exceptional system:

Sij := χ(Ei, Ej)

This is an upper triangular matrix with ones on the diagonal. On the other
hand, consider the Stokes matrix S1 associated to the Frobenius manifold
of the Quantum cohomology of X.

With an appropriate choice of a semisimple point and of the admissible
line l producing the covering U1, U2 ⊂ S1, the Stokes matrix S1 is given
by S1 = Sij.

Claim 3: Finally, let C ′′ : Cn → H∗(X) be the isomorphism that sends ei to
the Chern character Ch(Ei). The central connection matrix C of the
Frobenius manifold can be written as

C = C ′C ′′

where C ′ is an endomorphism of H∗(X) that commutes with multiplica-
tion by the first chern class of X. (The precise nature of C ′ in general
is yet unclear.)
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7 Semisimple mirror symmetries

This section will vaguely explain how Dubrovin’s conjecture fits into the context
of mirror symmetry of Fano varieties. This involves both the more traditional
“combinatorial” mirror symmetry, which we formulate as an isomorphism of
Frobenius manifolds, and the homological mirror symmetry as conjectured by
Kontsevich.

The mirror partner to a Fano variety with generically semisimple quantum
cohomology is not a variety, but a function f : Y → C with isolated singularities,
defined on an affine variety Y . While the construction of a Frobenius manifold
from this is now rather well-understood (due to work by Barannikov, Hertling,
Douai and Sabbah), the associated Fukaya category remains a bit mysterious.

7.1 The mirror construction

In the case of Calabi-Yau varieties, the mirror is constructed from deformations
of another Calabi-Yau variety Y , the mirror partner. In our Fano case, mirror
symmetry becomes even less symmetric.

The construction starts from a pair (Y, f), where Y is a smooth affine com-
plex variety, and f : Y → C is an algebraic function with isolated critical points,
and whose singularities are all of type A1. This means that the Hessian matrix(

∂
∂yi

∂
∂yj
f
)
ij

is non-degenerate at all critical points, so that f is a Morse-type

function. We have to assume that this function behaves well at infinity. For
our purposes, the following notion studied by Sabbah will be sufficient:

Definition 7.1.1. A function f on an affine manifold Y is called M-tame if
there is an embedding Y ⊂ CN with:

• For any r > 0 there exists R > 0 such that the sphere {x ∈ CN | |x| = R}
is transversal to f−1(z) for |z| ≤ r.

Let µ be the Milnor number, i. e. the dimension of the Milnor ring
OY /(TY (f)); here (TY (f)) denotes the ideal generated by all functions that
can be obtained as a partial first-order derivative of f . (This ring has finite
dimension as f has isolated singularities.)

We need that there exists a deformation of f to a function F : Y ×(M, 0)→
C that yields a miniversal deformation of f ; here (M, 0) is a germ of a manifold
with dimension µ, and F |Y×{0} = f : (In our case this just means that we have
enough global functions on Y separating the critical points of f .)

We call the deformation F miniversal at t ∈ M iff the Kodaira-Spencer
map

TtM→OY×{t}/(TY (Ft)), X 7→ X̃Ft (15)

is an isomorphism; here X̃ is an arbitrary lift of X to a section in T (Y ×
M)|Y×{t}, and Ft is the restriction of F to Y × {t}.

If f has only A1-singularities, and the values of f at the singular points are
all distinct (this will give a tame semisimple point in the Frobenius manifold),
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it is particularly easy to write down a versal deformation F : We let M = Cµ,
with coordinates t1, . . . , tµ, and

F (y, t1, . . . , tµ) = f(y) +

µ−1∑

i=0

ti+1f(y)i. (16)

(This is miniversal at t = 0.)

7.2 The Milnor fibration

Even without the versal deformation, the geometry of the fibre at t = 0 car-
ries interesting geometric information that determines part of the data of the
Frobenius manifold, in particular, the Stokes matrices.

7.2.1 A homology bundle

As in the classical case of a local singularity, one has to study the geometry of
the Milnor fibration. Here we will make essential use of f being M-tame.

Let u1, . . . , uµ be the critical values of f , which we assume to be distinct.
We choose a closed disc ∆ ⊂ C of radius r that contains all critical values. We
assume that Y is n+ 1-dimensional and embedded into CN as in the definition
7.1.1 of M-tameness, and choose a big ball B = {z ∈ CN | |z| ≤ R} with R
corresponding to r as in the definition of M-tameness. Now let

Ỹ = B ∩ f−1(∆).

Because f is M-tame, the map f : Ỹ → ∆ is a fibration outside {u1, . . . , uµ} in
the C∞-category (i. e. it is locally trivial): It implies condition (ii) in [AGZV88,
p. 9]. The map f is called the Milnor fibration.

Now for each z ∈ C, z 6= 0, let z0 := r · z|z| be the intersection of the ray from
the origin through z with the boundary of ∆. We define a homology bundle of
the Milnor fibration as follows: For z 6= 0, the bundle has the fibre

Hn+1(Ỹ , Ỹ (z0))

over z, where Ỹ (z0) = f−1(z0)∩B. Because of the local triviality of the fibration
f , we get a Gauß-Manin connection, and so a flat vector bundle over C∗.

Via the boundary map, we can relate this to the standard homology bundle:

Hn+1(Ỹ , Ỹ (z0))
δ→Hn(Ỹ z0). (17)

But in general, if Ỹ has non-trivial homology, this map is not an isomorphism.

7.2.2 Lefschetz thimbles

Locally around z, there is a canonical trivialization of the homology bundle of
the Milnor fibration. Assume that arg z0 is different from arg(ui−uj) for all i, j.
We choose paths γi connecting the critical values with z0 as in figure 4: Each
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path starts straight in the direction of arg z0, and then turns in to reach z0.5

Over each such path, we get a family of vanishing cycles that glue together to
a real n+ 1-dimensional manifold Γi with boundary in Ỹ (z0), called a Lefschetz
thimble. (For a precise definition, we refer to [AGZV88] or the construction as
explicit manifolds below.) This gives canonical elements in Hn+1(Ỹ , Ỹ (z0)).

z_0

u_1

u_2

u_3

u_4

Figure 4: Paths underlying Lefschetz thimbles

We can extend this to a local trivialization by transforming the paths ho-
motopically in ∆ \ {u1, . . . un} connecting the ui with z′0 for z′0 nearby z0. Of
course, as the homotopy classeses of the paths depend on the original choice of
z0, this does not yield a global trivialization.

