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ABSTRACT. We apply a conjectured inequality on third chern classes of stable two-term
complexes on threefolds to Fujita’s conjecture. More precisely, the inequality is shown to
imply a Reider-type theorem in dimension three which in turn implies that KX + 6L is
very ample when L is ample, and that 5L is very ample when KX is trivial.
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1. INTRODUCTION

A Bogomolov-Gieseker-type inequality on Chern classes of “tilt-stable” objects in the
derived category of a threefold was conjectured in [BMT11] in the context of constructing
Bridgeland stability conditions. In this paper, we show how the same inequality would
allow one to extend Reider’s stable-vector bundle technique ([Rei88]) from surfaces to
threefolds, and in particular to obtain Fujita’s conjecture in the threefold case. This follows
a line of reasoning that was suggested in [AB11].

While we use the setup of tilt-stability from [BMT11], this paper is intended to be
self-contained, and to be readable by birational geometers with a passing familiarity with
derived categories.

Tilt-stability depends on two numerical parameters: an ample class ω ∈ NSQ(X) and
an arbitrary class B ∈ NSQ(X). It is a notion of stability on a particular abelian category,
Bω,B, of two-term complexes in Db(X), and codimension three Chern classes of stable
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objects E in this category (and not stable vector bundles) are conjectured to satisfy a
Bogomolov-Gieseker inequality in Conjecture 2.3. Assuming this conjecture, we prove
the following Reider-type theorem for threefolds:

Theorem 4.1. Let X be a smooth projective threefold over C, and let L be an ample line
bundle on X such that Conjecture 2.3 holds when B and ω are scalar multiples of L. Fix
a positive integer α, and assume that L satisfies the following conditions:

(A) L3 > 49α;
(B) L2.D ≥ 7α, for all integral divisor classes D with L2.D > 0 and L.D2 < α;
(C) L.C ≥ 3α, for all curves C.

Then H1(X,KX ⊗ L⊗ IZ) = 0 for any zero-dimensional subscheme Z ⊂ X of length α.

Theorem 4.1 would give an effective numerical criterion for an adjoint line bundle to be
globally generated (α = 1) or very ample (α = 2):

Corollary 1.1 (Fujita’s Conjecture). Let L be an ample line bundle on a smooth projective
threefold X . Assume Conjecture 2.3 holds for ω and B as above. Then:

(a) KX⊗L⊗m is globally generated for m ≥ 4. Moreover, if L3 ≥ 2, then KX⊗L⊗3
is also globally generated.

(b) KX ⊗ L⊗m is very ample for m ≥ 6.

In Proposition 4.2, we also show (assuming the conjecture) that KX ⊗L5 is very ample
as long as its restriction to special degree one curves is very ample. As a consequence,
KX ⊗L5 is very ample when KX is trivial, or, more generally, when KX .C is even for all
curves C ⊂ X .

Ein and Lazarsfeld proved that KX ⊗ L⊗4 is globally generated [EL93]. In the case
L3 ≥ 2, Fujita, Kawamata, and Helmke proved that KX ⊗ L⊗3 is globally generated
as well [Fuj93, Kaw97, Hel97]. In fact, in Proposition 4.4, we show that these results
conversely give some evidence for Conjecture 2.3. Case (b) in Corollary 1.1 instead is not
known in general; but also note that the strongest form of Fujita’s conjecture predicts that
KX⊗L⊗5 is already very ample. For further references, we refer to [Laz04, Section 10.4].
Notice that the bounds in Theorem 4.1 are very similar to those in [Fuj93] when α = 1
(see also [Kaw97, Hel97]) and, when α = 2 and Z consists of two distinct points, to those
in [Fuj94].

Approach. We explain our approach, which was outlined in [AB11, Section 5], but can
now be made precise using the strong Bogomolov-Gieseker conjecture of [BMT11]. It
is closer to Reider’s original approach [Rei88] for surfaces via stability of sheaves (gen-
eralized to threefolds by extending it to derived categories), than to the Ein-Lazarsfeld-
Kawamata approach mentioned above, via vanishing theorems.

