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1 Introduction

1.1 What is Mirror Symmetry?

It is now roughly 10 years ago when physicists first discovered that a special
duality in conformal field theory might have interesting mathematical appli-
cations. Under the name of “mirror symmetry”, this phaenomenom quickly
became famous and rised interest among mathematicians and physicists. Since
then, many purely mathematical statements arised from the rather vague con-
jecture, and a lot of effort has been put into setting up the right language to
formulate them. However, it is still far from being well-understood.

The prediction came up in the study of a certain string theory. To each
such string theory there is an associated manifold. Now the duality mentioned
above implies that there are two possible choices for this manifold. Since there
are a lot of properties of this string theory that can be deduced from geometri-
cal properties of the manifold, these two manifolds will necessarily have corre-
sponding structures on them. However, mathematically very surprising was the
observation that the relevant properties of the manifolds were purely complex
invariants on the one side and symplectic invariants on the other; mirror sym-
metry thus gave hints for relations between completely differently formulated
mathematical structures that mathematicians might never have suspected.

This rather vague statement has been translated into very accurate predic-
tions. To get a grasp of what can happen, it might be useful to have a quick
look at the probably most famous single statement produced by mirror symme-
try; it is dealing with numbers of rational curves on a Calabi-Yau hypersurface
in P4 and involves a surprising identity:

For the symplectic side, we consider the generating function of rational
curves

F (r) ∼
∑

d≥1

Nde
dt; (1)

up to minor corrections, Nd is the number of holomorphic embeddings P1(C) ↪→
M̂ of degree d, the manifold M̂ itself is any hypersurface in P4 given by a poly-
nomial in degree 5. Here the dimension 3 simplifies the formulation, since in this
case the moduli space of rational curves of a certain degree is expected to be 0-
dimensional, i. e. the rational curves are isolated; under general circumstances,
this “number of curves” is computed by the theory of Gromov-Witten-invariants
(see [15]). On the complex side we consider periods ψi =

∫
γi
ω (where ω is a

Kähler form) of a certain class of Calabi-Yau manifolds parametrized by z. Now
these functions are related by the simple equation

F

(
ψ1

ψ0

)
=

5

2

ψ1ψ2 − ψ0ψ3

ψ2
0

. (2)

The proof of this statement (see [5]) is despite its physical origin purely math-
ematical.

It is not clear in general how to constuct the symplectic mirror manifold
of a given complex manifold. However, in the case of 2-dimensional tori this
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mirror map is the simplest one possible: On the complex side, we have elliptic
curves, which are as usual parametrized by a τ in the upper half-plane H. The
possible symplectic structures on R2/Z2 are characterized by ρ =

∫
ω.

• The mirror map simply exchanges τ and ρ.

This essay will try to examine this relation. It will be concerned with a
rather concrete side of mirror symmetry in the first part and a far more abstract
one in the second. Section 2 is a detailed treatment of a generating function as
in (1) for the case of the elliptic curve; the function considered there is extended
to take into account maps from curves of higher genus. All other sections are
more or less dealing with a categorical formulation of mirror symmetry proposed
by Kontsevich [14].

1.2 Summary

In section 2, I give a proof of “theorem 2” (theorem 2.4) in Dijkgraaf’s article
on mirror symmetry on elliptic curves [7] (which is sketched in this paper) in
full detail.

Section 3 is devoted to the statement of the homological mirror conjecture.
After defining the two categories involved in sections 3.1 (sources: [25, 11])
and 3.2 ([23, 9, 14]) and proving a duality that arises in both of them in 3.3
(statement in [14]; [12, 25] used for the proof), I explain the construction of
Polishchuk and Zaslow to proof the desired equivalence in the case of elliptic
curves (section 3.4; [23, 25]).

Section 4 starts with a short report on Fourier-Mukai transforms (main
source: [4]); it then compares the autoequivalences of the two categories that
have been proved to be equivalent in section 3.

Section 5 gives rudiments of a construction somehow analogous to Fourier-
Mukai-transforms for Fukaya categories that might not be found in the litera-
ture, which is however mentioned in [14].

The source for appendix A is [6].

2 Enumerative aspects (following R. Dijkgraaf)

This chapter will examine a generating function of numbers of curves similar to
the one defined above (1). We won’t be able to proof a statement as strong as
equation (2), but proof a functional equation originating in its role in quantum
field theory.

Let E be an elliptic curve. First of all, we need an appropriate definition
of the “number of curves of genus g and degree d” Ng,d. The first idea would
be to take the Euler characteristic of the Hurwitz space Hg,d := Mg(E, d),
i. e. the moduli space of maps from genus g degree d-curves to E, but via the
translation the elliptic curve acts freely on these spaces which hence have Euler
characteristic zero. Instead, one uses the following definition:

By the Riemann-Hurwitz formula, a simple branched map (i. e. all branch
points have ramification index 2) from a curve Cg of genus g to E has exactly
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2g − 2 branch points, hence we get a map Hg,d → E2g−2 to the configuration
space of 2g−2 points in E. This map has a finite fiber Xg,d. For any ξ : Cg → E
in a fiber of an arbitrary P ∈ E2g−2, we define the group Aut ξ to be the
subgroup of the group of automorphisms of Cg commuting with ξ.

2.1 Definition We define the “number of genus g degree d curves” in E to be

Ng,d :=
1

(2g − 2)!

∑

ξ∈Xg,d

1

Aut ξ
,

and get the generating functions

Fg(q) :=
∞∑

d=1

Ng,dq
d

(in fact there should be a slight modification in the case g = 1 about which I
won’t care here; apparently this corresponds to the fact that in this case the
maps aren’t stable).

Here q should be seen as the symplectic parameter of E (it is related to the
parameter ρ of section 3.4.2 via q = e2πiρ).

As a rather tautological reformulation of the meaning of the numbers Ng,d,
we have the following

2.2 Lemma Let E ′ := E \ {P1, . . . , P2g−2} be the 2g − 2-punctured curve E,
and let Sd denote the symmetric group. Then let B be the set of isomorphism
classes bundles over E ′ with fiber {1, . . . , d} and group Sd. Now we have the
subset B′′ of B consisting of all bundles that have connected total space and
monodromies around the points Pi in the conjugacy class of (12) ∈ Sd. Then

Ng,d =
1

(2g − 2)!

∑

ζ∈B′′

1

|Aut ζ| ,

where Aut ζ is the usual automorphism group of a bundle (i. e. those automor-
phisms that have the identity as base map).

Proof. First oberve that if you are given any map ξ : Cg → E in the fibre
Xg,d, then ξ restricted to the preimage of E ′ is a connected d-fold covering,
which is nothing else than a bundle of the prescribed type. The branch points
being simple exactly corresponds to the condition on the monodromies.

On the other hand, given such a bundle ζ : C → E ′, we can first extend
this to a map ξ : Cg → E by adding fibres of order d− 1 at the branch points:
around a point P = Pi for some i, there is a neighbourhood U ⊂ E of P such
that ζ−1(U \ {P}) looks like V ∪ ⋃d−2

i=1 U \ {P}, where ξ|V : V → U \ {P} is
isomorphic to the mapping z 7→ z2 : ∆ \ {0} → ∆ \ {0}; we insert P at each
of the d− 2 copies of U \ {P} and another point to at the place of zero in the
homeomorphism V ≈ ∆ \ {0}. We then pull back the complex structure from
E to the new total space Cg in the obvious way. The map ξ is then clearly a
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holomorphic simple branched map, and according to the Riemmann-Hurwitz
formula the so-obtained Riemann surface Cg must be of genus g.

It is now clear that the automorphism groups of ζ and ξ as defined above
correspond. 2

It should be noted that this lemma, trivial as it is, translates an invari-
ant that seems to involve the complex structure of the manifold into a purely
symplectic one. This is a general feature of Gromov-Witten invariants.

The functions Fg(q) have now the interesting property that they are in the
space of quasi-modular forms Q[E2, E4, E6]. With the correspondence q = e2πiτ

where τ is the moduli parameter for the complex side (this is the mirror map
for elliptic curves), this means that they are reasonably well-behaved functions
on M1,1, the moduli space of elliptic curves: modular forms are sections of a
power of the natural given line bundle on M1,1 that has as fibres the space
of global sections of the cotangent bundle on the corresponding elliptic curve.
This can be considered as a weak analogy to stronger mirror identity statements
in higher dimensions, where one can get an explicit relation with corresponding
functions on the mirror moduli space.

Now we combine all the functions Fg in one big function Z of two variables:

Z(q, λ) := e
P∞
g=1 λ

2g−2Fg(q)

That this is useful can be seen by the following

2.3 Lemma If we define the numbers N̂g,d analogously to the interpretation
of the numbers Ng,d in lemma 2.2 by:

N̂g,d =
1

(2g − 2)!

∑

ζ∈B′

1

|Aut ζ|

We just replaced B ′′ by the larger subset B ′ of B consisting of all bundles
that have monodromies around the points Pi in the conjugacy class of (12) ∈ Sd
(we thus omit the condition of connectedness), then Z(q, λ) has the expansion

Z(q, λ) =

∞∑

g,d=1

N̂g,dq
dλ2g−2 (3)

Proof.

Z(q, λ) = e
P∞
g=1 λ

2g−2Fg(q) =

∞∑

n=0

1

n!



∞∑

g,d=1

λ2g−2Ng,dq
d



n

=

∞∑

g,d=1

λ2g−2qd
∞∑

k=0

1

k!

∑

(gi,di)(i=1..k)

k∏

i=1

Ngi,di (4)
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Here the last sum goes over all k-tuples of pairs of integers (gi, di) with the
property that

∑k
i=1(2gi − 2) = 2g − 2 and

∑k
i=1 di = d. A close inspection of

this sum shows that it exactly computes N̂g,d:
Let k be the number of connected components of such a bundle ζ ∈ B ′, and

let ζi, i = 1..k, be the bundles that we get from the connected components of
ζ. Let ζi have a fibre of order di and a total space of genus gi. Since the Euler
characteristic is additive on disjoint union, we in fact get

∑k
i=1(2gi−2) = 2g−2,

while
∑k

i=1 di = d is obvious. Now number the isomorphism classes of those
connected components with j, j = 1..l, and let kj be the number of components
in each class; hence

∑
j kj = k. If we use n-nomial coefficients, then there are(

k
k1 k2 ... kl

)
ways to number these connected components; thus the contribution

of this family of bundles {ζ1, . . . , ζl} to the sum in (4) will be

1

k!

(
k

k1 k2 . . . kl

) k∏

i=1

1

(2gi − 2)! |Aut ζi|
=

1

k1! · . . . · kl!
k∏

i=1

1

(2gi − 2)! |Aut ζi|
(5)

(The factors 1
(2gi−2)!|Aut ζi| come from the definition of Ngi,di .)

On the other hand we want to see the contribution of this family (ζi)i to
the expansion (3), i. e. to the number Ng,d.

There are
(

2g−2
2g1−2 ... 2gl−2

)
ways to distribute the 2g−2 branch points among

the connected components, only that
∏′
j kj ! of these possible ways lead to an

isomorphic bundle ζ; the prime in this product here indicates to omit a possible
class of trivial bundles with one fibre (these are the only ones that have no
branch points). Now the automorphism group of ζ is the direct product of the
automorphism groups of the ζi and the group of permutations of those trivial
bundles, if any. Hence, the contribution of this familiy to N̂g,d will be

1

(2g − 2)!