We will also need the Lefschetz thimbles as explicit manifolds. For this,
one has to choose a Riemannian metric g on Y . We then consider the gradient
flow of the real Morse functions gz = Re(z−1f(·)) (i. e. the flow generated by
the vector field that is dual to the one-form dgz via the metric g). For each
critical point of gz, we consider the unstable part of the Morse flow. This gives a
n+ 1-dimensional submanifold (by general Morse theory, and as Re(z−1f(·)) is
locally of the form x2

1 + · · ·x2
n+1−y2

1−· · · y2
n+1 for suitable complex coordinates

zj = xj + iyj, i. e. for which z−1f = z2
1 + . . . z2

n+1; if the metric is given by
g = dx2

1 + dy2
1 + · · · + dx2

n+1 + dy2
n+1, the Lefschetz thimble is given by y1 =

· · · = yn+1 = 0, and the vanishing cycles are the level sets of this submanifold,
i. e. given by the additional equation x2

1 + · · ·+ x2
n+1 = t).

For big discs ∆, we can view them as elements in Hn+1(Ỹ , Ỹ (Z0)) ∼=
Hn+1(Ỹ , Ỹ (z0)), where

• Ỹ (Z0) is defined as B ∩ f−1(Z0), and

• Z0 ⊂ ∂∆ is a connected subset of the boundary of the disc, containing z0,

5This crude description is good enough as our construction depends only on the homotopy
classes of the paths γi in (∆ \ {u, . . . , uµ}, z0).
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and big enough so that all the straight paths starting at the ui parallel to
the ray associated to z0 intersect ∂∆ in Z0 (see figure 5).

u_1

u_2

u_4

u_3

z_0

Z_0

Figure 5: Paths underlying Lefschetz thimbles

The Morse theory for the function gz shows that (Ỹ , Ỹ (Z0)) is, as a pair of
spaces, homotopy equivalent to

(⋃
Γi ∪ Y (Z0), Y (Z0)

)
. In particular, we have

Hn+1(Ỹ , Ỹ (Z0)) = Zµ with canonical basis [Γ1], . . . , [Γµ].

7.2.3 Seifert matrix

The canonical local trivializations that we have constructed above are not global
trivializations: If we move the paths homotopically with varying z0, we will,
after z0 has moved to some z′0, get paths that are not homotopically equivalent
to the paths we would have gotten if we had started with z0 = z′0. Hence,
their associated Lefschetz thimbles need not lead to the same elements in the
homology Hn+1(Ỹ , Ỹ (z0)).

The Seifert matrix is a way to measure the difference of this local trivial-
ization:

Definition 7.2.1. Let z0 be such that its argument as a complex number is
different from those of ui − uj for all i, j.

Let γ+
1 , . . . , γ

+
n be the paths as in fig. 4, and assume that the ui are numbered

so that the γ+
i are ordered clock-wise at z0.

Let [Γ+
1 ], . . . , [Γ+

n ] be the homology classes in Hn+1(Ỹ , Ỹ (z0)) of the associ-
ated Lefschetz thimbles. Similarly, let [Γ−1 ], . . . , [Γ−n ] be the homology classes in
Hn+1(Ỹ , Ỹ (−z0)) of the paths starting in opposite direction.

Finally, let
Φ: Hn+1(Ỹ , Ỹ (z0))→ Hn+1(Ỹ , Ỹ (−z0))

the isomorphism induced by the flat connection by moving z0 counter clock-wise
to −z0.
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The Seifert matrix Sij is the matrix representing the basis Φ([Γ+
1 ]), . . .,

Φ([Γ+
n ]) in terms of the basis [Γ−1 ], . . . , [Γ−n ] of Hn+1(Ỹ , Ỹ (−z0)).

So, similarly to the Stokes matrices, we can understand it as canonically
defined Čech-cocycle. It is easy to prove that it is an upper triangular matrix
with ones on the diagonal.

7.3 The twisted de Rham-complex

Given a miniversal deformation of a singularity, the manifold germ M is au-
tomatically equipped with a multiplication on the tangent sheaf. We simply
pull back the ring structure of the Milnor ring via the Kodaira-Spencer isomor-
phism (15).

We get two special vector fields onM: The Euler field E is the preimage of
Ft ∈ OY×{t}/(TY (Ft) under this isomorphism, and the unit field e the preimage
of the constant function 1.

So far the construction was canonical, i. e. it did not depend on choices.
The multiplication satisfies an integrability condition, it is an F -manifold with
Euler field as defined in [HM99].

Constructing the flat metric of the Frobenius manifold is more involved and
it depends on choices. Also, it is not known to work in complete generality. We
will not try to outline the full construction of the Frobenius manifold. Instead,
we will describe only as much as we need to define its Stokes matrices.

We will from here on work in the algebraic category, that is Y is an smooth
affine scheme of finite type over C, with structure sheaf OY , and f ∈ OY (Y ).
As we are working with a globally defined function f instead of just a function
germ, there is a problem with “singularities coming from infinity”. Again, this
can be seen very explicitly in the case of tame semisimplicity:

Consider the Milnor ring of the deformed function Ft as defined by (16): It
is defined by the ideal generated by

(dY Ft)(y) =

(
1 +

µ−1∑

i=1

itif(y)i−1

)
(dY f)(y).

We have a common zero of these functions iff dY f = 0 or f(y) is a solution of

p(λ) = 1 +

µ−1∑

i=1

itiλ
i−1.

These solutions go to infinity if the ti go to zero.

However, since we are assuming tame simplicity at t = 0, we do not need
the versal deformation at all to define Stokes matrices. The fibre at t = 0 is
sufficient.

Definition 7.3.1. The twisted relative algebraic de Rham complex associated

to the function f is the complex of sheaves Ω•Y [z, z−1] · e−fz on C × Y with
differential df = z · dY . (Here z is the coordinate on C.)
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A q-form in this complex is given as ω =
∑

i ωiz
i · e−fz , with ωi a relative

q-form, given in coordinates y1, . . . , yn on Y as ωi =
∑
gJ(y)dyj1 ∧ · · · ∧ dyjq .

Algebraic means that gJ is a polynomial function on Y . Its differential is

df (ω · e−fz ) = (z dY ω − df ∧ ω) · e−fz .

The definition of this complex might look a little unmotivated. By [DS02a,
section 2.c], this complex is a representative for the Fourier dual of the de
Rham-complex of f , in a D-module sense.