Let us give first a brief recall on Reider’s method for proving Fujita’s Conjecture in the
case ofX being a surface. By Serre duality, an adjoint linear systemKX⊗L is very ample
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if and only if Ext1(L⊗ IZ ,OX) = H1(X,KX ⊗ L⊗ IZ)∨ = 0, for all zero-dimensional
subscheme Z ⊂ X of length one or two. If this group was non-zero, we would get a rank
2 torsion-free sheaf E as the non-trivial extension OX ↪→ E � L ⊗ IZ . Reider’s idea is
to consider the slope-stability of E. If E is stable, then the classical Bogomolov-Gieseker
inequality gives a bound on the degree L2 of L in terms of the length of Z. If E is not
stable, then the destabilizing subsheaf gives a curve of bounded degree with respect to L.
Hence, if we assume that L satisfies inequalities similar to (A) and (C), we would get a
contradiction.

We generalize this approach to threefolds as follows. We suppose the conclusion of
Theorem 4.1 is false. Then by Serre duality,

0 6= Ext2(L⊗ IZ ,OX) = Ext1(L⊗ IZ ,OX [1]).

For appropriate choices of ω and B, both L ⊗ IZ and OX [1] are objects in the abelian
category Bω,B, and thus this extension class corresponds to another object E of Bω,B.
In Section 3.1, we will show that for ω → 0, the complex E violates the inequality of
Conjecture 2.3, thus it must become unstable. We show in Section 3.2 that the Chern
classes of a destabilizing subobject give a contradiction to Assumptions (A) and (B) of the
Theorem unless it is of the form L⊗ IC , where IC is the ideal sheaf of a curve containing
Z. In Section 4, we apply our conjecture and Assumption (C) to this remaining case and
deduce Theorem 4.1.
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1001056. A. Be. is partially supported by NSF grant DMS-0901128. E. M. is partially
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grant (22684002), partly (S-19104002), from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. The authors would like to thank the Isaac Newton Institute
and its program on “Moduli Spaces”, during which this paper was finished.

Notation and Convention. Throughout the paper,X will be a smooth projective threefold
defined over C and Db(X) its bounded derived category of coherent sheaves. Given a line
bundle L on X , we will denote by DL : Db(X) → Db(X) the following local dualizing
functor on its derived category:

DL( ) := ( )∨[1]⊗ L = RHom( , L[1]).

We identify a line bundle L with its first Chern class c1(L), and writeKX for the canonical
line bundle. While L⊗m denotes the tensor powers of the line bundle, Lk denotes the
intersection product of its first Chern class.
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2. SETUP

In this section, we briefly recall the notion of “tilt-stability” defined in [BMT11, Section
3] and its most important properties.

Let X be a smooth projective threefold, and let ω,B ∈ NSQ(X) be rational numer-
ical divisor classes such that ω is ample. We use ω,B to define a slope function µω,B
for coherent sheaves on X as follows: For torsion sheaves E, we set µω,B(E) = +∞,
otherwise

µω,B(E) =
ω2 chB1 (E)

ω3 chB0 (E)
=
ω2 ch1(E)

ω3 chB0 (E)
− ω2B

ω3

where chB(E) = e−B ch(E) denotes the Chern character twisted by B (explicitly, chB0 =
rk, chB1 = c1 −B rk, etc.).

A coherent sheaf E is slope-(semi)stable (or µω,B-(semi)stable) if, for all subsheaves
F ↪→ E, we have

µω,B(F ) < (≤)µω,B(E/F ).

Due to the existence of Harder-Narasimhan filtrations (HN-filtrations, for short) with re-
spect to slope-stability, there exists a “torsion pair” (Tω,B,Fω,B) defined as follows:

Tω,B = {E ∈ CohX : any quotient E � G satisfies µω,B(G) > 0}
Fω,B = {E ∈ CohX : any subsheaf F ↪→ E satisfies µω,B(F ) ≤ 0}

Equivalently, Tω,B and Fω,B are the extension-closed subcategories of CohX generated
by slope-stable sheaves of positive or non-positive slope, respectively.

Definition 2.1. We let Bω,B ⊂ Db(X) be the extension-closure

Bω,B = 〈Tω,B,Fω,B[1]〉.

More explicitly, Bω,B is the subcategory of two-term complexes E : E−1
d−→ E0 with

H−1(E) = ker d ∈ Fω,B and H0(E) = cok d ∈ Tω,B. We can characterize isomorphism
classes of objects in Bω,B by extension classes: to give an object E ∈ Bω,B is equivalent
to giving T ∈ Tω,B, F ∈ Fω,B, and a class ξ ∈ Ext2X(T, F ).