(
2g − 2

2g1 − 2 . . . 2gl − 2

)
·
′∏

j

1

kj !
· 1

|Aut ζ|

=
1

k1! · . . . · kl!
k∏

i=1

1

(2gi − 2)! |Aut ζi|

2

But this is not the only reason for combining this function into the partition
function Z(q, λ). This function has (up to the above-mentioned (definition 2.1)
minor modifications for g = 1) a quantum field theoretic interpretation as a
path-integral, and this is where the following equation was first observed ([8]):

2.4 Theorem

Z(q, λ) =

∫

∂∆

dz

2πiz

∏

n∈Z≥0+1/2

(
1 + zqneλ

n2

2

)(
1 + z−1qne−λ

n2

2

)
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However, there is as well a purely mathematical proof that will be outlined
in the following. This might be considered as a toy model of the claim in the
introduction that properties of the quantum field theory can be deduced from
properties of the associated manifold.

For a slight convenience, I will introduce the notion of a “pointed G-bundle”
over a pointed space. The technical advantage will be that in our case they do
not have any automorphisms, so that we won’t need to keep track of the factor

1
Aut b any more. (I do not know whether this notion already exists, but it seems
only natural for pointed spaces.)

2.5 Definition Let G be a group that acts faithfully from the left on a topo-
logical space F . A pointed G-bundle with fiber F over a pointed space (X,x0)
is a G-bundle p : H → X with fiber F and a specified G-homeomorphism
F ∼= p−1(x0). Morphisms between pointed G-bundles are G-bundle homomor-
phisms that have a map of pointed spaces as base map and respect the given
G-homeomorphisms of the fibres at the basepoints.

The difference to the usual notion becomes most apparent in the case of F
and G being finite and discrete: While a bundle corresponds to a conjugacy
class of maps σ : π1(X,x0) → G, a pointed bundle corresponds to a single one
of these maps.

As can be seen by its faithful action on p−1(x0), the automorphism group of
an (ordinary) G-bundle is the centralizer of σ(π1(X,x0)) in G, i. e. the stabilizer
of σ under the action of G on the set of all these maps by conjugation. This
makes the following observation obvious:

2.6 Lemma Let (E ′, 0) be the pointed, 2g − 2-punctured elliptic curve E and
Ñg,d be the number of pointed Sd-bundles on E ′ with fiber {1, . . . , d} and
monodromies around the 2g−2 holes in the conjugacy class of (12) ∈ Sd. Then

N̂g,d =
1

(2g − 2)!d!
Ñg,d.

Proof. Let σ be a map σ : π1(E′)→ Sd; if its stabilizer in G under the action of
conjugation has order s (so s = |Aut ζ| for the corresponding bundle ζ), then
the conjugacy class of σ has d!

s elements. Thus the contribution of this conjugay
class of maps to both sides of the above equation is 1

(2g−2)!s . 2

The task is now to count this number of pointed bundles. Due to the general
one-to-one correspondence between principal G-bundles and G-bundles with fi-
bre F on which G acts faithfully, we can restrict our attention to principal
bundles. (This correspondence is immediately clear from the viewpoint of tran-
sition functions; the harder part in the proof of this statement is rather the
correspondence between bundles and transition functions.) We will count them
under a more general setting:

2.7 Definition Let G be any finite group, R be the set of its irreducible repre-
sentations, and C the set of its conjugacy classes. Let Σ be the oriented surface
of genus h and N holes P1, . . . , PN . If c1, . . . , cN ∈ C are conjugacy classes of
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G, we define Zh(c1, . . . , cN ) to be the number of pointed principal G-bundles
on Σ with monodromies around Pi in the conjugacy class ci, divided by the
order of G:

Zh(c1, . . . , cN ) :=
#pointed principal G-bundles with . . .

|G|

(Note that with pointed bundles, there is still the 1-to-1 correspondence of
principal G-bundles and G-bundles with a fiber F on which G acts faithfully.)

These numbers Zh(c1, . . . , cN ) can be computed by the following

2.8 Lemma For an irreducible representation r ∈ R of G and a conjugacy class
c ∈ C, we have the character χr(c) of r on c; further we define the Frobenius
number

fr(c) :=
|c|χr(c)
dim r

.

Then the number of pointed principal G-bundles on a surface of genus h with
the above boundary conditions is given by

Zh(c1, . . . , cN ) =
∑

r∈R

( |G|
dim r

)2h−2 N∏

i=1

fr(ci)

Proof. The proof works by induction on h: for a punctured sphere, the
lemma can be proved directly, and surfaces of higher genus are obtained by
glueing holes together.

• The case h = 0:

Let H be the center of the group algebra C[G] of G; the proof of this case
more or less turns out to become an exercise in understanding H.

It is immediate that as a vector space, H is the subspace of C[G] generated
by the elements zc =

∑
g∈c g corresponding to conjugacy classes c.

Since zc commutes with all elements of G, it induces a G-automorphism
on every G-module. On an irreducible representation r, this map must
be a homothety; by looking at the trace we see that this is multiplication
with fr(c).

We can define a linear form 〈·〉 on H by setting 〈zc〉 := 1
|G|δc,e, where e is

the neutral element in G. Now let R = C[G] be the regular representation
of G. Since TrR(g) = |G| δg,e for g ∈ G, we get

TrR(·) = |G|2 〈·〉 (6)

if we restrict TrR to H.

Using the fact that the fundamental group π1(Σ) of an N -punctured
sphere is generated by the N loops γi around the holes with the single
relation

∏
i γi = 1, we can interpret the number Zh(c1, . . . , cN ) in terms
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of our class algebra H: Giving a morphism from π1(Σ) to G means chos-
ing N elements σi of G with

∏
σi = e. So a pointed G-bundles with the

monodromies around Pi in ci is given by an N -tuple (σi)i ∈ GN with their
product being e and σi being in the conjugacy class ci. But the number
of these N -tuples together with the normalizing factor 1

|G| of definition
2.7 can be easily expressed with our linear form:

Zh(c1, . . . , cN ) = 〈zc1 · . . . · zcN 〉

Now we can use our earlier remarks on H: First, using (6), we obtain

Zh(c1, . . . , cN ) =
1

|G|2
TrR〈zc1 · . . . · zcN 〉

But R ∼=
⊕

r∈R r
dim r; since we know the action of zc on r, we can simplify

this to TrR〈zc1 · . . . · zcN 〉 =
∑

r∈R dim r2∏
i fr(ci). So our claim follows:

Zh(c1, . . . , cN ) =
∑

r∈R

(
dim r

|G|

)2∏

i

fr(ci)

• Now let us consider the glueing:

Let Σ be the oriented surface of genus h − 1 with N + 2 holes
{P1, . . . , PN+2}, and let Σ′ be the surface of genus h with N holes that
is obtained by glueing annular neighbourhoods UN+1 and UN+2 of PN+1

and PN+2 in the usual way with a homeomorphism β : UN+1 → UN+2; let
α : Σ→ Σ′ denote the collapsing map.

By pulling it back, we get a pointed bundle ζ = α∗ζ ′ on Σ from every
pointed bundle ζ ′ on Σ′. Let γN+1, γN+2 ∈ π1(Σ) be the loops around
PN+1 and PN+2 in canonical orientation; by drawing a picture one can
convince oneself that α∗(γN+1) is a conjugate of the inverse of α∗(γN+2)
in π1Σ′. This shows that the conjugacy classes of the monodromies of ζ
around PN+1 and PN+2 are inverses of each other.

On the other hand, if we are given a pointed bundle ζ on Σ with mon-
odromies around PN+1 and PN+2 in the conjugacy class c and c−1 respec-
tively, then the bundles on UN+1 and UN+2 obtained by restricting ζ will
be isomorphic, and the isomorphism can be obtained with the glueing map
β : UN+1 → UN+2 as the map between the ground spaces. With any such
isomorphism, we can glue ζ to get a pointed bundle on ζ ′. So we need to
know exactly how many of these isomorphisms exist, i. e. we need to know
the order of the automorphism group of ζ|UN+1

. By the faithful action on
any specific fiber ζ−1(u0) ∼= G, this automorphism group is isomorphic to
a subgroup of G; more precisely, this subgroup is the centralizer of the
monodromy of ζ|UN+1

with respect to our fiber ζ−1(u0) ∼= G. Since G acts
transitively by conjugation on c, the stabilizer of an element of c (which

is its centralizer of course) has order |G||c| .
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Now a simple computation yields our induction:

Zh(c1, . . . , cN ) =
∑

c∈C
Zh−1(c1, . . . , cN , c, c

−1)
|G|
|c|

=
∑

r∈R

( |G|
dim r

)2h−4 N∏

i=1

fr(ci)

∑

c∈C

|G|
|c|
|c|2 χr(c)χr(c−1)

dim r2
=
∑

r∈R

|G|2h−3

dim r2h−2

N∏

i=1

fr(ci)
∑

g∈G
χr(g)χr(g

−1)

=
∑

r∈R

( |G|
dim r

)2h−2 N∏

i=1

fr(ci)

2

By specialising this result to our case, we will be able to prove theorem 2.4;
however, first we need some facts about the representations of the symmetric
group Sd:

Every irreducible representation r of Sd is given by a partition of d, or equiv-
alently by a Young diagram. By slicing a Young diagram along the diagonal, we
get subsets P = {p1 < . . . < pl} and Q = {q1 < . . . < ql} of the half-integers,
i. e. pi, qi ∈ Z≥0 + 1

2 .

???????????????????????

p4

p3

p2

p1

q4

q3 q2

q1

From these sets we define the numbers wkr to be

wkr :=
∑

i

pki −
∑

i

(−qi)k.

These numbers have a surprisingly good interpretation related to the represen-
tation r; for k = 0 and k = 1 this is obvious, for k = 2 see [10]:

w0
r = 0

w1
r = d

w2
r = 2fr(c) (7)
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Here c is the conjugacy class of (1 2), the single transposition, in Sd.
Proof. (of theorem 2.4)
By using lemma 2.8 and lemma 2.6 we see that

N̂g,d =
1

(2g − 2)!

∑

r∈Rd
fr(c)

2g−2.

With lemma 2.3 this yields

Z(q, λ) =
∑

g,d

N̂g,dq
dλ2g−2 =

∞∑

d,b=0

qdλb

b!

∑

r∈Rd
fr(c)

b =
∞∑

d=0

qd
∑

r∈Rd
eλfr(c)

(The summands for odd b are zero; the nicest way to see this might be to go all
our construction backwards, since a non-zero term would claim the existence of
a map to E from a Riemann surface with odd Euler characteristic.)