Let π : C∗ × Y → C∗ be the projection. The sheaves π∗
(

Ω•Y [z, z−1] · e−fz
)

are equipped with a meromorphic connection:

∇∂z
(
ω · e−fz

)
=

(
∂ω

∂z
+
f

z2
ω

)
e
−f
z (18)

The formula

∇∂zdf
(
ω · e−fz

)
= df

(
−ω
z
· e−fz +∇∂z

(
ω · e−fz

))

shows that ∇∂z induces a connection on Hn+1
(
π∗Ω•Y [z, z−1] · e−fz

)
. One mo-

tivation behind this definition is to make the pairing in equation (19) flat.

Proposition 7.3.2. [DS02a] The cohomology sheaf Hn+1
(
π∗Ω•Y [z, z−1] · e−fz

)

of the twisted de Rham complex in degree n+ 1 is locally free of rank µ.

Crucial for Stokes matrices is now the extension of Hn+1 to a free sheaf at
z = 0:

Definition 7.3.3. The Brieskorn lattice H0 is the image of the natural map

Ωn+1[z] → Hn+1 = Ωn+1[z, z−1]/
(
(zdY − df∧)Ωn[z, z−1]

)
.

Proposition 7.3.4. [DS02a] The Brieskorn lattice is a locally free sheaf of rank
µ on C, with a natural isomorphism H0/zH0

∼= Ωn+1/ (df ∧ Ωn).

The Stokes matrix of the Frobenius manifold is the Stokes matrix of the
differential module H0 (after base change to C({z})).

7.4 Frobenius manifold mirror symmetry

To construct a Frobenius manifold, one has to extend this connection in two
ways: First, one has to extend it to a connection onM×C, whereM is the base
space of the versal deformation F above. Secondly, one has to solve a Riemann-
Hilbert-Birkhoff problem, and extend it to a flat connection on a globally free
sheaf F on M× P1.

Finally, one has to find a primitive form that produces an isomorphism
from TM to the sheaf p∗F of fibrewise global sections of F . Generally, neither
existence nor uniqueness of such a primitive form is clear. We refer to [Her03]
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for an overview of the whole construction, and to [DS02a] and [DS02b] and
references therein for details.

It is generally believed that this construction produces mirror partners for
generically semisimple quantum cohomology of Fano varieties. This has been
proven for projective spaces:

Theorem 7.4.1. [Bar01] Let Y be the submanifold of Cn+1 given by
X0X1 · · ·Xn = 1, and let f = X0 + · · · + Xn. We use the deformation
F : Y × Cn+1 → C of f given by F = f +

∑
i aif

i (where ai are the coordi-
nates on Cn+1).

For an appropriate choice of the metric, the Frobenius manifold associated to
this deformation space is isomorphic to the Frobenius manifold of the quantum
cohomology of Pn.

7.5 Relating Stokes and Seifert matrix

Let us abbreviate the sheaves defined in sections 7.2 and 7.3 with Hn+1 =

Hn+1(Ỹ , Ỹ z0) and Hn+1 = Hn+1(π∗Ω•Y [z, z−1] · e−fz ). We can define a pairing
between the two fibres Hn+1|z and Hn+1|z′ for any pair of non-zero complex
number z, z′ with Re

(
z
z′
)
> 0. It is sufficient to define it for a representative

ω · e−fz and the class of a Lefschetz thimble [Γ].

Extend the path γ : [0, 1]→ C as in fig. 5 to a straight path γ∞ : [0,∞[→ C
going to infinity, and accordingly extend the Lefschetz thimble to Γ∞. We set

〈
ω · e−fz , [Γ]

〉
=

∫

Γ∞
ω · e−fz . (19)

Proposition 7.5.1. Equation (19) gives a well-defined pairing that is flat with
respect to the Gauß-Manin connection on the right-hand-side and the connection
as defined in (18) on the left-hand side.

Proof. Outside f−1(u1, . . . , uµ), we can write ω in the form ω = df ∧ φ,
where φ is a n− 1-form. For any z ′ 6= ui, we have

φ|f−1(z′) = Resf−1(z′)(ω).

This allows us to rewrite the integral as

∫

Γ∞
ω · e−fz =

∫

γ∞
dτ · e−τz

∫

Γτ

φ.

We have written Γτ = Γ ∩ f−1(τ) for the vanishing cycle in the fibre over τ
belonging to Γ.

From the results in [Pha83], it follows that the Gauß-Manin system of func-
tions obtained as

∫
Γτ
φ has a regular singularity at τ =∞. In particular, these

functions are of moderate growth. This is essential for all calculations.

Due to Re
(
z
z′
)
> 0, the term e

−τ
z will be rapidly vanishing as τ goes to

infinity. Hence the integral converges.
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Now if ω · e−fz is of the form df (ω′ · e−fz ) = zd(ω′ · e−fz ) for some algebraic
n− 1-form ω′, we can by Stokes’ theorem conclude for finite t ∈ R:

∫

γ|[0,t]
dτ · e−τz

∫

Γτ

φ = ze
−γ(t)
z

∫

Γγ(t)

ω′.

This goes to zero with t→∞.
With similar arguments, one can show that it is flat with respect to the

Gauß-Manin connection on Hn+1. The flatness with respect to the connection
in (18) is immediate. 2

From proposition 7.3.4, it is clear that z2∇ ∂
∂z

operates on H0/zH0 as a

diagonal matrix with entries (u1, . . . , uµ). Further, for z → 0, all the integrals
over Lefschetz thimbles become dominated by the behaviour at the critical
point, and so the result is dominated by a term e

ui
z . This motivates some of

the following statements.

Conjecture 7.5.2. • The pairing (19) is non-degenerate.

• After base change to C((z)), the pair (H0,∇) becomes isomorphic as a
differential module to the direct sum of the differential equations δ− ui

z —
where we have reintroduced the notation of section 5.2. Let ω̂i ∈ H0⊗C[z]

C((z)) be the elements defining this isomorphism.

• Fix some z′ 6= 0, and fix an i, 1 ≤ i ≤ µ. Let H be the half plane
of complex numbers z with Re z

z′ > 0. Let H0(i) be the subsheaf of H0|H
defined by 〈H0(i), [Γj ]〉 = 0 for all j 6= 0. By the preceding proposition and
the first part of the conjecture, this defines a one-dimensional differential
submodule of (H0,∇).

• In the isomorphism H0/zH0
∼= Ωn+1/ (df ∧ Ωn), the submodule

H0(i)/zH0(i) corresponds to the part concentrated at the critical point
over ui on the right hand side.

• Let (φi(z))i ∈ Hn+1|z be the dual basis to the basis ([Γi])i of Hn+1|z′ in our

pairing. We define ωi(z) by ωi(z) · e
−f
z = φi(z) · e

−ui
z . The conjecture is

that ωi(z)e
−f
z is an element in H0(i)⊗(C{z})A6 that has ω̂i as asymptotic

expansion. (Notice that, since φi is flat, the section ωi(z)e
−f
z is a solution

to the differential equation δ − ui
z .)