By the general theory of torsion pairs and tilting [HRO96], Bω,B is the heart of a
bounded t-structure on Db(X). For the most part, we only need that Bω,B is an abelian
category: Exact sequences in Bω,B are given by exact triangles in Db(X). For any such
exact sequence

0→ E → F → G→ 0

in Bω,B, we have a long exact sequence in CohX:

0→ H−1(E)→ H−1(F )→ H−1(G)→
→ H0(E) → H0(F ) → H0(G) → 0.
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Using the classical Bogomolov-Gieseker inequality and Hodge Index theorem, we de-
fined the following slope function on Bω,B: We set νω,B(E) = +∞ when ω2 chB1 (E) = 0,
and otherwise

(1) νω,B(E) =
ω chB2 (E)− 1

6
ω3 chB0 (E)

ω2 chB1 (E)
.

We showed that this is a slope function, in the sense that it satisfies the weak see-saw
property for short exact sequences in Bω,B: for any subobject F ↪→ E, we have νω,B(F ) ≤
νω,B(E) ≤ νω,B(E/F ) or νω,B(F ) ≥ νω,B(E) ≥ νω,B(E/F ).

Definition 2.2. An object E ∈ Bω,B is “tilt-(semi)stable” if, for all non-trivial subobjects
F ↪→ E, we have

νω,B(F ) < (≤)νω,B(E/F ).

Motivated by the case of torsion sheaves ([BMT11, Proposition 7.1.1]), by projectively
flat vector bundles ([BMT11, Proposition 7.4.2]), and the case of X = P3 ([BMT11,
Theorem 8.2.1] and [Mac12]), we stated the following conjecture:

Conjecture 2.3 ([BMT11, Conjecture 1.3.1]). For any νω,B-semistable object E ∈ Bω,B
satisfying νω,B(E) = 0, we have the following inequality

chB3 (E) ≤ ω2

18
chB1 (E).(2)

Conjecture 2.3 is analogous to the classical Bogomolov-Gieseker inequality, which can
be formulated as follows: For any µω,B-semistable sheaf E satisfying µω,B(E) = 0, we
have ω chB2 (E) ≤ 0.

The original motivation for Conjecture 2.3 is to construct examples of Bridgeland sta-
bility conditions on Db(X). While any linear inequality of the form (2) would be sufficient
to this end, the constant 1

18
in equation (2) is chosen so that, if ω and B are proportional

to the first Chern class of an ample line bundle L, the inequality is an equality for tensor
power L⊗n of L. More generally, it is an equality when E is a slope-stable vector bun-
dles E whose discriminant ∆ = (chB1 )2 − 2 chB0 chB2 satisfies ω∆(E) = 0, and for which
chB1 (E) is proportional to L. Such vector bundles have a projectively flat connection, and
are examples of tilt-stable objects:

Proposition 2.4 ([BMT11, Proposition 7.4.1]). Let L be an ample line bundle, and assume
that both ω and B are proportional to L. Then any slope-stable vector bundle E, with
ω∆(E) = 0 and for which chB1 (E) is proportional to L, is also tilt-stable with respect to
νω,B.

The proof is essentially the same as for line bundles L⊗n in [AB11, Proposition 3.6].
By assuming Conjecture 2.3, we can also show conversely: if an object in Bω,B is

tilt-stable and the inequality in Conjecture 2.3 is an equality, then it must have trivial
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discriminant. We first recall that, based on Bridgeland’s deformation theorem in [Bri07],
we also showed the existence of a continuous family of stability conditions depending on
real classes ω,B:

Proposition 2.5 ([BMT11, Corollary 3.3.3]). Let U ⊂ NSR(X)×NSR(X) be the subset of
pairs of real classes (ω,B) for which ω is ample. There exists a notion of “tilt-stability”
for every (ω,B) ∈ U . For every object E, the set of (ω,B) for which E is νω,B-stable
defines an open subset of U .

By using Proposition 2.5, we can then prove the following.

Proposition 2.6. Let L be an ample line bundle, and assume that both ω and B are pro-
portional to L. Assume also that Conjecture 2.3 holds for such B and ω. Let E ∈ Bω,B be
a νω,B-stable object, with ch0(E) 6= 0 and ch1(E) proportional to L, and satisfying:

ω3

6
ch0(E) = ω chB2 (E) and chB3 (E) =

ω2

18
chB1 (E).

Then ω.∆(E) = 0.