With (7) and wr := ln q · w1
r + λ

2w
2
r this becomes

Z(q, λ) =

∞∑

d=0

∑

r∈Rd
ewr

If we define the polynomial t(p) := ln z · p0 + ln q · p1 + λ
2p

2, we get wr =∑
i t(pi)−

∑
i t(−qi); we can now replace the sum over all representations of all

symmetric groups in the last equation by a sum over all pairs P,Q of subsets
of the positive half-integers satisfying |P | = |Q|:

Z(q, λ) =
∑

P,Q⊂Z≥0+1/2

|P |=|Q|

ewr =
∑

P,Q⊂Z≥0+1/2

|P |=|Q|

e
P
i t(pi)−

P
i t(−qi) (8)

Now consider the following generating function:

∏

p∈Z≥0+1/2

(
1 + et(p)

)(
1 + et(−p)

)

If we look at the constant term of its Laurent expansion in z, we only take
into account those summands with equally as many et(p) and et(−p) factors, we
thus get exactly the sum of equation (8). By computing the constant Laurent
coefficient with the usual integral, we proof our theorem. 2

3 Homological Mirror Symmetry

In his talk [14] at the ICM 1994, Kontsevich proposed a completely new mirror
symmetry statement, claiming the equivalence of two categories associated to
a complex variety and its symplectic mirror. He believed that what he called
homological mirror conjecture would put mirror symmetry on more algebraic
grounds, and that the enumerative statements of mirror symmetry could be
deduced from his conjecture:
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3.1 Conjecture The derived category of coherent sheaves on a complex man-
ifold M is equivalent to the Fukaya category associated to its symplectic mirror
manifold M̂ .

However so far, nearly five years later, there seems to be no single example
where enumerative or other predictions have been proved from the assumption
of this conjecture. The statement itself has been proved in the simplest case,
the elliptic curve, by Polishchuk and Zaslow [23], and some slightly modified
statement for some elliptic K3 surfaces by Bartocci, Bruzzo and Sanguinetti [2].
However, both methods don’t seem to be accessible to an obvious generalization;
while P. and Z. used a very explicit description of both categories involved that
can’t be given similarly for higher-dimensional cases, the Italians made a very
strong use of the 2-dimensionality of their case.

First, I will restate the definitions of the two categories involved.

3.1 The derived category of coherent sheaves

3.1.1 The construction

For any abelian category A, we can form the derived category Db(A) by taking
the category Kb(A) with cochain complexes as objects and chain homotopy
equivalence classes of chain maps as morphisms, and then inverting all quasi-
isomorphisms to become isomorphisms in Db(A). In the following, I will give the
definitions and constructions, but I will omit all necessary proofs and especially
all set-theoretic considerations; they can be found in [25].

Let A be any abelian category. We define

3.2 Definition the category Ch(A) of complexes in A as follows: an object
C• of Ch(A) is a sequence Cn, n ∈ Z of objects together with differentials
∂n ∈ HomA(Cn, Cn+1), such that the composition of two differentials ∂n+1∂n

is zero. A Morphism f between two complexes C• and D• is a collection of
morphisms fn : Cn → Dn that commute with the differentials.

In Ch(A), we have the full subcategories Ch+(A), Ch−(A) or Chb(A) of
complexes whose non-zero objects are, respectively, bounded above, bounded
below or bounded in degree.

We will only need the derived category constructed from Chb(A) in the
following, so I will restrict myself to this case.

On the sets HomChb(A)(X,Y ), we have the equivalence relation of chain ho-

motopy; we can now define a new category Kb(A) that has the same objects as
Chb(A) and chain homotopy equivalence classes of HomChb(A)(X,Y ) as mor-

phisms HomKb(A)(X,Y ). It has to be checked that this is again a category.

Among the morphisms in Kb(A), we have the subset S of quasi-isomor-
phisms, i. e. those isomorphisms that induce an isomorphism on cohomology;
we want to localize the category at this set S:

3.3 Definition Let C be a category, and let S be a class of morphisms in C. A
localization with respect to S is a category S−1C with a functor i : C → S−1C
such that

12



• for every s ∈ S, i(s) is an isomorphism in S−1C, and

• every other functor F : C → B that maps S to isomorphisms factors
through i.

In case S satisfies some properties, the localized category can be constructed
in the following way which looks quite similar to the construction of localizing
a ring at a multiplicative subset (it is a generalization in fact):

3.4 Definition The fractional category S−1C is the category that has the same
objects as C, while the morphisms in HomS−1C(X,Y ) are given by “hats” (cor-
responding to fractions in the case of a ring):

X ′

s

��

f

  AAAAAAAA

X Y

Here s has to be in S, and f is any morphism in C.
Two of such morphisms (s1, f1) and (s2, f2) are regarded as equal if there

is a commutative diagram

X1‘

s1

��

f1

((PPPPPPPPPPPPPPP

X X ′
soo f //

t1

aaCCCCCCCC

t2

}}||||||||
Y

X ′2

s2

OO

f2

66nnnnnnnnnnnnnnnn

with s, t1, t2 ∈ S.

The conditions imposed on S are rather worked backwards from what one
needs to prove that this construction produces a category again. It can be
checked that the quasi-isomorphisms fulfill these conditions.

3.5 Definition The (bounded) derived category Db(A) is the category ob-
tained from Kb(A) by localizing at the collection S of quasi-isomorphisms.

Now suppose X is a compact complex manifold.

3.6 Definition A coherent sheaf G on X is a sheaf that is everywhere locally
the cokernel of a mapOmX → OnX whereOX is the sheaf of holomorphic functions
on X.

This sheaves form the abelian category CohX. From this we form the
bounded derived category of coherent sheaves Db(CohX).

13



3.1.2 Triangulated categories

The derived category has the additional structure of being a triangulated cat-
egory. I won’t give a full account of the definition of the notion of an exact
triangle here, and I won’t give the axioms of a triangulated category until the
end of this section; instead, I will give a sketch of the construction and state
the properties I need.

In the category of complexes Chb(A), we have the construction of a mapping
cone cone(u) for every morphism u : C• → D•. This is a complex E• which
has the same objects as the direct sum C• ⊕D•[1], only the differentials have
a certain twist involving u. Only in the case of u = 0, the cone is exactly the
direct sum.

With the obvious maps C• v→ cone(u)
w→D•[1], this construction gives a tri-

angle of maps:

cone[u]
[1]

w
���������

D• u
// C•

v
[[777777

Now the observation that for every such triangle we have at the same time
C• ' cone(w) and D• ' cone(v) shows that in Kb(A), it makes sense to define
the notion of an exact triangle: we will call a triangle of maps in Kb(A) exact
if it is isomorphic (which means homotopic in Chb(A) to a triangle constructed
with the mapping cone; a triangle in Db(A) will be called exact if it is quasi-
isomorphic to an exact triangle in Kb(A).

The importance of the notion of exact triangles is that in the derived cat-
egory, they play the role of short exact sequences in abelian categories: in
abelian categories, we have the notion of a cohomological functor (or δ-functor);
its characterizing property is that it gives rise to a long exact cohomology se-
quence for every short exact sequence in the category. Now a cohomological
functor from a triangulated category is a functor F that, for every exact triangle
A

u→B
v→C

w→
[1]
A, yields a long exact sequence

· · · → F (A)
F (u)→ F (B)

F (v)→ F (C)
F (w)→ F (A[1])

F (u)→ F (B[1])→ · · · .
This means that we have replaced the natural transformations δn for δ-functors
by a simple functorial map.

The derived category Db(A) has the additional useful property that for
every short exact sequence of complexes 0 → A

u→B
v→C → 0 in Chb(A), we

can find a map C
w→A such that (u, v, w) becomes an exact triangle; this seems

to be an important technical advantage of Db(A) compared to Kb(A).
A set of axioms for triangulated categories that is now commonly used has

been given by Verdier in [24]; they do not seem to be completely satisfactorily
(as we will see later in section 3.4.3), but are in most cases technically sufficient:

3.7 Definition An additive category A with an autoequivalence T as shift
functor and a class of distinguished (or “exact”) triangles is called a triangulated
category if it satisfies the folowing axioms:
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1. (a) Every morphism can be embedded in a distinguished triangle (that
is, we can construct a cone).

(b) If a triangle is isomorphic to a distinguished triangle, then it is itself
distinguished.

(c) The triangle A
id→A→ 0→ T (A) is distinguished.

2. If (u, v, w) is a distinguished triangle, then (v, w,−T (u)) is distinguished
as well.

3. If we have a commutative diagram

C

w
[1]

��������
∃c ,,d b a _ ] \ Z

C ′

w′
[1]

��������

A
u //

a

55B

v

YY444444

b

44A′
u′ // B′

v′
ZZ666666

with exact triangles (u, v, w) and (u′, v′, w′) and given maps a and b, we
can always complete it with a map c : C → C ′ such that still everything
commutes.

4. (Octahedral axiom) Given objects A,B,C,A′, B′, C ′ and maps a, b, c,
a1, a2, b1, b2, c1, c2 as in the diagram such that (a, a1, a2), (b, b1, b2) and
(c, c1, c2) are exact triangles,

A

c

�����������������������

b

��000000000000000000000

C ′

c2

::tttttttttt

∃a′
//__________ B′

b2

ddJJJJJJJJJJ

∃c′

���
�

�
�

�
�

�
�

�
�

�

B
a //

c1

OO

C

b1

OO

a1
zztttttttttt

A′
a2

ddJJJJJJJJJJ

∃b′

XX0
0

0
0

0
0

0
0

0
0

0

then we can complete this diagram with maps a′, b′ and c′ such that

• (a′, c′, b′) is an exact triangle,

• the four faces that are not exact triangles commute and

• the two possible squares involving B and B ′ commute, that is a′c1 =
b1a and a2c

′ = cb2.

Note that the three maps a′, b′, c′ are uniquely determined if they exist.
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3.1.3 Derived functors

If we have a left-exact functor F : A → B of finite cohomological dimension
(where A and B are abelian categories), and if A has enough injectives (that
is, every object can be embedded into an injective one), then we get a derived
functor RF : Db(A)→ Db(B) (the circumstances under which the derived func-
tor can be constructed are actually a bit more general than that). This derived
functor is a functor of triangulated categories and the natural extension of F
to the derived categories.

On complexes with all objects being injective, it can be given simply by
applying F to every object of the complex; other complexes are always quasi-
isomorphic to an injective one. The cohomology of the complex F (A) for A ∈
Db(A) is computed by the hyper-derived functors (RqF )(A).

At some points we will have to use spectral sequences. However, since they
are more a tool for computing than essential for getting an understanding, and
since an introduction to spectral sequences would necessarily be very longwided
and technical, this will be omitted.

3.2 The Fukaya Category

In general, it seems not yet completely clear how to define the Fukaya category
to get the desired equivalence. I will follow the definition of Polishchuk and
Zaslow [23].

3.2.1 A∞-categories

The Fukaya Category itself is not a true category (but there will be natural
way to make one out of it); instead, it is an so-called A∞-category:

3.8 Definition An A∞-category C consists of the following data:

• Objects Ob C

• For each pair X,Y of objects, we have a Z-graded group of homorphisms
Hom(X,Y )

• Instead of a composition, we have for each positive integer k a linear map

mk : Hom(X1, X2)⊗ · · · ⊗Hom(Xk, Xk+1)→ Hom(X1, Xk+1)

of degree 2− k, satisfying the following consistency conditions:

n∑

r=1

n−r+1∑

s=1

(−1)εmn−r+1(a1 ⊗ · · · ⊗ as−1 ⊗mr(as ⊗ · · · ⊗ as+r−1)⊗ · · · ⊗ an) = 0

The sign factor ε depends on r, on s and on the degrees of the ai:

ε = (r + 1)s+ r
(
n+

∑s−1
i=1 deg ai

)
.
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The first conditions says that m1 is a degree one map on Hom(X,Y ) with
m2

1 = 0, i. e. all the homomorphism groups are complexes with coboundary
operator m1 =: d. The second condition says that m2 is a map of complexes:

d(m2(a1 ⊗ a2)) = m2(da1 ⊗ a2) + (−1)deg a1m2(a1 ⊗ da2) (9)

So m2 induces a product on cohomology. The third condition

m2(m2(a1 ⊗ a2)⊗ a3)−m2(a1 ⊗m2(a2 ⊗ a3))

= d(m3(a1 ⊗ a2 ⊗ a3))

−m3

(
da1 ⊗ a2 ⊗ a3 + (−1)deg a1a1 ⊗ da2 ⊗ a3 + (−1)deg a1+deg a2a1 ⊗ a2 ⊗ da3

)

tells us that m3 is a homotopy between the two possible ways to compose three
morphisms with m2; in other words, the product induced by m2 on the level of
cohomology is associative. Hence, we can always get a proper category H 0(C)
by taking the zero cohomology of the homomorphism groups.