Since we can vary z′ a little without changing the homology classes of the Γi,
we can in fact define H0(i) and ωi on a sector slightly larger than a half-plane.
If we do the same for −z′ instead of z′, we get analogously sections ω−i on a
sector covering the opposite half plane. We use this sectors as the covering U1

and U2 needed to define the Stokes matrices of the connection.

Corollary 7.5.3. The Stokes matrix of (H0,∇) with respect to (U1, U2) is the
transpose of the Seifert matrix of f (where we chose z0 in definition 7.2.1 as
z0 = z′).

6See 5.2.5 for the definition of A.
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Proof. The intersection U1 ∩ U2 has two components, and we chose z ar-
bitrary in the component that we meet when we go counter-clockwise starting

from z′. The Stokes matrix is the matrix expressing the basis (ω−i (z) · e
−ui
z )i of

Hn+1|z in terms of the basis (ωi(z) ·e
−ui
z )i. The first is the dual basis to

(
[Γ−i ]

)
i

of Hn+1|z, the latter to ([Γi])i. Here we have identified Hn+1|z′ ∼= Hn+1|−z′ ∼=
Hn+1|z via the flat Gauß-Manin connection.

The Seifert matrix expresses the basis ([Γi])i in terms of the basis
(
[Γ−i ]

)
i
;

it is thus clear that it coincides with the Stokes matrix. 2

7.6 Homological mirror symmetry and exceptional systems

In his talk at the Berkeley ICM 1994 [Kon95], Kontsevich proposed a new mirror
symmetry conjecture. According to it, the bounded derived category Db(X)
of coherent sheaves on X should be equivalent to the derived Fukaya category
associated to the mirror partner Y .

In the case of Calabi-Yau varieties, this Fukaya category is reasonably well-
defined. For our purposes, however, we will need a Fukaya category associated
to the mirror F : Y ×M→ C. We will assume that F is the deformation of a
function f : Y → C that has only A1-singularities.

However, apparently no one has yet succeeded in a geometric definition of
this Fukaya category. Still, we can see how some aspects of the Fukaya category
fit into the mirror picture with Fano varieties, as we will describe below.

The objects of the Fukaya category on a Calabi-Yau variety are (graded)
Lagrangian submanifolds Λ ⊂ Y equipped with a flat U(n)-bundle U on Λ.
Graded Lagrangian submanifold means the following: Let p : L → Y be the La-
grangian Grassmannian of the tangent bundle of Y . Let p̃ : L̃ → Y be the bundle
which has as fibres the universal covers of the fibres of p. A Lagrangian sub-
manifold automatically induces a section s : Λ→ p−1(Λ). A graded Lagrangian
submanifold comes with a lift s̃ of s to the universal cover: s̃ : Λ→ p̃−1(Λ).

It is suggested to either restrict the objects to be special Lagrangian subman-
ifolds, or to take equivalence classes of Lagrangian manifolds under Hamiltonian
deformations.

The morphisms in the Fukaya category are complexes. Let (Λ1, U1) and
(Λ2, U2) be two graded Lagrangian submanifolds with flat U(n)-bundles. We
assume that the two submanifolds intersect transversely; otherwise the defini-
tion of the Hom-complexes is unclear (at least in full generality). Let xi be
the intersection points of Λ1 and Λ2. If we compare s̃1 and s̃2 at an intersec-
tion point xi, we get a path in the Lagrangian Grassmannian of TxiY . The
Maslov index (or rather one of the many versions of Maslov indices) associates
an integer µ(xi) to such a path. Now Hom•(Λ1,Λ2) is a complex with objects

Homk(Λ1,Λ2) =
⊕

xi:µ(xi)=k

Hom(U1|xi , U2|xi).

We don’t need to know the precise definition of the Maslov index7, all we

7If γ : [0, 1] → GrL(V ) is a path in the Lagrangian Grassmanian of a symplectic vector
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need is that (−1)µ(xi) is the local intersection multiplicity of Λ1 and Λ2 at xi.
8

From this, it follows immediately that

χ(Hom•(Λ1,Λ2)) = Λ1 · Λ2. (20)

The following conjecture is probably believed by many people:

Conjecture 7.6.1.

The Fukaya category associated to a mirror construction as in section 7.1 has
a full exceptional system (E1, . . . , Eµ). The underlying manifolds of the excep-
tional objects can be chosen to be Lefschetz thimbles (Λ1, . . . ,Λµ) of the function
f . In analogy to equation (20), we have

χ(Hom•(Ei, Ej)) = Sij

for i < j, with S being the Seifert matrix.

This seems more a conjecture about the correct definition of the Fukaya
category than anything else. We should explain the analogy to equation (20) a
bit: In the case where the boundary map (17) is an isomorphism, and where n
is even, the entries Sij can be reconstructed via Picard-Lefschetz theory from
the intersection pairing in Hn(Ỹ z0). But in general, we are not aware of an
interpretation of Sij as an intersection product.

Physicists seem to have understood this part much better. In fact, the
most compelling evidence for the conjecture seems that it would be the best
mathematical translation of the work of Hori, Iqbal and Vafa in [HIV00]. The
numbers Sij are soliton numbers in their framework.

7.7 Putting it together

We can now explain claim 2 of Dubrovin’s conjecture 6.2.1 in a few sentences:
Let S be the Stokes matrix of a semisimple Frobenius manifold coming from
the quantum cohomology of a variety X. By a combinatorial mirror symmetry
statement such as 7.4.1, the underlying Frobenius manifold is isomorphic to
one obtained from a mirror construction starting with a pair (Y, f) as in this
section. By 7.5.3, this is the same as the Seifert matrix. By 7.6.1, it coincides
with the Stokes matrix of the Fukaya category associated to (Y, f). And if
Kontsevich’s categorical mirror symmetry holds, this is then also the Stokes
matrix of Db(X).

Needless to say, this is a very conjectural explanation.

space V such that γ(1) is transversal to γ(0), then this integer is roughly defined as follows:
Let Γ ⊂ GrL be the cycle whose support are those subspaces that do not intersect the
subspace γ(0) transversally. This is called the Maslov cycle of γ(0). The Maslov index counts
the number of intersection points of γ([0, 1]) with the cycle Γ with multiplicities. The only
ambiguity left is at the point γ(0); one possible solution is to extend the path γ in a sufficiently
uniform manner to a path γ : [−ε, 1]→ GrL.