Proof. Write d = L3, B = b0L, ω = T0L and ch0(E) = r. The idea for the proof is
that, since stability is an open property, we can deform b = b0 and T = T0, as a function
T = T (b) of b, slightly such that E is still νT (b)L,bL-stable with νT (b)L,bL(E) = 0; then we
apply Conjecture 2.3 for the pairs ω = T (b)L,B = bL depending on b.

Evidently, νTL,bL(E) = 0 is equivalent to

T 2 =
6

rd
L. chbL2 (E)

Since T0 > 0, and since the equation is satisfied for T = T0 and b = b0, the equation
defines a function T = T (b) for b nearby b0.

It is immediate to check from the definition that the chain rule

(3)
∂

∂b
chbLi (E) = −L chbLi−1(E)

holds for i = 1, . . . , 3.
Consider

f(b) = chbL3 (E)− (T (b)L)2

18
. chbL1 (E) = chbL3 (E)− 1

3rd
L. chbL2 (E) · L2. chbL1 (E)

as a function of b in some neighborhood of b0 ∈ R. By Proposition 2.5 and Conjecture 2.3,
we have f(b) ≤ 0 for b close to b0, and by assumption f(b0) = 0; therefore f ′(b0) = 0.
Using equation (3), we obtain

f ′(b) = −L. chbL2 (E) +
1

3rd

(
(L2. chbL1 )2 + L. chbL2 (E) · rd

)
=

1

3r

(
L.(chbL1 (E))2 − 2L. chbL2 (E)r

)
=

1

3r
L.∆(E).
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(Note that we used (L2. chbL1 )2 = L3 · L.(chbL1 )2, which holds because chbL1 (E) is propor-
tional to L.) This proves the claim. 2

Finally, based on an alternate construction of tilt-stability, we also showed that it be-
haves well with respect to the dualizing functor DL( ) = RHom( , L[1]) for every line
bundle L. For this purpose, we fix B = L

2
:

Proposition 2.7. Let F ∈ Bω,L
2

be an object with νω,L
2
(A) < +∞ for every subobject

A ⊂ F . Then there is an exact triangle F̃ → DL(F ) → T0[−1] where T0 is a zero-
dimensional torsion sheaf and F̃ an object of Bω,L

2
with νω,L

2
(F̃ ) = −νω,L

2
(F ). The object

F̃ is νω,L
2

-semistable if and only if F is νω,L
2

-semistable.

Proof. Since DL( ) can be written as the composition ⊗L ◦D( ), this follows from
[BMT11, Proposition 5.1.3] and the fact that tensoring with L corresponds to replacing B
with B − L. 2

3. REDUCTION TO CURVES

In this section, we use Assumptions (A) and (B) of Theorem 4.1 to show that the non-
vanishing of H1(X,KX ⊗ L⊗ IZ) implies the existence of special low-degree curves on
X . The approach, explained in the introduction, involves studying the tilt-stability of a
certain object E in the category B constructed in the previous section.

3.1. Bogomolov-Gieseker inequalities and stability. We will use Conjecture 2.3 in the
case where L is an ample line bundle on X , ω = TL for some T > 0, and B = L

2
. The

abelian category B := BTL,L
2

is independent of T .

To simplify notation, we will rescale the slope function: set t = T 2

6
and write νt for

(4) νt( ) = T · νTL,L
2
( ) =

L. ch
L/2
2 ( )− td ch

L/2
0 ( )

L2. ch
L/2
1 ( )

,

where d := L3. Then the inequality of Conjecture 2.3 states that, for every νt-stable object
E, we have

(5) ch
L/2
3 (E) ≤ t

3
L2. ch

L/2
1 (E) if L. ch

L/2
2 (E) = dt ch

L/2
0 (E).

Let Z ⊂ X be a zero-dimensional subscheme of length α. Following [AB11], observe
that ifH1(X,KX⊗L⊗IZ) 6= 0, then by Serre duality, we also have Ext2(L⊗IZ ,OX) 6= 0.
Any non-zero element ξ ∈ Ext2(L⊗ IZ ,OX) gives a non-trivial exact triangle in Db(X)

(6) OX [1]→ E = Eξ → L⊗ IZ
ξ−→ OX [2].

We will show that E is νt-semistable for t = 1
8
; its Chern classes invalidate the inequal-

ity of Conjecture 2.3 for t � 1, and thus it must become unstable for t < t0 and some
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t0 ∈ (0, 1
8
]; finally, we will show that the the Chern classes of its destabilizing factor would

give special curves or divisors on X .