3.2.2 Fukaya category: The objects

Let M̂ be a n-dimensional Calabi-Yau Kähler manifold with (possibly complex-
ified) Kähler form ω and nowhere vanishing holomorphic n-form Ω (we do not,
however, require the condition of h1,0 to be zero); more generally, we can also
take a symplectic manifold that has an almost-complex structure compatible
with the symplectic form. On M , we have the bundle L of Lagrangian planes,
which has as fibre at x ∈ M the Lagrangian Grassmanian consisting of all n-
dimensional subspaces of the tangent space TxM̂ on which ω restricts to zero.
The fibres have fundamental group Z. By glueing the universal covers of the
fibres, we get a Z-covering L̃ of L.

3.9 Definition A simple object in the Fukaya category F consists of

• a minimal (or special) Langrangian submanifold U of M̂ , i. e. a closed
real-)n-dimensional submanifold for which the Kähler form restricts to
zero, i. e. ι∗(Ω) = 0, and for which Im(z · ι∗Ω) = 0 for some z ∈ C;

• a lift γ̃ : U → L̃|U of the naturally given map γ : U → L|U , and

• a local system E on U : we want E to be a complex vector bundle with a
flat connection, all of whose monodromies have eigenvalues of modulus 1.

An object in F is a direct sum of finitely many simple objects.

For our context it is sufficient to regard a connection of a bundles as a map
Θ that associates to each piecewise smooth path γ : [a, b]→ U an isomorphism
of the fibres of the bundle at the endpoints: Θ(γ) ∈ Hom(E|γ(a), E|γ(b). This
map Θ has to be compatible with composition:

Θ(γ1 ◦ γ2) = Θ(γ1) ◦Θ(γ2)
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The flatness of the connection then says that Θ depends only on the homotopy
class (relative the endpoints) of the path.

The existence of the lift γ̃ is not guaranteed; it is instead a further condition
on U .

Kontsevich first suggested E to be an U(n)-bundle, but Polishchuk and
Zaslow needed this slight enlargement to prove the desired equivalence. For
higher dimensions, there might be further enlargements needed as Kontsevich
already believed in 1994 and as the result of [2] indicates.

3.2.3 Fukaya category: The morphisms

As for the morphisms, we first need to refer to the Maslov index that we need
to define the required Z-grading on the morphisms. A definition is given in
appendix A; it is a natural extension of the map π1(Lag M̂) ∼= Z (where Lag M̂
is the Lagrangian Grassmannian) to open paths.

3.10 Definition Let (E1, U1) and (E2, U2) be objects of F so that U1 and U2

intersect transversely, i. e. in a finite number of points x1, . . . , xk. Then we
define the group of morphisms between the two objects as the vector space

HomF ((E1, U1), (E2, U2)) :=
⊕

i

Hom(E1|xi , E2|xi).

The grading is given on each point xi by the Maslov index µxi of the path in
L̃|xi given by γ̃1(x1) and γ̃2(x2).

In case the two submanifolds don’t intersect transversely, Fukaya didn’t
define the space of morphisms, and it does not seem quite clear what would be
the appropriate definition. Of course in the case of elliptic curves, one can work
backwards and define them in the way that one gets the desired equivalence;
for the not very enlightning result see appendix B.

Finally, we need to define the composition maps mk. So assume that we
are given ai ∈ HomF ((Ei, Ui), (Ei+1, Ui+1)) for i = 1..k; by linearity, we may
assume that each ai is only non-zero at one point xi ∈ Ui ∪ Ui+1.

Let ∆ be the closed unit ball inside C. Let xk+1 be a point of
Uk+1 ∩ U1; we want to compute the summand of mk(a1 ⊗ · · · ⊗ ak) in
HomF ((E1, U1), (Ek+1, Uk+1)). Consider all pseudo-holomorphic maps φ : ∆ →
M̂ such that, for some z1, . . . , zk+1 ∈ ∂∆, we have

• φ(zi) = xi for all i = 1..k + 1,

• φ([zi, zi+1]) ⊂ Ui+1 for i = 1..k and φ([zk+1, z1]) ⊂ U1.

We call two such maps φ, φ′ projective equivalent iff φ = φ′ ◦ ϕ for some auto-
morphism ϕ of ∆.

3.11 Definition If we decompose the composition mk as

mk(a1 ⊗ · · · ⊗ ak) =
∑

xk+1∈Uk+1∩U1

mk(a1 ⊗ · · · ⊗ ak)xk+1
,
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then the components are computed by

mk(a1 ⊗ · · · ⊗ ak)xk+1
:=

∑

φ

e2πi
R
φ∗ω ·Θk+1(φ|[zk,zk+1]) ◦ ak ◦Θk(φ|[zk−1,zk]) ◦ ak−1 ◦ · · ·

· · · ◦ a1 ◦Θ1(φ|[zk+1,z1]) (10)

where Θi stands for the given connection of the bundle Ei.
The sum goes over all pseudo-holomorphic discs with the properties de-

scribed above up to projective equivalence.

The long expression in Θs and ais is simply the most obvious way to go
stepwise from E1|xk+1

to Ek+1|xk+1
along the path φ|∂∆.

As it is, this definition is a bit vague. First, one seems to need conditions
on the homotopy class of φ|∂∆ to get a discrete set of such maps; further, it is a
non-verified conjecture by Kontsevich that this sum converges for appropriate
ω. This is discussed in [9].

The A∞-structure of this category doesn’t seem to be quite obvious. Appar-
ently, the only reference for it is Fukaya’s article [9]. However, in this paper he
doesn’t really provide his proof, he rather reports the existence of it. Also, he
considered only C-bundles as local systems; it seems to be commonly believed
[14, 23] that this enlargement of the category does not affect the proof.

3.3 A duality in both categories

The derived category of coherent sheaves certainly contains a good deal of
information about the complex structure of a manifold (in large classes of va-
rieties, the single variety can even be reconstructed from its associated derived
category); on the other hand, there is a wealth of information about pseudo-
holomorphic mappings that is used in the composition maps. Thus, the desired
equivalence will certainly do a big deal in relating complex and symplectic
structures. However, a concrete relation to correspondences between more tra-
ditional complex and symplectic invariants remains unclear.

In his talk [14], Kontsevich lists several observations that made him propos-
ing this conjecture. I don’t understand all of them, but would like to explain
one point in detail, since it will also be relevant for the treatment of the elliptic
curve.

There is a natural Z-action on both categories; this is the shifting of com-
plexes in Db(Coh(X)), corresponding to moving the lift γ̃ of γ in the universal
covering L̃. Now if n is the dimension of X and X̂, then the shift induces a
duality:

3.12 Remark If C is either the

• the derived category of coherent sheaves on a n-dimensional Calabi-Yau
manifold X, or
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• the zero-cohomology part H0(F(X̂)) of the Fukaya category of an
(complex-)n-dimensional Kähler manifold X̂,

then (HomC(A,B))∗ ∼= HomC(B,A[n]), where [n] denotes the above-mentioned
shift in the respective category.

Proof. In the Fukaya category, this is the asymmetry of the Maslov index
(see appendix): µx(U1, U2) + µx(U2, U1) = n

On the complex side, this is the natural formulation of Serre duality for the
derived category. I won’t give a complete proof of Serre duality, but show how
to translate the usual statement into the language of the derived category.

In our case (that is, with trivial canonical sheaf ωX), Serre duality states
that for every coherent sheaf F , we have a natural isomorphism (that is, more
exactly, an isomorphism of functors) H i(F) ∼= Hn−i(F∗)∗.

Since every coherent sheaf has a finite resolution by vector bundles, every
bounded complex is quasi-isomorphic to one consisting of vector bundles. So we
may assume that the two given complexes C• and D• in Db(CohX) are of that
form. We want to compute HomDb(C•, D•) and HomDb(D•, C•[n]). By general
theorems (see e. g. Weibel [25]), we know that if RHom: (Db(CohX))o ×
Db(CohX) → Db(Ab) denotes the right derived functor of Hom and Ri Hom
the hyper-derived functor, then we have

HomDb(C•, D•) = H0 RHom(C•, D•) = R0 Hom(C•, D•).

Hence we need to compute the hyper-derived functor. The functor Hom
is the composition Γ ◦ Hom, where Hom denotes the local Hom-functor and
Γ = H0 the global section functor. Since all objects are are vector bundles,
Hom is exact on them; thus we have

(R0 Hom)(C•, D•) = (R0Γ) Hom•(C•, D•), (11)

where Hom• denotes the total complex of the double complex induced by Hom.
In the other case to be considered, we get:

HomDb(D•, C•[n]) = Rn Hom(D•, C•) = (RnΓ) Hom(D•, C•)

For every complex C•, we can form the dual complex C•∗ with (C∗)n =
(C−n)

∗
and the differentials being the corresponding dual maps. With this

notion it is clear that Hom(D•, C•) is the dual complex of Hom(C•, D•). So
if we can prove that for a complex C• and its dual C•∗ we have (R0Γ)(C•) ∼=
(RnΓ)(C•∗)∗, then we are done.

This can be verified by comparing the two spectral sequences

Epq2 = Hp(RqΓ)(C•) =⇒ (Rp+qΓ)C•

and

Epq2 = Hp(RqΓ)(C•∗) =⇒ (Rp+qΓ)C•∗.

By our isomorphism of functors above, we know RqΓ(C•) ∼= Rn−qΓ(C•∗)∗,
so on objects these two spectral sequences are dual to each other; by the func-
toriality of our isomorphism, the differentials should be dual as well. Hence the
converging terms have to be dual as well, and by inspection one verifies that
the corresponding terms are R0Γ(C•) and RnΓ(C•∗). 2
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3.4 The elliptic curve

The case of the elliptic curve is a lot easier than all other higher dimensional
cases for several reasons. On the one hand, as we’ll see, the derived category
Db(Coh(E)) has the simplifying property that every object is isomorphic to a
direct sums of objects that are non-zero only in one degree; further, the vector
bundles on it have been satisfactorily classified already in the 1950s [1]. Even
more important might be the fact that the special Lagrangian submanifolds of
the symplectic torus Ê are simply the straight lines with rational slopes, so we
don’t need any analysis.

The proof of Polishchuk and Zaslow works by mere computation: The ob-
jects in Db(Coh(E)) can be described quite explicitly, and the homomorphisms
can be described by θ-functions. So they simply explicitly write down the
functor yielding the desired equivalence; the main task is then proof that this
definition respects the composition.