8If we have chosen an orientation of Λ1, then we can choose a compatible orientation of Λ2

by comparing s̃1 and s̃2 at any intersection point.
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8 Blow-ups

8.1 Complete exceptional system and blow-ups

The following theorem produces further examples of varieties that have an ex-
ceptional system:

Theorem 8.1.1. [Orl92] Let Y be a smooth subvariety of the smooth projective
variety X. Let ρ : X̃ → X be the blow-up of X along Y .

If both Y and X have an exceptional system, then the same is true for X̃.

We will only be interested in the case where Y is a point. In this case, the
exceptional collection on X̃ is easy to construct: Let Pn−1 ∼= E ⊂ X̃ be the
exceptional divisor (n is the dimension of X). If E0, . . . , Er is a given exceptional
system in Db(X), then OE(−n+ 1), . . . ,OE(−2),OE(−1), ρ∗(E0), . . . , ρ∗(Er) is
an exceptional system in Db(X̃).

The construction in the general case is similar. Let ρY : Ỹ → Y be the
exceptional divisor, which is a projective bundle. If E is an exceptional object
in Db(Y ), then ρ∗Y (E) ⊗ OỸ (−i) is an exceptional object in Db(Ỹ ). These
objects play the role of OE(−i) above.

8.2 Semisimplicity and blow-ups

So let us now assume that the variety X satisfies Dubrovin’s conjecture, i. e.
that it has both a complete exceptional collection and semisimple quantum
cohomology. Let Xr be its blow-up at r points. By Theorem 8.1.1, this a test
for Dubrovin’s conjecture: We already know that Xr has an exceptional system,
so we would like to show that it has semisimple quantum cohomology as well.

Under specific additional assumptions, this is done by the following theorem:

Theorem 8.2.1. Let Xr → X be the blow-up of a smooth projective variety X
at r points. Assume that X is convex (so that all the moduli spaces M g,n(X,β)
are smooth of expected dimension).

If the quantum cohomology of X has a semisimple point in H 2(X) over the
Novikov ring, then the same is true for Xr.

In the case of dimension two, Del Pezzo surfaces were treated in [BM01],
where the results of [GP98] on their quantum cohomology were used. The
generalization presented here uses instead the results in Andreas Gathmann’s
paper [Gat01]. The essential idea is a variant of the idea used in [BM01]:
a partial compactification of the spectral cover map where the exponentiated
coordinate of an exceptional class vanishes. However, in our case, this is only
possible after base change to a finite cover of the spectral cover map.

The assumption that semisimple points can already be found in H 2 (in the
small quantum cohomology) is not a completely arbitrary one. It induces a
Reconstruction Theorem, which states that all Gromov-Witten invariants can
be reconstructed from four point correlators (see [BM01, Theorem 1.8.3] for a
precise statement). As for the convexity, we refer to the discussion below.
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8.2.1 Gathmann’s results

The following theorem collects the results of [Gat01] that we will need later.
The essential results for the proof in the next section will be part 1a and 2b.

Theorem 8.2.2. Let X̃ → X be the blow-up of a smooth projective variety
X of dimension n at r points x1, . . . , xr. Let Ei be the exceptional divisor
cooresponding to xi, and with the same letter we will denote the exceptional
class in H2(X̃). Let E′i ∈ H2(X̃) be the exceptional homology class of a line in
Ei ∼= Pn−1.

The following assertions relate the Gromov-Witten invariants of X̃ to those
of X (which we will denote by 〈. . . 〉X̃β and 〈. . . 〉Xβ , respectively):

1. (a) If X is convex, the following holds:

Let β ∈ H2(X̃) be any non-exceptional homology class—so β is
any element of H2(X)—, and let T1, . . . , Tm be any number of non-
exceptional classes in H∗(X̃), which we can identify with their preim-
ages in H∗(X). Then it does not matter whether we compute the
following Gromov-Witten invariants with respect to X̃ or X:

〈T1 ⊗ · · · ⊗ Tm〉X̃β = 〈T1 ⊗ · · · ⊗ Tm〉Xβ . (21)

(b) Consider the Gromov-Witten invariants 〈T1⊗· · ·⊗Tm〉X̃β with β being
purely exceptional, i. e. β = d ·E ′i.
If any of the cohomology classes T1, . . . , Tm are non-exceptional, the
invariant is zero. All invariants involving only exceptional cohomol-
ogy classes can be computed recursively from the following:

〈En−1
i ⊗En−1

i 〉X̃E′i = 1. (22)

They depend only on n.

2. If either X is convex, or part 1a is true for other reasons, the following
statements hold:

(a) Using the associativity relations, it is possible to compute all Gromov-
Witten invariants of X̃ from those mentioned above in 1a and 1b.9

(b) Vanishing of mixed classes: Write β ′ ∈ H2(X̃) in the form β ′ =
β + d · E′i where β is the non-exceptional part with respect to Ei;
assume that β 6= 0. Let T1, . . . Tm be non-exceptional cohomology
classes with respect to Ei. Let l be a non-negative integer, and let
2 ≤ k1, . . . , kl ≤ n− 1 be integers satisfying

(k1 − 1) + · · ·+ (kl − 1) < (d+ 1)(n− 1).

Unless we have both d ≤ 0 and l = 0, this implies the vanishing of

〈T1 ⊗ · · · ⊗ Tm ⊗Ek1
i ⊗ · · · ⊗E

kl
i 〉β = 0.

9We will make this more precise later on.
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Proof. All equations follow trivially from statements from lemma 2.2, lemma
2.4 and proposition 3.1 in [Gat01]. Note that we have made explicit the remark
2.3 of Gathmann’s paper: the only part where Gathmann uses the convexity of
X is in the proof of equation (21). So if it can be proven by other means, the
assumption of convexity of X can be dropped. 10

The only apparent change to Gathmann’s statements is in 2b: We only
assume that β 6= 0, whereas Gathmann assumes that β is not purely exceptional.
But the missing cases are treated by [Gat01, lemma 2.4, (i)]. 2

We want to apply Gathmann’s theorems to the map Xr → Xr−1, where
Xr and Xr−1 are the blow-up of a convex variety X at r and r − 1 points,
respectively; but we do not want to assume the convexity of Xr−1. So we need
to prove equation (21). We will use Gathmann’s algorithm to compute the
Gromov-Witten invariants of Xr−1 and Xr from those of X (i. e. we apply
Gathmann’s theorems to the maps Xr → X and Xr−1 → X).

We want to show that his algorithm gives the same number for Gromov-
Witten invariants of Xr−1 and the non-exceptional Gromov-Witten invariants
of Xr. First, we need to introduce some of his notations.