Proposition 3.1. Assume that H1(X,KX ⊗ L ⊗ IZ) 6= 0, and let E be an extension as
given by equation (6).

(a) E ∈ B and

chL/2(E) =

(
0, L, 0,

d

24
− α

)
.

(b) If t > 1
8
, then (6) destabilizes E with respect to νt.

(c) If t = 1
8
, then E is νt-semistable.

(d) Assume Conjecture 2.3 and Assumption (A) of Theorem 4.1. Then E is not νt-
semistable for 0 < t� 1,

Proof. First of all, we have

chL/2(OX) =

(
1,−L

2
,
L2

8
,−L

3

48

)
,

chL/2(L⊗ IZ) =

(
1,
L

2
,
L2

8
,
L3

48
− α

)
.

As OX and L ⊗ IZ are slope-stable, with µω,L/2(OX) < 0 and µω,L/2(L ⊗ IZ) > 0, we
have OX ∈ F and L⊗ IZ ∈ T . By the definition of B, it follows that OX [1], L⊗ IZ and
E are all objects of B; in particular, we have proved (a).

Moreover, we have

(7) νt(OX [1]) = 2

(
t− 1

8

)
, νt(E) = 0

which immediately implies (b), since (6) is an exact sequence in B.
To prove (c), simply observe that, by Proposition 2.4, bothOX [1] and L are νt-stable for

all t > 0. Moreover, since νt(L⊗ IZ) = νt(L), any destabilizing subobject A ↪→ L⊗ IZ
would also destabilize L via the composition A ↪→ L⊗ IZ ↪→ L (which is an inclusion in
B); thus L ⊗ IZ is also νt-stable. For t = 1

8
, we have νt(OX [1]) = νt(L ⊗ IZ) = 0, and

thus the extension (6) shows that E is νt-semistable at t = 1
8
.

Finally, if E was νt-semistable for all t ∈ (0, 1
8
], then by our conjectural inequality (5)

we would get

(8)
d

24
− α ≤ t

3
d

for all such t. Hence d ≤ 24α, in contradiction to Assumption (A). 2

Notice that the previous proposition would answer Question 4 in [AB11]. Also observe
that in part (d), instead of Assumption (A), already assuming d > 24α would have been
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enough. Similarly, instead of Conjecture 2.3, any linear inequality between chB3 and chB1
would have been sufficient.

In the following proposition, we will show that our situation is self-dual with respect to
the local dualizing functor DL( ) = RHom( , L[1]). As a preliminary, let us first note
that we may make the following assumption:

(*) H1(X,KX⊗L⊗IZ′) = 0 for all subschemes Z ′ ( Z, and H1(X,KX⊗L⊗IZ) ∼= C.
Indeed, in order to show H1(X,L ⊗ IZ ⊗KX) = 0, we can proceed by induction on the
length of Z (the case α = 0 is, of course, given by Kodaira vanishing).

Proposition 3.2. If Assumption (*) holds, and E is given by the unique non-trivial exten-
sion of the form (6), then E ∼= DL(E).

Proof. Due to Assumption (*), it is sufficient to show that DL(E) is again a non-trivial
extension of the form (6). Applying the octahedral axiom to the composition OZ [−1] →
L ⊗ IZ → OX [2], and using the two exact triangles (6) and OZ [−1] → L ⊗ IZ → L, we
obtain an exact triangle F → E → L, where F itself fits into an exact triangle

(9) OX [1]→ F → OZ [−1].

We claim that Hom(k(x)[−1], F ) = 0 for all skyscraper sheaves of points x ∈ X . Using
the long exact sequence for Hom(k(x), ) applied to (9), we see that this is equivalent to
the non-vanishing of the composition

(10) k(x)[−1]→ OZ [−1]→ L⊗ IZ
ξ−→ OX [2]

for every inclusion k(x) ↪→ OZ . Given such an inclusion, let Z ′ ⊂ Z be the subscheme
given by OZ′ ∼= OZ/k(x). If the composition (10) vanishes, then ξ factors via L⊗ IZ ↪→
L⊗IZ′ . This contradicts our assumption Ext2(L⊗IZ′ ,OX) = H1(X,L⊗IZ′⊗KX)∨ = 0.