3.4.1 The derived catory on the elliptic curve

The above remark about the derived category of coherent sheaves follows from
the following Lemma, since in Coh(E), the functor Hom has cohomological
dimension 1. This can be seen from the following argument:

The Hom-functor is the composition Γ ◦ Hom, where Γ is standing for the
global section functor and Hom for the local Hom-functor; so Ext can be com-
puted by the Grothendieck spectral sequence of the derived functor of a com-
position:

E2
pq = (RpΓ)(Extq)(A,B) =⇒ Extp+q(A,B)

Now both Hom and Γ are of cohomological dimension 1, so an Ext2-term could
only come from a term of type R1Γ(Ext1); but the sheafs obtained by Ext1 can
easily seen to be skyscraper sheaves, which have vanishing cohomology.

3.13 Lemma Let A be an abelian category for which Ext2 (and every higher
Ext) vanishes. Then every object C• in Db(A) is quasi-isomorphic to the com-
plex H•(C•) of its cohomology (with zero differentials).

Proof. For convenience, we assume that 0 is the highest degree in which
C has non-zero cohomology. Now define the truncated complex τ≤0C in the
following way: We have τ≤0C

i = Ci for i < 0 and τ≤0C
i = 0 for i > 0; in degree

zero we take τ≤0C
0 = ker ∂0. Then the obvious map C• → τ≤oC• induces an

isomophism in cohomology; so since we are in the derived category, we can
assume that C• is zero for positive degrees.

Now consider the following short exact sequence of complexes in Chb(A):
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...
...

...

0 // 0

OO

// 0

OO

// 0

OO

// 0

0 // im ∂−1

OO

// C0 //

OO

H0(C•)

OO

// 0

0 // C−1 //

OO

C−1 //

OO

0 //

OO

0

...

OO

...

OO

...

OO

In Db(A), this leads to the following exact triangle, where we have denoted
the first complex by τ<0C

•:

H0(C•)
[1]

u
���������

τ<0C
• // C•

[[7777777

(12)

I claim that HomDb(Coh(E))(H
0(C•), (τ<0C

•)[1]) is zero; from this we could
easily deduce our claim: the map u in (12) must be zero; since we have an exact
triangle, we must have C• ∼= cone(u); however, the cone over the zero map is
exactly the direct sum, i. e. C• ∼= H0(C•) ⊕ τ<0C

•. From this we can proceed
by induction.

To proof our claim, let F denote the functor Hom(H 0(C•), ) in A.
Note that HomDb(C,D) = H0 RHom(C,D), where RHom denotes the de-
rived functor of Hom (see Theorem 10.7.4 of [25]). So we need to prove
H0RF (D) = 0. However, if RF denotes the hyper-derived functor of F , we
know that H0RF (D) = R0F (D); this hyper-derived functor can be computed
by a hypercohomology spectral sequence

Epq2 = (RpF )(HqD) =⇒ Rp+qF (D).

But since we have vanishing Ext from degree 2 on, we know RpF = 0 for
p ≥ 2. With Hq(D) = 0 for q > −2, we conclude R0F (D) = 0. 2

A further property that is only valid for the one-dimensional case is the
following

3.14 Lemma Every sheaf F in Coh(E) is a direct sum of vector bundles with
skyscraper sheaves.

Proof. Let Ftor be the torsion part of F , and let G be the cokernel of its
inclusion, giving a short exact sequence

0→ Ftor → F → G → 0.
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So F is an extension of Ftor with G. Since G is torsion free, it must be a vector
bundle. But since the Ext1-group of a skyscraper sheaf with a vector bundle
Ext1(Ftor,G) vanishes, this extension must be trivial, i. e. it is a direct sum. 2

Obviously, the last two lemmas would be true for every curve (that is, for
every one-dimensional compact complex manifold).

The vector bundles on an elliptic curve have been classified by Atiyah [1],
and admit the following very explicit description.

We have a Z-covering of our elliptic curve E = Eq by C∗; more concretely
Eq = C∗/u∼qu. The moduli parameter q is of course related to the more tradi-
tional parameter τ (where Eτ = C/(Z⊕ τZ)) by the equation q = e2πiτ .

From the trivial vector bundle C∗ × V on C∗ with any vector space V , we
can form a bundle on Eq by giving an automorphic factor:

3.15 Definition Let V be a vector space and A : C∗ → GL(V ) a holomorphic
function. We define the bundle Fq(V,A) on Eq to be the quotient

Fq(V,A) := C∗ × V/(u, v) ∼ (qu,A(u)〈v〉).

If V = C is one-dimensional and A = ϕ is a holomorphic function, then we will
also write Lq(ϕ) for the so-obtained line bundle.

From now on, we will fix the automorphic function ϕ0 := 1√
qu . The dis-

tinguished role that the line bundle L := Lq(ϕ0) will play in the constuction
is rather arbitrary; it is just for convenience since it has the classical theta
function as a global section.

Further, from the obvious projection map πr : Eqr → Eq, we get the functors
of push-forward πr∗ and pull-back π∗r . Nearly by definition, these functors are
adjoint of each other: If F1 is a bundle on Eqr and F2 one on Eq, we have

Hom(F1, πr∗F2) = Hom(π∗rF1, F2) and Hom(F1, π
∗
rF2) = Hom(πr∗F1, F2).

(While the first adjointness is true in general, the second one is only true
because πr is a covering map—an étale map in algebraic terms.)

The starting point for the description of the desired functor is the following
classification of vector bundles on Eq; P. and Z. say that it follows easily from
Atiyahs classification (I didn’t check this):

3.16 Proposition All indecomposable bundles on Eq are given by

πr∗(Lqr(φ)⊗ Fqr (Ck, expN)),

where φ = t∗xϕ0 · ϕn−1 with n ∈ Z and tx denoting the translation by x ∈ C∗,
and N is a (constant) nilpotent matrix.

For the desription of the homomorphisms between two such objects, the
following proposition will be very helpful:

3.17 Proposition Let φ := t∗xϕ0 · ϕn−1
0 with n > 0, and N be a nilpotent

endomorphism N ∈ End(V ). Then we have an isomorphism:

νφ,N : H0(L(φ)) ⊗ V → H0(L(φ)⊗ F (V, expN))
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Proof. Let f be a section of L(φ), i. e. a function on C∗ having φ as

automorphic factor, and let v ∈ V . Then νφ,N (f ⊗ v) := e
DN
n f · v, where

D = −u d
du . It is an easy computation to check that the so-obtained V -valued

function has the correct automorphic factor to be a section of this vector bundle.
Conversely, from a section v(u) of the right vector bundle, we get an element

e
−DN
n v(u) of H0(L(φ)⊗ V ) ∼= H0(L(φ)) ⊗ V . 2

3.4.2 Description of the functor

I will try to intinsically motivate the construction of P. and Z. [23] as good as
possible, showing which choices they had to make.

So we are given an elliptic curve Eq and its mirror Êρ. In terms of the com-
plexified Kähler form ω that we used in the definition of the Fukaya category,
ρ is given by ρ =

∫
bE ω. If we look at Ê as Ê ∼= R2/Z2, then we can specify ω

as ω = ρdx ∧ dy; its imaginary part is the usual Kähler form. Further we have
a global 1-form dz = dx+ idy.

The minimal one-dimensional submanifolds (the Lagrangian condition is
trivial of course) are then clearly the straight lines. This leads to m1 being
zero, i. e. the complex structure on Hom(U1, U2) is trivial.

The “bundle of Lagrangian planes” over the torus is simply P1 × Ê, and
its Z-covering is R × Ê. Giving the lift γ̃ of the definition above thus means
simply giving an angle πα to the zero line (x, 0) as a number α ∈ R and not
just in R/Z. The maslov index for two “lifts” α1, α2 ∈ R is then given by
µ(α1, α2) = −bα2 − α1c.

So we want to construct a functor Φ: Db(CohEq) → H0(F(Êρ)); as men-
tioned in the introduction, the mirror map for tori is the simplest one possible,
saying ρ = τ , where e2πτ = q.

First, let us consider complexes C• in Db(Coh(Eq)) that are concentrated
in degree zero having a line bundle as C0. All line bundles on Eq are given by
Li(x) := t∗xL ⊗ Li−1 where L is the “canonical” line bundle on Eq defined in
the previous section.

It is only fair to assume that line bundles are mapped to one-dimensional
local systems.

We start by mapping the trivial line bundle OE to the submanifold L0 =
{(t, 0)} with a trivial C-bundle on it, and specify its angle by 0. For n ∈ Z >
0, we know that Hom(OE , Ln(x)) is n-dimensional. Thus, there must be n
intersection points between L0 and the submanifold that we want as an image
for Ln(x), and their relative Maslov index must be zero. So we are forced to
map Ln(x) to a line of slope n with angle πα ∈ [0, π/2).

We now make the choice to map L = L1(0) to the line {(t, t)} with trivial
local system on it; this is really arbitrary, but it suggests to map Ln = Ln(0) to
{(t, nt)}, again with trivial C-bundle on it. We still have to decide how to use
the two real parameters β, γ among the line bundles Ln(βτ + γ) of Chern class
n; we have to use it for a translation of the submanifold and for introducing
a non-trivial connection on it. Here again, the choice is rather arbitrary (and
must be, since β, γ are themselves dependent on the τ ∈ H that we chose). P.
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and Z. decided to let β move the submanifold, getting {t, nt− β}, and to let γ
introduce a monodromy of factor e−2πiγ as connection.

To proceed with our map on the objects classified by Proposition 3.16,
we have to decide what tensoring with F (V, expN) should correspond to on
the Fukaya objects; one cannot resist the temptation to tensor with the local
system that has fiber V and a connection with mondromy expN , and this does
it indeed.

Let us summarize what we have defined so far:

Φ(t∗βτ+γLq ⊗ Ln−1
q ⊗ F (V, expN) := (V, {t, nt− β})

The connection in V is given by the monodromy e−2πiγ · expN .
It is a bit more tricky to define the map on morphisms; again let us look first

at the case of two line bundles Lq(φ1) and Lq(φ2) with φi = t∗βiτ+γϕ0 · ϕni−1
0 .

The homomorphism space between them is

Hom(Lq(φ1), Lq(φ2)) = H0(Lq(φ2φ
−1
1 )) = H0(Lq(tβ12τ+γ12φ

n2−n1)). (13)

Here we set β12 = β2−β1

n2−n1
and γ12 = γ2−γ1

n2−n1
.