Definition 8.2.3. Denote by V a smooth projective variety. Let β ∈ H2(V )
be an effective homology class, and let T1, . . . , Tm, µ1, µ2, µ3, µ4 ∈ H∗(V ) be
cohomology classes. Write T for T = T1 ⊗ T2 ⊗ · · · ⊗ Tm. Let ∆0, . . . ,∆q be a
basis of the cohomology.

By Eβ(T ;µ1, µ2 | µ3, µ4) we denote the equation11

0=〈T ⊗ µ1 ⊗ µ2 ⊗ µ3 · µ4〉β + 〈T ⊗ µ3 ⊗ µ4 ⊗ µ1 · µ2〉β
−〈T ⊗ µ1 ⊗ µ3 ⊗ µ2 · µ4〉β − 〈T ⊗ µ2 ⊗ µ4 ⊗ µ1 · µ3〉β
+
∑
β1,β2

∑
T1,T2

∑
i,j

(∆i,∆j)
(
〈T1 ⊗ µ1 ⊗ µ2 ⊗∆i〉β1〈T2 ⊗ µ3 ⊗ µ4 ⊗∆j〉β2

−〈T1 ⊗ µ1 ⊗ µ3 ⊗∆i〉β1〈T2 ⊗ µ2 ⊗ µ4 ⊗∆j〉β2

)

Here the sums go over

• all decompositions of β as a sum β = β1 +β2 of effective homology classes,

• decompositions of T = T1 ⊗ T2 that come from decompositions of
{T1, . . . , Tm} into two sets, and

• all 0 ≤ i, j ≤ q.

This equation is guaranteed to hold by the axioms for Gromov-Witten in-
variants and is necessary for associativity.

We can now describe Gathmann’s recursive algorithm:

10 The author is convinced that equation (21) is always true. However, a proof is technically
highly inconvenient in the framework of the construction of the virtual fundamental classes
in [Beh97]: The natural morphism M0,n(X̃, β) → M0,n(X, β) does not commute with the
morphism to M(0, n) (the moduli space of prestable curves), with respect to which the perfect
relative obstruction theory is constructed. This makes it hard to compare the relative virtual
normal cones.

If the virtual fundamental class could be constructed via an absolute obstruction theory
(using the non-relative virtual normal cone of [BF97]), a proof of equation (21) might be easy.

11We write µi · µj for the cup product, and (∆i,∆j) for the Poincaré pairing.
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Theorem 8.2.4. Given a blow-up X̃ of a convex variety X at a finite number
of points, we can compute all Gromov-Witten invariants of X̃ recursively, using
the associativity relations, from those determined by 8.2.2, 1a and 1b, in the
following way:

By linearity, we can assume that all cohomology classes are of pure dimen-
sion and either non-exceptional or purely exceptional. Write T = T1⊗ . . . Tm′⊗
Tm′+1 ⊗ · · · ⊗ Tm with T1, . . . , Tm′ non-exceptional, and Tm′+1, . . . , Tm excep-
tional. By the divisor axiom, we can assume without loss of generality that
none of the exceptional cohomology classes are divisorial, and that the sum of
the codimensions of T1, . . . , Tm′ is at least n+ 1.12 In particular, m′ is at least
2. Also, we assume codimT1 ≥ codimT2 ≥ · · · ≥ codimTm′ .

Then we proceed as follows:

(A) If m′ < m, then Tm = Eki for some exceptional divisor class Ei. We then
use

Eβ(T ′;T1, T2 | Ei, Ek−1
i ) with T ′ = T3 ⊗ · · · ⊗ Tm−1

(B) If m′ = m, T1 = [pt] and codim T2 ≥ 2, we choose µ, ν such that µ is
divisorial, codim ν = n− 1 and µ · ν = [pt], and we choose an exceptional
divisor Ei with Ei·β 6= 0 (such an Ei must exist, as otherwise the invariant
would be determined by equation (21)).

We use

Eβ(T ′;µ, ν | Ei, T2) with T ′ = T3 ⊗ · · · ⊗ Tm

(C) In all other cases (i. e. m′ = m, but not case (B)) we again choose an Ei
as in the previous case. We use the equation

Eβ+E′i
(T ′;T1, T2 | Ei, En−1

i ) with T ′ = T3 ⊗ · · · ⊗ Tm

Here “using equation Eβ(. . . )” means

• that there is a partial ordering on the set of pairs (β, T ),13

• that this ordering does not have infinite descending chains, and

• that at each step, the respective equation (together with the divisor axiom)
determines the correlator in question uniquely from correlators that are
smaller with respect to the partial ordering.

Proposition 8.2.5. Let β ∈ H2(Xr−1) and T1, . . . , Tm ∈ H∗(Xr−1) be
(co-)homology classes in Xr−1, and identify them with their images in the
(co-)homology of H∗(Xr).

If we compute 〈T1 ⊗ · · · ⊗ Tm〉Xr−1

β and 〈T1 ⊗ · · · ⊗ Tm〉Xrβ according to
theorem 8.2.4, we can make corresponding choices at each step, and get an
equivalent recursion; thus, the two values coincide. Therefore, Theorem 8.2.2
holds for the map Xr → Xr−1.

12Otherwise, we can enlarge the list of the Ti by any number of divisors D with (D, β) 6= 0.
13Its precise definition is not relevant for us, so we will not repeat it here.
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Proof. The “initial values” of the algorithm, i. e. the non-exceptional in-
variants of X, and the purely exceptional ones, are identical in both cases by
Theorem 8.2.2, 1b and 1a.

We assume that Xr and Xr−1 are the blow-up of X at x1, . . . , xr, and
x1, . . . , xr−1, respectively. Having chosen a basis ∆0, . . . ,∆q′ of H∗(Xr−1), we
extend this to a basis ∆0, . . . ,∆q of H∗(Xr) by identifying ∆0, . . . ,∆q′ with
their images in H∗(Xr), and setting ∆q′+k = Ekr for 1 ≤ k ≤ n− 1.

Now at each recursion step, we make the necessary choices in H ∗(Xr−1),
and then make the corresponding choice via the inclusion H ∗(Xr−1) ⊂ H∗(Xr)
for Xr.

Let us assume that the claim has already been proven for all smaller classes
in Gathmann’s partial ordering of pairs (β, T ).