Now we apply DL to the exact triangle OX [1] → F → OZ [−1]. As DL(OX [1]) = L
and DL(OZ [−1]) = OZ [−1], dualizing (9) gives an exact triangle OZ [−1] → DL(F ) →
L → OZ . Since Hom(DL(F ), k(x)[−1]) = Hom(k(x)[−1], F ) = 0 for all x ∈ X , the
map L → OZ must be surjective, and hence DL(F ) ∼= L ⊗ IZ . Consequently, applying
DL to the exact triangle F → E → L shows that DL(E) is indeed a non-trivial extension
of the form (6). 2

3.2. Chern classes of destabilizing subobjects. By Proposition 3.1 and Proposition 2.5,
Conjecture 2.3 implies the existence of t0 ∈ (0, 1

8
] with the following properties:

• E is νt0-semistable.
• There exists an exact sequence in B

(11) 0→ A→ E → F → 0,

with νt(A) > 0 if t < t0, and νt0(A) = 0.
In the remainder of this section, we will prove the following statement:
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Proposition 3.3. Assume that X,L, α satisfy Assumptions (A) and (B) of Theorem 4.1 and
Assumption (*) of the previous section. Then in any destabilizing sequence (11), the object
A is of the form L ⊗ IC , for some purely one-dimensional subscheme C ⊂ X containing
Z.

We will first prove this for subobjects satsfying L2. ch
L/2
1 (A) ≤ L2. ch

L/2
1 (F ), or, equiv-

alently,

(12) L2. ch
L/2
1 (A) ≤ 1

2
L2. ch

L/2
1 (E) =

d

2
.

(We will later use the derived duality DL( ) to reduce to this case.)

Lemma 3.4. Any subobject A satisfying (12) is a sheaf with rk(A) = rk(H0(A)) > 0.

Proof. Consider the long exact cohomology sequence for A ↪→ E � F . If H−1(A) 6=
0, then H−1(A) ↪→ OX is isomorphic to an ideal sheaf of some subscheme Y of X . Since
OY ↪→ H−1(F ) and H−1(F ) is torsion-free, we must have H−1(A) ∼= OX . Then H0(A)
is also torsion-free, and (12) implies

L2. ch
L/2
1 (H0(A)) = L2. ch

L/2
1 (A)− L2. ch

L/2
1 (OX [1]) ≤ d

2
− d

2
= 0.

On the other hand, by construction of B, every HN-filtration factor U of H0(A) satisfies
L2. ch

L/2
1 (U) > 0; thus H0(A) = 0 and A = OX [1]. This contradiction proves H−1(A) =

0.
Finally, note that if A = H0(A) is a torsion-sheaf, then νt(A) is independent of t, again

a contradiction. 2

Lemma 3.5. Either A is torsion-free, or its torsion-part At satisfies

L2. ch1(At)− 2L. ch2(At) ≥ 0 and L2. ch1(At) > 0.

Proof. The sheaf At is a subobject of E in B with rk = 0. Hence L. ch
L/2
2 (At) ≤ 0,

otherwise it would destabilize E at t = 1
8
. Expanding ch

L/2
2 gives the first inequality. To

show the second inequality, we just observe that there are no non-trivial morphisms from
sheaves supported in dimension ≤ 1 to E. 2

Lemma 3.6. In the HN-filtration of A with respect to slope-stability, there exists a factor
U of rank r such that Γ := L− ch1(U)

r
satisfies the following inequalities:

L2.Γ ≤ L.Γ2 + 6α(I)

d

2

(
1− 1

r

)
≤ L2.Γ <

d

2
.(II)

The case r = 1 and L2.Γ = 0 only occurs when A is a torsion-free sheaf of rank one and
H−1(F ) = OX .
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If A was a line bundle, the above definition of Γ would be just as Reider’s original
argument for surfaces: in this case, Γ is the support of the cokernel of A ↪→ H0(E) ∼=
L⊗ IZ .

Proof. From νt0(A) = 0 we obtain

(13) t0 =
L. ch

L/2
2 (A)

rk(A)d
.

Applying the conjectured inequality (5) to E, and plugging in t0 gives

d

24
− α = ch

L/2
3 (E) ≤ L2. ch

L/2
1 (E)

3
t0 =

d

3

L. ch
L/2
2 (A)

rk(A)d
=

1

3

L. ch
L/2
2 (A)

rk(A)
.

We want to bound L. ch
L/2
2 (A). First we expand ch

L/2
2 (A):

ch
L/2
2 (A) = ch2(A)− L. ch1(A)

2
+ rk(A)

L2

8
.