For n2 < n1, this space is zero, as is the corresponding Hom-space in the
Fukaya category. If n2 = n1, then either the two line bundles are isomorphic; in
this case the morphisms are just multiplication by a scalar multiple, otherwise
there are no morphisms – in both cases this translates one-to-one to the cor-
responding objects in the Fukaya category. If however n2 > n1, then we need
theta functions to describe the global sections of this line bundle: If we define

θ[c′, c′′](τ, z) :=
∑

m∈Z
e2πi[ τ

2
(m+c′)2+(m+c′)(z+c′′)]

then the functions

fk := t∗β12τ+γ12
θ

[
k

n2 − n1
, 0

]
((n2 − n1)τ, (n2 − n1)z) (14)

for k ∈ Z/(n2 − n1)Z form a basis for this vector space.
In the Fukaya category, the space of morphisms is equally a k-dimensional

vector space; there is the canonical basis given by the intersection points of the
given straight lines, which are easily determined to be

ek =

(
k + β2 − β1

n2 − n1
,
n1k + n1β2 − n2β1

n2 − n1

)

for k ∈ Z.
The functor Φ now simply maps fk to ek; however, and this is the first

definition that is not obvious at all, we need to introduce a constant factor,
precisely we let

fk
Φ7→ e
−πiτ (β2−β1)2

n2−n1 · e−2πi
(β2−β1)(γ2−γ1)

n2−n1 · ek. (15)
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The only reason for this factor I can give is that it turns out to work: One
needs to check that Φ respects composition. Between the line bundles, this
composition is just a multiplication of theta functions; by the addition formula,
this product can be decomposed in terms of our canonical basis. The coefficients
of this decomposition have to be correctly computed by our constant factors
and the composition law in the Fukaya category. I don’t want to copy the
computation in full detail, but just point out why the composition can as well
be computed by theta functions:

Given three lines Λi on our torus, and given three points of pairwise inter-
sections xi ∈ Λi ∩ Λi+1, we need to evaluate the sum given in (10). A map
φ : ∆ → R2/Z2 lifts to a map to the universal cover R2; here ∆ must map
holomorphically to a triangle. If we choose a fixed preimage X1 of x1 in the
universal cover, then this triangle is determined by the choice of the second
corner X2 in the preimage of x1. Now this set is labelled by n ∈ Z, and it is
very obvious that the area of this triangle with respect to ω can be expressed by
a quadratic form (an+ b)2. Thus we get a sum of the form

∑
n e
−(an+b)2

, which
can easily be expressed as a value of a theta function. If we add holonomy via
a non-trivial connection in the local systems, then we just get another factor of
form ecn+d, so this argument is still valid.

Next, we have to consider homomorphisms between indecomposable vector
bundles given as Ei := Lq(φi) ⊗ Fq(Vi, expNi). The homomorphisms between
these are well described by proposition 3.17; with the same notation as above
for equation (13) we get (in the case of n2 > n1)

Hom(E1, E2) ∼= H0(Lq(t
∗
β12τ+γ12

ϕn2−n1
0 ))⊗ V ∗1 ⊗ V2.

So any homomorphisms is given by a linear combination of elements of the form
fk ⊗ T , where the fk are defined in 14 and T ∈ V ∗1 ⊗ V2.

This desription has of course an equivalent on the Fukaya side: if
the submanifolds corresponding to Lq(ϕi) are Λi, then the vector space
Hom(Φ(E1),Φ(E2)) is given by

Hom(Φ(E1),Φ(E2)) =
⊕

ek∈Λ1∩Λ2

ek ⊗ (V ∗2 ⊗ V1).

The functor Φ then sends fk ⊗ T to Φ(fk)⊗ Φ(T ); here Φ(fk) is the scalar
multiple of ek as defined in (15), and the map on V ∗2 ⊗ V1 is given by

Φ(T ) = eN
∗
2 ⊗ e−N1 · T

So far we have ignored any bundles that are given as the pushforward πr∗
of a vector bundle according to proposition 3.16.

Now this map πr : Eqr → Eq has an equivalent in the map πr : (R2/Z2)rρ →
(R2/Z2)ρ sending (x, y) to (rx, y) (where rρ is the complexified Kähler form on
the left and ρ the one on the right); we get functors πr∗ and π∗r between the
two Fukaya categories on it. This can be used to define Φ on bundles given as
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the pushforward πr∗ of a bundle on Eqr in Prop. 3.16, by making the diagram

Db(Coh(Eqr))
Φ //

πr∗
��

H0(F(Êrρ))

πr∗
��

Db(Coh(Eq))
Φ // H0(F(Êρ))

commutative; to define Φ on morphisms between vector bundles given as push-
forwards πr1∗ and πr2∗ of something, one has to do the same thing for the fibre
product Eqr1 ×Eq Eqr2 , which is in general a disjoint union of several elliptic
curves. Finally, to prove that this construction still gives a functor (i. e. that
it still respects composition), one first proves that Φ respects the pull-back π∗r ;
then the claim follows by considering the triple fibre product of Eqr1×Eqr2×Eqr3
over Eq and by using the adjointness of π∗r and πr∗ in both categories.

It remains to define Φ on skyscraper sheaves. Since the space of morphisms
from any n-dimensional vector bundle to a skyscraper sheaf with r-dimensional
fiber has dimension nr, it makes sense to map a skyscraper sheaf to a vertical
line.

More precisely, we can describe every skyscraper sheaf as the pushforward
of a skyscraper sheaf on C∗ supported at one point z0 ∈ C∗. It is then given by
a vector space V (the fibre of the sheaf at z0) and a nilpotent endomorphism
N ∈ End(V ) that describes the action of the local parameter z − z0 on V .
Assume that z0 is mapped to βτ + γ ∈ E where β, γ ∈ R/Z. Then we map this
sheaf to the line {(−β, t)} with the local system V on it; the connection is given
by a monodromy of e2πiγ . The Hom-spaces Hom(L(φ) ⊗ F (W,M), C) and the
corresponding spaces in the Fukaya category are both canonically isomorphic
to W ∗ ⊗ V . The functor Φ is once again just a multiplication by a scalar; this
scalar is easily computed by the requirement to respect the composition map
Hom(F ,G) ⊗Hom(G, C)→ Hom(F , C) for vector bundles F and G of the form
we have been considering.

Again, we extend Φ to morphisms from a vector bundle given as the push-
forward πr∗ of another vector bundle to our skyscraper sheaf by requiring com-
mutativity with the functor πr∗.

So we have constructed our functor on coherent sheaves. Since the shift
of complexes corresponds to a shift of the lift γ̃, and because of lemma 3.13,
we thus now how to define the functor on all objects. But via the shift of
the translation functor and Serre duality, we can map every map of complexes
concentrated in one degree to a map in degree zero, and so our functor is well-
defined on the whole category Db(CohE).

By the construction it is immediately clear that Φ is fully faithful; it is an
easy check that every object in H0(F(E)) is in the image of Φ. This completes
the proof of the desired equivalence of categories.

3.4.3 Consequences

This equivalence of two so differently constructed category immediately suggests
several questions.
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• First, one wonders whether the derived category of coherent sheaves can
naturally be constructed as the zero cohomology H 0 of an A∞-category.
This is correct and a construction has been done by Polishchuk in [22], us-
ing composition of Ext-groups; Polishchuk further conjectures that there
is an equivalence of A∞-categories between the Fukaya category and his
category.

• There is a natural action of SL2(Z) on the torus R2/Z2; this action pre-
serves the complexified Kähler form ω. Therefore, SL2(Z) acts—up to
shifts of the lifting of γ̃—as auto-equivalences on the Fukaya category.
On wonders what the corresponding group of auto-equivalences of the
derived category is; this will be discussed in the next section.

• We noted that the derived category has the additional structure of being a
triangulated category; therefore, the Fukaya category must have the same
property.

One might ask under which circumstances an A∞-category A produces a
triangulated category by applying H0. Now the functor Hom in A is nat-
urally a functor Hom• : Ao × A → K(Ab) (note that this is only true be-
cause the associativity in an A∞-category holds homotopically by the homo-
topy m3). It would be natural to require a compatibility of the triangulated

structure on F(M̂ ) with this functor; this would mean that the shift func-
tor T has the property Hom•(A, T (B)) = Hom•(A,B)[1], and that a triangle
A → B → C → TA would be called exact iff for all X ∈ ObA the resulting
triangle Hom•(X,A)→ Hom•(X,B)→ Hom•(X,C)→ Hom•(X,A)[1] is exact
in K(Ab).

On the other hand, we hope that under certain circumstances construct the
triangulated structure in the following way:

A morphism a ∈ Hom•(A,B) of degree zero induces a map
AX : Hom•(X,A) → Hom•(X,B) via AX(µ) := m2(µ ⊗ a). If a is closed with
respect to d = m1, then this map is a map of complexes due to the compatibility
of m2 (9). The same equation shows that if a is exact, then the induced map
is homotopic to zero.

Hence the map (a,X) 7→ AX is well defined as a map Mor(H0(A))×Ao →
Mor(K(Ab)). If we now apply the functor cone in K(Ab) (where the cone can
really be given by functorial construction) to this morphism, we get a functor
∆a : A0 → K(Ab).

Further, we can define the functor Ξ: A×Ao by Ξ(X,Y ) = Hom•(X,Y )[1].
It would be nice if one had the following

3.18 Lemma (without proof)
If the functor ∆a is representable for all a, and if the functor Ξ is representable

via an autoequivalence T : A → A, then H0(A) is triangulated according to the
following definition:

A triangle A → B → C → T (A) is exact if for all X ∈ A, the following
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induced triangle is exact in K(Ab):

Hom•(X,C)
[1]

yysssssssss

Hom•(X,A) // Hom•(X,B)

eeKKKKKKKKK

One would like to prove this in the following way: We can embed H 0(A)
as a full subcategory in the category of functors H 0(A)0 → K(Ab). Now a
category of functors to a triangulated category should naturally inherit the
triangulation structure, and a full subcategory of a triangulated category that
is closed under the construction of cones and under the translation functor is
again triangulated. So we would need to prove:

3.19 Lemma (in general wrong!)
If A is any category and if B is a triangulated category, then the category of

functors Func(A,B) from A to B is naturally triangulated.

This seems to be false, however. The problem lies in the non-functoriality
of Verdier’s axioms; the construction of the cone cannot necessarily be given by
a functor, and a cartesian square can possibly be embedded into a morphism of
triangles in several different ways. This is discussed in Gelfand/Manin ([11]),
pp. 244-245.

It seems to be possible to replace the axioms of Verdier by the requirement
of the existence of a functorial cone (we have such a functorial construction in
the main examples of triangulated categories) that would need to fulfill some
further conditions. If with such a set of axioms, one could prove lemma 3.19, this
might already be a worthwile improvement; however, it might also be necessary
to restrict the notion of a morphism of triangles to morphisms that induced by
the cone-functor.

There is a new set of axioms for triangulated categories by A. Neeman that
could help to solve this problem, but I couldn’t get hold of his article [20]. In
our special case, one could possibly still prove lemma 3.19; see [13], lemma 2.2
for a similar statement for DG categories (DG or differential graded categories
are A∞-categories with m3 = 0).

Finally, to convince ourselves that we at least need a functorial cone to prove
lemma 3.19, we just have to look at the simplest possible example of a natural
transformation: If we take the catgory A = MorB of morphisms in B, then
we have the two functors from A to B that send each morphism to its domain
and its target; between them, we have the natural transformation that sends a
morphism to itself. An embedding of this morphism of functors into an exact
triangle is exactly a functorial construction of the mapping cone.

4 Fourier-Mukai transforms

4.1 A report

In 1982, Mukai discovered that an equivalence between the derived category of
coherent sheaves on an abelian variety X and its dual variety X̂ can be given
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with the use of the Poincaré bundle P on X × X̂ [17]. More precisely, let pX
and pX̂ be the projections of X × X̂ to its factors; then the Fourier-Mukai
transform is given by the right derived functor R(πX̂∗(P ⊗ π∗x( )); up to a
shift of the complex, its inverse is given by the corresponding functor from

D(Coh(X̂))→ D(Coh(
ˆ̂
X)) together with the identification X =

ˆ̂
X .

This construction has been generalized to a variety of cases, see for example
[18, 3]. The recent paper by T. Bridgeland [4] seems to summarize the state of
the art in his theorem 1.1. First we need some definitions:

4.1 Definition A vector bundle F over a complex manifold is called simple if
the only automorphisms are the multiplications by a scalar.