Consider case (A) of the algorithm. In Xr, the equation to be used reads
as:

0=〈T ′ ⊗ T1 ⊗ T2 ⊗Ei ·Ek−1
i 〉Xrβ + 〈T ′ ⊗Ei ⊗Ek−1

i ⊗ T1 · T2〉Xrβ + 0 + 0

+
∑

T1,2,β1,2,i,j

(∆i,∆j)
(
〈T1 ⊗ T1 ⊗ T2 ⊗∆i〉Xrβ1

〈T2 ⊗Ei ⊗Ek−1
i ⊗∆j〉Xrβ2

−〈T1 ⊗ T1 ⊗Ei ⊗∆i〉Xrβ1
〈T2 ⊗ T2 ⊗Ek−1

i ⊗∆j〉Xrβ2

)

(Here we have abbreviated the big sum of 8.2.3. The third and fourth summand
there are zero because of Ei · T1 = Ei · T2 = 0.)

The first summand is the one we want to compute. The second summand
is identical to 〈T ′ ⊗Ei ⊗Ek−1

i ⊗ T1 · T2〉Xr−1

β by induction hypothesis.
All summands in the big sum can, by induction hypothesis, be assumed to

be identical to the corresponding terms 〈· · · 〉Xr−1 in the corresponding equation
in Xr−1—if they appear in that equation at all. The summands that do not
appear in the corresponding equation for Xr−1 come from

1. decompositions of β = β1 + β2 that are non-trivial with respect to the
exceptional divisor Er, i. e. β1 = β′1 + d ·E′r, β′2 = β′2 − d ·E′r with d > 0,
and/or

2. the ∆i,j being elements of the basis of H∗(Xr) that do not appear in the
basis of H∗(Xr−1), i. e. ∆i,j = Ekr .

If we are in case 2, but not in case 1, both invariants 〈· · · 〉Xrβ1,2
vanish by 8.2.2, 2b

(with d = 0 and l = 1). In the case 1, the correlator 〈· · · 〉Xrβ1
vanishes, this time

by 8.2.2, 2b with d > 0 and l ≤ 1.
Cases (B) and (C) are completely analogous. 2

8.2.2 Proof of Theorem 8.2.1

Proof.[of Theorem 8.2.1] By induction we only need to treat the case of the
blow-up of a single point.

We consider the spectral cover map restricted to H 2(Xr), over the Novikov
ring. Let N̂r and N̂r−1 be the Novikov ring of Xr and Xr−1, respectively. Let
β1, . . . , βs be a basis of H2(Xr−1), and let E ′ = E′r be the line in the exceptional
divisor of Xr → Xr−1. Write qi = qβi and Q = q−E

′
for the corresponding
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elements in the Novikov rings. The Novikov ring N̂r is generated over N̂r−1 by
monomials

∏
i q
ai
i ·Q−d, d 6= 0, for which

∑
i aiβi + dE′ is effective.

The structure ring of small quantum cohomology is given by H ∗(Xr)⊗ N̂r

and H∗(Xr−1) ⊗ N̂r−1, respectively. The spectral cover map for Xr looks as
follows:

Spec
(
N̂r ⊗H∗(Xr)

)
→ Spec N̂r (23)

(The multiplication on the left-hand side is the quantum product.)

We make the base change to the cover given by adjoining R := n−1
√
Q. We

want to extend the spectral cover map to the boundary where R = 0. To do this,
we let B = N̂r−1[[R]], and consider it as a subring of N̂r[Q][R]/(Rn−1−Q).14

We define M as the free B-submodule of B ⊗H∗(Xr) generated by

〈H∗(Xr−1), RE,R2E2, . . . , Rn−1En−1 = QEn−1〉.

Lemma 8.2.6. • The quantum product restricts to M , i. e. M ◦M ⊆M .
So after base change to the (n− 1)-fold cover, the spectral cover map (23)
extends to a map

Spec
(
N̂r[Q][R]/(Rn−1−Q)⊗H∗(Xr)

)

��

// // SpecM

��
Spec

(
N̂r[Q][R]/(Rn−1−Q)

)
// // SpecB

• The fibre at R = 0 of this extended spectral cover map is isomorphic to the
disjoint union of n− 1 copies of the identity map and the spectral cover
map of Xr−1:

Spec(N̂r−1⊗H∗(Xr−1))
q‘n−1

i=1 Spec N̂r−1

// //

��

SpecM

��
Spec N̂r−1 = SpecB/(R) // // SpecB

We assume for a moment that this lemma holds. The map SpecM →
SpecB is flat and finite. By the induction hypothesis, Spec N̂r−1⊗H∗(Xr−1)→
Spec N̂r−1 is generically semisimple (i. e., it is unramified over an open non-
empty subset of Spec N̂r−1). The second part of the lemma then tells us that
the map SpecM → SpecB is generically semisimple over the fibre of R = 0.

E. g. by the criterion [EGA, IV, 17.3.6] of unramifiedness, it is clear
that semisimplicity is an open condition. Hence the extended spectral cover

14It cannot be the complete Novikov ring, as there are effective homology classes in H2(Xr)
of the form β = βr−1 + dE′, d > 0, so that N̂r contains monomials with negative powers of
Q. Also note that Q itself is not an element of the Novikov ring, so we have to adjoin it first,
too.
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map is generically semisimple. The same must then hold for the map over
N̂r[Q][R]/(Rn−1−Q), and, as unramifiedness can be checked after a base change
to a covering, the original spectral cover map (23). 2

Proof.[of the lemma] Both claims follow from a close investigation of all
possible products, using mainly Gathmann’s vanishing result.

Let ∆0, . . . ,∆m be a graded basis of H∗(Xr−1), which is an extension of
the basis ∆1, . . . ,∆s of H2(Xr−1) that we chose above, and which contains ∆0

as the unit and ∆m as the dual class of a point. The matrix of the Poincaré
pairing with respect to this basis has entries gij .

The following formulas compute quantum products up to higher orders of
R. We denote the product taken in the quantum cohomology of Xr and Xr−1

by ◦Xr and ◦Xr−1 , respectively. We write β as β = βr−1 + d · E′ with βr−1 ∈
H2(Xr−1) as the non-exceptional part. The references “no. 1a” etc. always
point to the parts of Theorem 8.2.2.

We claim:

∆i ◦Xr ∆j =
∑

k,l

∑

β

〈∆i∆j∆k〉βgkl∆l ·Q−d
s∏

ν=1

q(β,∆ν)
v

+(−1)n−1
n−1∑

k=1

∑

β

〈∆i∆jE
k〉βEn−k ·Q−d

s∏

ν=1

q(β,∆ν)
v

= ∆i ◦Xr−1 ∆j +O(Q) (24)

To show this equality we need to examine three cases according to β:

• If d = 0, then the contribution to the second sum vanishes by no. 2b.
By no. 1a, the first sum restricted to the cases d = 0 computes exactly
∆i ◦Xr−1 ∆j .