Substituting, we deduce

(14)
L2. ch1(A)

rk(A)
− 2

L. ch2(A)

rk(A)
≤ 6α.

Let Atf denote the torsion-free part of A, and consider its HN-filtration. Among the HN
factors, we choose a torsion-free sheaf U for which the function

η( ) :=
L2. ch1( )− 2L. ch2( )

rk( )

is minimal. Notice that η satisfies the see-saw property: for an exact sequence of torsion-
free sheaves

0→M → N → P → 0,

we have η(N) ≥ min{η(M), η(P )}. Hence we get a chain of inequalities leading to

(15) η(U) ≤ η(Atf ) ≤ η(A) ≤ 6α

where we used Lemma 3.5 for the second inequality.
To abbreviate, we now write D := ch1(U) and r := rk(U). Since U is µω,L/2-

semistable, we can combine the classical Bogomolov-Gieseker inequality with (15) to
obtain

L2.
D

r
=

2L. ch2(U)

r
+ η(U) ≤ L.

D2

r2
+ 6α.

Substituting D = rL− rΓ yields the inequality (I).
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To prove the chain of inequalities (II), we observe on the one hand thatL2. ch
L/2
1 (U) > 0

by the definition of Tω,B = B ∩ CohX . On the other hand, U is a subquotient of A in
Tω,B; combined with inequality (12) we obtain

0 < L2. ch
L/2
1 (U) ≤ L2. ch

L/2
1 (A) ≤ d

2
.

Plugging in ch
L/2
1 (U) = − r

2
L+D = r

2
L− rΓ shows the inequality (II).

Finally, note that in the case r = 1 and L2.Γ = 0 the chain of inequalities leading to the
first part of (II) must be equalities; in particular L2. ch

L/2
1 (U) = L2. ch

L/2
1 (A). This shows

thatAtf cannot have any other HN-filtration factors besides U , i.e., U = Atf . Additionally
it implies that ch

L/2
1 (At) = 0, in contradiction to Lemma 3.5; hence At = 0 and A = U is

a torsion-free rank one sheaf.
As L ⊗ IZ is torsion-free, if the image of H−1(F ) → A is non-trival, then the map is

surjective, and the inclusion A ↪→ E factors via A ↪→ OX [1] ↪→ E, in contradiction to the
stability of OX [1] for all t and νt0−ε(A) > 0 > νt0−ε(OX [1]). Thus H−1(F ) = OX . 2

Proof. (Proposition 3.3) We combine (I) and (II) with the Hodge Index Theorem (just
as in [AB11, Corollary 3.9]) to obtain(

L.Γ2
)
d ≤

(
L2.Γ

)2 ≤ d

2

(
L.Γ2 + 6α

)
,

and so L.Γ2 ≤ 6α.
In the case r > 1, we use (I) and (II) again to get

d

4
≤ L2.Γ ≤ L.Γ2 + 6α ≤ 12α,

and so d ≤ 48α in contradiction to Assumption (A).
Reider’s original argument in [Rei88] deals with the case r = 1: In case L2.Γ 6= 0, then

L2.Γ ≥ 1. Let κ := L.Γ2 ≤ 6α. Again combining the Hodge Index Theorem with (I), we
obtain (

L.Γ2
)
d ≤

(
L.Γ2 + 6α

)2
,

and so

d ≤ 12α +
κ2 + 36α2

κ
.

The RHS is strictly decreasing function for κ ∈ (0, 6α] and equals 49α for κ = α; thus
Assumption (A) implies κ < α. On the other hand, Γ is integral, and hence Assumption
(B) implies L2.Γ ≥ 7α, in contradiction to (I).

Finally, if L2.Γ = 0; then, according to Lemma 3.6, we have H−1(F ) ∼= OX . Hence
A is a subsheaf of L ⊗ IZ with ch1(A) = ch1(L); this is only possible if A ∼= L ⊗ IW ,
for some closed subscheme W ⊂ X with dim(W ) ≤ 1. If W is zero-dimensional, then
ch

L/2
2 (A) = 1

2
L2 and equation (13) gives t0 = 1

2
, in contradiction to t0 ∈ (0, 1

8
]. Hence W
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is one-dimensional, and we have shown that any subobject A with ch
L/2
1 (A) ≤ d

2
is of the

form A ∼= L⊗ IW . In particular ch
L/2
1 (A) = d

2
in this case, so there are no subobject with

ch
L/2
1 (A) < d

2
.