Now let P be a vector bundle onX×Y , whereX and Y are compact complex
manifolds. Let Py denote the bundle on X obtained by restricting P to {y}×X.
Then P is called strongly simple over Y if for each point y ∈ Y , the bundle Py
is simple, and if for any two points y1, y2 ∈ Y , we have ExtiX(Py1 ,Py2) = 0 for
all integers i.

The theorem I mentioned is:

4.2 Theorem Let P be a vector bundle on X×Y , where X and Y are smooth
projective manifolds; define a functor F : D(CohX))→ D(Coh Y ) as

F ( ) = R(πY ∗(P ⊗ π∗X( ))).

Then F is fully faithful if and only if P is strongly simple over Y . In this case,
it is an equivalence of categories if, and only if, we have also Py = Py ⊗ ωX for
all y ∈ Y . Further, in this case the inverse of the equivalence is, up to shifts of
the complexes, given by P∗ in the analogous way.

The last condition is of course very convenient for us since when we are
dealing with Calabi-Yau manifolds.

4.2 Auto-equivalences of Db(CohE)

As an example, we want to look at the traditional Fourier-Mukai transform for
the elliptic curve: let P be the Poincaré line bundle on E×E. If m is the group
law m : E×E → E and p1 and p2 the projections to the first and second factor,
respectively, then it is given by P = m∗O(−x0)⊗ p∗1O(x0)⊗ p∗2O(x0), where x0

is any point in E; this is verified by the see-saw principle (see [19]).
It is clear that P is strongly simple over both factors: any line bundle is

simple, and two non-isomorphic line bundles of degree zero on the elliptic curve
have vanishing Exti for all i. Since further ωE is trivial, P must induce an
equivalence of categories.

It is now just a matter of checking all the cases (and due to the nature of the
definition of the functor Φ there is no other, elegant way of doing this) to see

that this equivalence corresponds to the action of the matrix M1 :=

(
0 1
−1 0

)

on the torus R2/Z2.
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If we take an arbitrary element M =

(
a b
c d

)
of SL2 Z instead of M1, we

still get an action on the torus R2/Z2 that preserves our complexified form ω
and hence an autoequivalence of the Fukaya category. With our equivalence
Φ, we get an associated autoequivalence N of the derived category of coherent
sheaves on E; one wonders how we can describe it.

• In a way, we have already done this: the matrix M2 :=

(
1 0
1 1

)
acts as

tensoring with Lq, and since M1 and M2 generate SL2 Z, this is enough
to characterize the group action. (Note however that the action of SL2 Z
on the Fukaya category is only well-defined up to shift with an integer;
more exactly, we should hence speak of the action of a central extension
of Z with SL2 Z.)

• Since N is an equivalence of categories, a theorem by D. O. Orlov dis-
cussed later (5.8) applies to our situation, which tells us that N can be
represented by an object F in Db(CohE×E) as a Fourier-Mukai functor;
so we want to describe F .

As multiplication with − Id is easily exhibited as the multiplication with
−1 on the elliptic curve, we may assume from now on that b > 0.

First note that if we write the Chern class of a stable vector bundle on
E as

( r
d

)
, then M exactly represents the group homomorphism of Chern

classes. Now T. Bridgeland has determined bundles on E × E that give
such a map on Chern classes in his paper from 1996 [3]; we will follow him

in this paragraph. Since M ·
(0

1

)
=
(
b
d

)
, skyscraper sheafs are mapped

to bundles of rank b and degree d. From proposition 3.16, it is clear
that we can identify E with the moduli space H of stable bundles of

Chern class
(
b
d

)
. Under this identification, what we need is what is

called a tautological bundle on H×E (the definition of which exactly says
that the restricion of it to {h} × E is the bundle represented by h); the
existence of such a bundle is assured in general. From theorem 4.2 it is
immediately clear that such a tautological bundle induces an equivalence
of categories; hence the map of Chern classes is given by an invertible

matrix M ′ =

(
a′ b
c′ d

)
; an easy argument shows that this matrix must

even be in SL2 Z.

Now by tensoring with π∗E(Lnq ), we can change a′ and c′ by a′ 7→ a′ + nb
and c′ 7→ c′ + nd, from which we can obtain every matrix in SL2 Z with
the given second column.

Up to a translation on E, this should give the correct functor for our
situation.

• We would like to describe F yet more explicitly. This is indeed possible:

The skyscraper sheaf with fibre C at 0 ∈ E is mapped to πb∗Ldqb with
all notations as in section 3.4.1: πb : Eqb → Eq is the standard b-fold
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covering, and Lqb is the “standard” line bundle of degree 1 on Eqb given
by the automorphic function φ0 as defined above. This corresponds to the

simple equation M ·
(

0
1

)
=
(
b
d

)
. A little more precise tracing of all maps

involved shows that the similar skyscraper sheaf concentrated at x ∈ E is

mapped to πb∗
(
t∗−xLqb ⊗ Ld−1

qb

)
.

Since we know that the inverse functor associated to F is induced by F ∗,
and since M−1 ·

(0
1

)
=
(
−b
a

)
, we deduce that for all x, the restriction

F|E×{x} in the other way must be a bundle of form πb∗
(
t∗−xLqb ⊗ La−1

qb

)
.

By looking at how these bundles can be constructed from the trivial bun-
dle Cb on C∗ by automorphic factors, one gets the idea for the following
construction of F :

We view Eq ×Eq as the quotient (C∗ × C∗)/(q, 1)Z · (1, q)Z. We take the
trivial bundle with fibre Cb over C×C. By defining automorphic factors
A1 : C× C→ GLb(C), we can form a bundle Fb(A1, A2) on E ×E:

Fb(A1, A2) := Cb × (C∗ × C∗)/ ∼

where the equivalence relation ∼ is generated by
{(

v, u1, u1

)
∼
(
A1(u1, u2)(v), qu1, u2

)
(
v, u1, u1

)
∼
(
A2(u1, u2)(v), u1, qu2

)

Necessary for this definition to make sense is the condition

A2(qu1, u2) ◦ A1(u1, u2) = A1(u1, qu2) ◦ A2(u1, u2).

We choose the automorphic factors to be of the form:

A1 :=




0 1

0
. . .
. . . 1

ψ1 0




A2 :=




0 0 · · · ψ2

1 0
. . .

. . .

1 0




Here ψ1 := u2u
−a
1 q−

ba
2 and ψ2 := u1u

−d
2 q−

bd
2 . With this definitions we

have F = Fb(A1, A2).

Again, it is rather boring to check for all cases that the Fourier-Mukai-
functor associated to F corresponds under Φ to the autoequivalence of
the Fukaya category induced by M . What has to be done is the following:

Suppose we are given a bundle G on Eq as

G = πr∗
(
t∗xLqr ⊗ Ln−1

qr ⊗ F (V, expN)
)

according to the classification of proposition 3.16. We can easily write
H := F ⊗ π∗1(G) as a bundle of form F (A′1, A

′
2) with some automor-

phic factors A′1 and A′2. The global sections of H|E×{τ} can be given by
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theta functions (see proposition 3.17 for how to take care of the factor
F (V, expN)). They give us local trivializations of π2∗(H), and so it be-
comes an exercise in θ-functions to see that they can be described by the
automorphic factor on C∗ corresponding to the bundle on Eq that we
want.

5 More about Fukaya categories

5.1 Transversal Fukaya category

We have seen that the category of coherent sheaves on X × Y can naturally be
regarded as a category of functors D(Coh(X)) → D(Coh(Y )). This construc-
tion has an analog on the Fukaya side, that I will sketch in this section.

First we need a slight modification of the objects in our Fukaya category:

5.1 Definition From now on, an object in the Fukaya category on M̂ will be
an triple (E , U, ι), where E is a local system on U as before, where U is a n-

dimensional manifold and ι : U → M̂ is an immersion. We still require ι∗(ω) = 0
and Im(z · ι∗(Ω) = 0 and all other conditions (and the map γ̃) mentioned in 3.9.

Of course the only new thing is that we allow self-intersection.
Now let M̂, N̂ be 2n-dimensional symplectic manifolds with symplectic

forms ω, ψ, an almost-complex structure compatible with the symplectic form
and nowhere-zero holomorphic n-forms Ω,Ψ. Then M̂×N̂ can be regarded as a
compact Calabi-Yau Kähler manifold with Kähler form ω−ψ and holomorphic
2n-form Ω∧Ψ (we won’t distinguish between the form ω on M̂ and its pull-back

on M̂ × N̂). Thus we can consider the Fukaya category F(M̂ × N̂). For our
purposes we have to consider a slightly reduced category that I would like to
call transversal Fukaya category :

5.2 Definition The transversal Fukaya category F on M̂ × N̂ is a full subcat-
egory of the Fukaya category F . It consists of those objects whose underlying
immersed compact manifold ι : U → M̂ × N̂ has the property that πcM ◦ ι and
π bN are local diffeomorphisms; in other words, the tangent spaces V = ι∗TuU

intersect the subspaces VM = Tι(u)M̂ and VN = Tι(u)N̂ of Tι(u)(M̂ × N̂) trans-
versely, i. e. only in {0}. Further we require that the pull-back of Ω on U is a
constant multiple of the pull-back of Ψ.

Observe that the first condition (it is needed to assure transversality later
on) implies that πcM ◦ι and π bN ◦ι are surjective and covering maps. The problem
of these conditions is that I cannot tell how restricting they are.

5.2 Fukaya functors

This category provides us with functors. We will first define their action on
objects:
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5.3 Definition For every object (E , U, ι) ∈ F we associate a functor

FU : F(M̂ )→ F(N̂) in the following way:

Let (EM , UM , ιM ) be an object of F(M̂); let ιM : UM → M̂ be the immer-
sion. Then the condition imposed on U in 5.2 assures that ι(U) and π−1

cM ιM (UM )

intersect locally transversely. More precisely, for every uM ∈ UM the set
ι−1π−1

hM ιM (uM ) is discrete in U ; and for every u ∈ ι−1π−1
cM ιM (uM ) we have

neighbourhoods V 3 u and VM 3 uM such that ι(V ) and π−1
cM ιM (VM ) intersect

transversely. The intersection is thus an immersed n-dimensional submanifold
ι′N : UN → M̂ × N̂ .

From this, we get (again due to our condition in 5.2) an immersed manifold
in N̂ via ιN = π bN ◦ ι′N .

On UN , we get a bundle EN together with a connection simply by the tensor
product (ι′N

∗π∗bNEM )⊗ E|UN .

In a way, the manifold U just plays the role of a multi-valued symplectic
diffeomorphism. So far I haven’t worked out yet how to construct the map γ̃N
needed for the Maslov index from the corresponding maps γ̃ and γ̃M .

5.4 Lemma The object obtained as FU (EM , UM , ιM ) in 5.3 has all necessary
properties to be an object in the Fukaya category F(N̂).

Proof. In 5.3 we have already proven that ιN is an immersion of the compact
manifold UN . It is also clear that the monodromies have eigenvalues 1, since
they are tensor products of monodromies of E and EM .

Since ι∗(ω − ψ) = 0, we certainly have ι′N
∗(ω − ψ) = 0. Further, since ω

restricts to zero on ιM ∗UM , it will also restrict to zero on π∗cM ιM ∗(UM ), hence

we must have ι′N
∗(ω) = 0. So it follows ι′N

∗(ψ) = ιN
∗(ψ) = 0.