• The term O(Q) covers all summands with d < 0.

• If d > 0, all relevant Gromov-Witten invariants appearing in equation
(24) vanish by no. 2b (respectively by no. 1b in the case βr−1 = 0).

For the next product that we have to examine (where i, j > 0), we get:

∆i ◦Xr RjEj =
∑

k,l

∑

β

〈∆iE
j∆k〉βgkl∆l · RjQ−d

s∏

ν=1

q(β,∆ν)
v

+(−1)n−1
∑

k

∑

β

〈∆iE
jEk〉βEn−k ·RjQ−d

s∏

ν=1

q(β,∆ν)
v

= O(R ·M) (25)

Again we have to treat the three different cases:

• If d = 0, then the contribution to the first sum vanishes by no. 2b. The
vanishing result also implies that 〈∆iE

jEk〉β can only be non-zero if j +
k − 2 ≥ n− 1, i. e. j ≥ n− k + 1. Then RjEn−k lies in R ·M .
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This reasoning only omitted the trivial case β = 0; here the invariant is
zero since we assumed ∆i 6= ∆0.

• The term O(R ·M) covers all summands with d < 0.

• If d > 0, then again all the invariants appearing in equation (25) vanish
by no. 2b and no. 1b.

Further, we will show:

RE ◦Xr RiEi =
∑

j,k

∑

β

〈EEi∆j〉βgjk∆k · Ri+1Q−d
s∏

ν=1

q(β,∆ν)
v

+(−1)n−1
∑

j

∑

β

〈EEiEj〉βEn−j · Ri+1Q−d
s∏

ν=1

q(β,∆ν)
v

=

{
Ri+1Ei+1 +O(R ·M) if i ≤ n− 2

(−1)nRE +O(R ·M) if i = n− 1.
(26)

• If d = 0, then both terms above vanish evidently because of the divisor
axiom—unless β = 0; for this case, the first sum contributes a summand
(−1)n−1Rn[pt] ∈ R ·M (for i = n− 1 and ∆j = ∆0), whereas the second
sum gives Ri+1Ei+1 (from the summand with i+ j + 1 = n).

• As usual, the term O(R ·M) takes care of the cases with d < 0.

• If d > 0, we have to distinguish two cases this time: If β is not purely
exceptional, then we can apply no. 2b; this immediately shows that the
summand of the first sum vanishes. It also shows that 〈EE iEj〉β is zero:
We have ν = 3, a1 = 1 and a2, a3 ≤ n−1. Hence a1 +a2 +a3−3 ≤ 2n−4.
On the other hand, (n− 1)(d+ 1) ≥ (n− 1)(1 + 1) = 2n− 2.

It remains the case β = d · E ′. The first sum vanishes for this term. By
the dimension axiom, the correlator in the second sum can only be non-
vanishing if k(β) = 3 − n + (1 − 1) + (i − 1) + (j − 1), or equivalently
(n− 1)d = 1− n+ i+ j. This is only possible if i = j = n− 1 and d = 1.
The corresponding correlator is

〈EEn−1En−1〉E′ = −〈En−1En−1〉E′ = −1.

This yields the summand (−1)nRE for the case i = n− 1.

These formulae check that M is indeed a subring (with unit) of the quantum
ring N̂r⊗H∗(Xr). To show the second part of our lemma, we have to investigate
the fibre M/RM .

Let Y := (−1)nQEn−1 = (−1)nRn−1En−1. The equation (26) says that,
in the ring M/RM , multiplication by Y is the identity on the span S of
RE,R2E2, . . . , Rn−1En−1. In particular, Y is an idempotent and gives a split-
ting of M/RM ∼= S ⊕ K into the image S and kernel K of Y ◦. By our for-
mulae, we see immediately that S is the image and the kernel is generated by
∆1, . . . ,∆m,∆0 − Y .
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As ∆0 is the unit in the quantum cohomology ring, ∆0 − Y must be the
unit in K. Then equation (24) tells us that the map

(K, ◦Xr )→ (H∗(Xr−1), ◦Xr−1)

given by ∆0 − Y 7→ ∆0, ∆i 7→ ∆i, i > 0 is an isomorphism.
The image S (in which Y is the unit) is isomorphic to B[Z]/(Zn−1− (−1)n)

∼=
⊕n−1

i=1 B via the map Z 7→ RE. Of course, this splits over C as claimed in
the lemma. 2

8.3 Further Questions

The main example where our theorem applies is the case of X = Pn. For n = 2,
this yields the semisimplicity of quantum cohomology for all Del Pezzo surfaces.

When formulating Dubrovin’s conjecture in 6.2.1, we have followed him in
only referring to Fano varieties. For the claims about the Stokes matrix and
the central connection matrix, this makes sense, as we need a C-valued point,
and hence convergence of the potential, to even define them in the quantum
cohomology case. (While a non-empty convergence domain of the quantum
cohomology potential has only been proven for P2, one can generally hope
for convergence in the Fano case.) However, our theorem suggests that the
assumption of X being Fano is unnecessary for the statement about generic
semicimplicity.

Of course, our theorem 8.2.1 covers only the first part of Dubrovin’s con-
jecture. It would be very encouraging if it was possible to show his statement
on Stokes matrices in a similar way. As far as I know, the only case where this
part has been checked is the quantum cohomology of projective spaces; this was
done by Guzzetti (cf. [Guz99]).

However, already in the case of Del Pezzo surfaces, it seems far from clear
how the Stokes matrices could be computed. On the other hand, if we look
again at Gathmann’s theorem and his algorithm to compute the invariants
of Xr (cf. 8.2.2, no. 2a), we notice that all the initial data it uses is already
contained in the quantum multiplication in the special fibre R = 0 of our
partially compactified spectral cover map. If we rephrase this statement, it
says that the whole Frobenius manifold associated to the quantum cohomology
of Xr is already determined by the structure at R = 0.

Yet our construction does not yield a Frobenius structure at the point R =
0. The multiplication has a pole here. If there was a formalism of divisorial
Frobenius manifolds, which could contain divisors as R = 0 in our case, and
if there was a way to extend Dubrovin’s Stokes matrices to these divisorial
Frobenius manifolds, this would probably be the most elegant treatment of
Stokes matrices of blow-ups.
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[AGZV88] V. I. Arnol′d, S. M. Gusĕın-Zade, and A. N. Varchenko. Singularities
of differentiable maps. Vol. II, volume 83 of Monographs in Math-
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