Finally, our condition on the compatibility of Ω and Ψ obviously ensures that
for an appropriate phase of the pullback ιN

∗(Ψ) its imaginary part vanishes. 2

The next step is to define the functor on morphisms:

5.5 Definition Take two objects (EM,1, UM,1) and (EM,2, UM,2) in F(M̂ ) that
intersect transversely and a point xM in their intersection. Let {xN,1, . . . , xN,d}
be the points on FU (UM,1) ∩ FU (UM,2) corresponding to xM . Now take an
element of HomF(cM)

((EM,1, UM,1), (EM,2, UM,2)) concentrated at xM , i. e. aM ∈
Hom(EM,1|xM , EM,2|xM ). Then we will map aM to

FU (aM ) :=
∑

xN,i

(aM ⊗ idE)

where the ith summand is regarded as an element in the homomorphism space
located at xN,i.

(Remember that the FU (UM,1) has as a local system at xN,i the vector space
EM,1|xM ⊗ E|xN,i , similarly for FU (UM,2), so this definition makes sense.)

To rectify this defintion one would need to prove the following Lemma:

5.6 Lemma The functor FU commutes with the composition maps mk in
F(M̂ ) and F(N̂ ).
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However, I cannot give a complete proof of this; what seems to be missing
is a way to deal with deformations of the almost-complex structure on N̂ :

Proof. Suppose we are given special Lagrangian submanifolds U1, . . . , Uk+1

in M̂ together with points of intersection x1, . . . , xk+1 and elements a1, . . . , ak
in the corresponding local Hom-space as in definition 3.11. Consider one pseudo-
holomorphic map φ : ∆→ M̂ with the required boundary conditions. The idea
is now that, since πcM ◦ ι is a covering map, the map φ lifts to a map φ̂ : ∆→ U ;

in fact for every point x1i in the fibre ι−1π−1
cM (x1) there is exactly one such lift

φ̂i.
Let z1, . . . , zk+1 be the points in ∂D that are mapped to x1, . . . , xk+1 under

φ, repectively. If we then denote by xij the point xji := φi(zj), then the (finite)
set {xj1, xj2, . . . } is exactly the fibre of xj with respect to the covering map
πcM ◦ ι.

Now with π bN ◦ ι ◦ φ̂i, we get a corresponding map φi : ∆ → N̂ . The fact
that U is Lagrangian means that φi will have the same volume as φ:

∫

D
φ∗iψ =

∫

D
φ̂∗iψ =

∫

D
φ̂∗iω =

∫

D
φ∗ω.

(The middle equal sign is due to U being Lagrangian.) This is already very en-
couraging for our aim to prove the desired compatibility. It remains to consider
the effect of the connection:

Let ξ the summand in Hom(E1|xk+1
, Ek+1|xk+1

) that we get by the map
φ and the morphisms a1, . . . , ak in the summation of equation (10). Let aji
be the summand of FU (ai) at the point xji. Again by the summation term
corresponding to φi and a1i, . . . , aki in (10), we get a morphism concentrated
at x(k+1)i that we will denote by ξi.

The claim is now FU (ξ) =
∑

i ξi. We denote the connection on U by Θ,
the connection on Ui by Θi and the one on FU (Ui) by Θ′i. By plugging in the
definition (10) we get:

ξi = e2πi
R
φ∗i ψ ·Θ′k+1(φi|[zk,zk+1]) ◦ aki ◦ · · · ◦ a1i ◦Θ′1(φi|[zk+1,z1])

= e2πi
R
φ∗ω ·

(
Θk+1(φ|[zk,zk+1])⊗Θ(φ̂|[zk,zk+1])

)
◦
(
ak ⊗ id(E|xki)

)
◦ · · ·

· · · ◦
(
a1 ⊗ id(E|x1i)

)
◦
(

Θ1(φ|[zk+1,z1])⊗Θ(φ̂|[zk+1,z1])
)

= e2πi
R
φ∗ω ·

(
Θk+1(φ|[zk,zk+1]) ◦ ak ◦ · · · ◦ a1 ◦Θ1(φ|[zk+1,z1])

)

⊗
(

Θ(φ̂|[zk,zk+1]) ◦ id(E|xki) ◦ · · · ◦ id(E|x1i) ◦Θ(φ̂|[zk+1,z1])
)

= ξ ⊗Θ(φ̂|∂D)

= ξ ⊗ id(E|x(k+1)i
)

(The last equality is due to the fact that φ̂|∂D is contractible in U since it
extends to D.)

This proves our claim.
The compatibility of FU with mk now follows simply from the fact that we

can get every map φ̃ : ∆→ N̂ as a pushforward constructed as above of a map
φ : ∆→ M̂ ; one gets φ simply by applying our construction backwards. 2
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The above proof has just one big flaw: The maps φi that we constructed will
in general not be holomorphic. The easiest way to solve this problem would be
to put a further restriction on the objects in F(M̂ × N̂); we could require the

induced local diffeomorphisms from M̂ to N̂ to be pseudo-holomorphic. This,
however, seems to be very restricting.

There might be another way to save the above “prove”: We can (at least
locally) get an almost-complex structure J ′N on N̂ by pushing the corresponding

structure on M̂ forward via U . This almost-complex structure will be compat-
ible with ψ. The space of all almost-complex structures that are compatible
with ψ is contractible (see e. g. [16]), so one would hope that one can find a
deformation argument to show that the existence of a pseudo-holomorphic map
φ : ∆ → N̂ in a given homotopy type (where we allow homotopies that fix the
image of the zj ∈ ∂D and vary φ|[zj ,zj+1] only within Uj) does not depend on
the choice of the almost-complex structure. Since the considered connections
are flat, since ω is closed and since it restricts to zero on all Uj , the expression
in equation (10) does only depend on this homotopy type, and so this argument
would really resolve our difficulties.

This argument would also prove that the composition maps mk do not
depend on the almost-complex structure, which would mean that the Fukaya
category is a (almost) purely symplectic invariant.

With an assumed triangulated structure on F(M̂ ) and F(N̂ ), one would
like this functors to be exact (i. e. map exact triangles to exact triangles); but
as I haven’t found a general definition of exact triangles yet, I can’t verify this.
Further, we would like the morphisms in F(M̂ × N̂) to correspond to natural
transformations between the associated functors; this, however, seems to be
slightly more difficult to define than the functors.

A final

5.7 Remark Given an object (E , U) in F(M̂ × N̂), consider the object (E∗, U)
that has the same underlying manifold but the dual vector bundle (with

dual connection) on it. Then the two functors F(E ,U) : F(M̂ ) → F(N̂) and

F(E∗,U) : F(N̂ ) → F(M̂ ) induced by these two objects are adjoints of each
other.

Proof. This is only a very elegant formulation of the simple isomorphism

Hom(E1|xN ⊗ E|x, E2|xM ) ∼= Hom(E1|xN , E2|xM ⊗ E∗|x.

Here xN is any point in N that is mapped to a point xM in M via the point
x in U . 2

5.3 Conclusion

This construction might be interesting for the following reason:
Suppose the homological mirror conjecture is verified for two pairs M, M̂

andN, N̂ . Now as constructed the (transversal) Fukaya category F(M̂×N̂) pro-

vides us with functors F(M̂ )→ F(N̂ ) and hence with functors Db(CohM)→
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Db(CohN). We know that such functors can be constructed from the category
Db(CohM ×N) as Fourier-Mukai-transforms; yet more, under certain circum-
stances every functor between these two categories satisfying a few conditions
can be constructed this way:

5.8 Theorem Let N , M be smooth projective varieties, and let F be an exact
functor from Db(CohM) to Db(CohN).

If F is fully faithful and has a left and right adjoint, then F is a Fourier-
Mukai-transform given by an object E ∈ Db(Coh(M ×N)).

This is a result of D. O. Orlov, see [21]; he even believes that this is true
for every exact functor.

So this identification might help to construct a functor F(M̂ × N̂) →
Db(CohM × N); doing this for the case where M,N are elliptic curves might
give hints for the construction in the case of higher-dimensional tori. But maybe
it is too much to expect the desired equivalence of categories to be compati-
ble with the relation between Fourier-Mukai-transforms and the construction
of this section.
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Appendix

A The Maslov index

There are a whole bunch of definitions that are called “Maslov index”; the
article by Cappell, Lee, Miller [6] summarizes many definitions they found in the
literature and shows how they relate to each other. Following their treatment,
I will outline the definition that seems to be the appropriate for the Fukaya
category.

We are given a 2n-dimensional symplectic vector space V equipped with a
complex structure, i. e. an endomorphism J with J 2 = −1 that is compatible
with the symplectic form ω. We want to define a function on open paths in the
space Lag V of Lagrangian planes in V .

So let γ be a path in Lag V , where the endpoints intersect only in {0}. (The
Maslov index can be defined for non-trivial intersection as well, but we would
loose the asymmetry formula (16).) Fix the plane L1 := γ(1).

We can choose an ε with 0 < ε < π such that for all 0 < |θ| < ε, the plane
eθJL1 has trivial intersection with L1 and γ(0). Now choose an 0 < θ < ε
and let L̄ := eθJL1 Let M ⊂ Lag V be the set of planes that have non-trivial
intersection with L̄. It can be shown that M is a codimension one subvariety of
Lag V . Further, M is naturally stratified by the dimension of the intersection
with L̄; let M0 be the top stratum of planes with one-dimensional intersection
with L̄. It has been proved that both the singularities of M and M \M0 have
codimension 3 in Lag V .

We want to define a transverse orientation on M0: for L ∈ M0, we declare
that the path t 7→ etJ crosses M0 in positive direction. Of course it needs a
further check to verify that this defines a consistent orientation (for all proofs,
resp. references to proofs, see [6]).

Now we deform the path γ homotopically to a path γ̂ that intersects M
only transversely, outside the singularities and only in M0. Then we define the
Maslov index µ(γ) as the negative of the topological intersection number of γ̂
with M ; because of the codimension 3 property, all possible choices of γ̂ can be
deformed one into another avoiding the singularities and M \M0, so that this
number is indeed well-defined.

From the computations in [6], section 9 (our definition relates to theirs as
µ(γ) = −M(x, y)), it follows then that for transversal intersection of γ(0) and
γ(1), we have for a path γ and its reverse path γ−1:

µ(γ) + µ(γ−1) = n (16)

B Morphisms for non-transversal intersection in the
Fukaya category

Due to our functor Φ, we can describe how the space of homomorphisms between
to objects (E1/2, U1/2, α1/2) in the Fukaya category F(Ê) over a torus has to be
defined to get the desired equivalence:
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So suppose U1 = U2 =: U (which is the only case of non-transversal inter-
section on our torus). The bundles E1 and E2 give a bundle E1 ⊗ E∗2 =: E on
U with fiber V . Let A ∈ End(V ) be the monodromy of the connection. Let
V1 be the largest subspace of V such that A− IdV is nilpotent on V1 (i. e. the
characteristic subspace of 1 with respect to A).

Then we define

Hom((E1, U1), (E2, U2)) := V1 ⊕ V ∗1

where V1 is concentrated in degree α2 − α1 and V ∗1 in degree α2 − α1 + 1.
However, it is still unclear how to define the composition m2 in case of

non-transversal intersection.
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