Now assume ch
L/2
1 (A) > d

2
. We can apply Proposition 3.2 and Proposition 2.7 to the

short exact sequence (11) obtain a short exact sequence in B

0→ F̃
u−→ E → E/F̃ → 0

which is again destabilizing. Indeed, since B is the heart of a bounded t-structure, there
exists a cohomology functor H∗B( ). Applied to the exact triangle

DL(F )→ DL(E) = E → DL(A),

it induces a long exact sequence in B

(16) 0→ F̃ = H0
B(DL(F ))

u−→ E → Ã→ T0 = H1
B(DL(F ))→ 0.

As DL preservesL2. ch
L/2
1 ( ), we have that F̃ is a destabilizing subobject with ch

L/2
1 (F ) =

ch
L/2
1 (E)− ch

L/2
1 (A) < d

2
, which does not exist.

Finally, note that the long exact sequence (16) also implies that DL(A) = Ã ∈ B.
This gives the vanishing of 0 = Hom(DL(A), k(x)[−1]) = Hom(k(x)[−1], A). This
is equivalent to the claim that W is a purely one-dimensional scheme, as any subsheaf
k(x) ↪→ OW gives an extension of k(x) by L⊗ IW . This finishes the proof of Proposition
3.3. 2

4. A REIDER-TYPE THEOREM

In this section we prove our main theorem:

Theorem 4.1. Let L be an ample line bundle on a smooth projective threefold X , and
assume Conjecture 2.3 holds for B and ω proportional to L. Fix a positive integer α, and
assume that L satisfies the following conditions:

(A) L3 > 49α;
(B) L2.D ≥ 7α, for all integral divisor classes D with L2.D > 0 and L.D2 < α;
(C) L.C ≥ 3α, for all curves C.

Then H1(X,KX ⊗L⊗ IZ) = 0, for any zero-dimensional subscheme Z ⊂ X of length α.

Proof. As explained in Section 3.1, we may proceed by induction on the length of Z
and may use Assumption (*). Let t0 ∈ (0, 1

8
] be as in Section 3.2 and let t = t0 − ε.

Truncating the Harder-Narasimhan filtration of E with respect to νt-stability gives a short
exact sequence

0→ A→ E → F → 0
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with νt(A) > 0, such that any subobject A′ ↪→ E with νt(A′) > 0 factors via A′ ↪→ A.
By Proposition 3.3, A is of the form L⊗ IC for some purely one-dimensional subscheme
C ⊂ X; it also implies that A is stable, as any destabilizing subobject A′ of A would again
be of the form A′ ∼= L ⊗ IC′ , so that the quotient A/A′ would be a torsion sheaf with
νt(A/A

′) = +∞.
Let F̃ be the object obtained by dualizing F and applying Proposition 2.7. The map

DL(F )→ DL(E) ∼= E induces a map F̃ → E which is an injection in B. Since

(17) ch
L/2
i (F̃ ) = ch

L/2
i (DL(F ))

for i ≤ 2, we have νt(F̃ ) = −νt(F ) > 0; thus the map factorizes as F̃ ↪→ A ↪→ E.
By Proposition 3.3, the object F̃ is of the form L ⊗ IC′ for some purely one-dimensional
subscheme C ′ ⊂ X . Equation (17) also implies ch

L/2
i (F̃ ) = ch

L/2
i (A) for i ≤ 2; thus the

(non-trivial) map L⊗ IC′ → L⊗ IC has zero-dimensional cokernel. It follows that

ch
L/2
3 (F ) = ch

L/2
3 (DL(F )) ≤ ch

L/2
3 (F̃ ) ≤ ch

L/2
3 (A).

This implies that

(18) 2 ch
L/2
3 (A) ≥ ch

L/2
3 (A) + ch

L/2
3 (F ) = ch

L/2
3 (E) =

d

24
− α,

and the difference of the two sides is a non-negative integer.
On the other hand, as A is stable, by Conjecture 2.3, by (13) and (18), and by expanding

chL/2 we have

(19)
d

48
− α

2
≤ ch

L/2
3 (A) ≤ t0

3
L2. ch

L/2
1 (A) =

1

6
L. ch

L/2
2 (A) =

d

48
− L.C

6
.

We now use Assumption (C): L.C ≥ 3α. This contradicts (19), unless L.C = 3α and
d

48
− α

2
= ch

L/2
3 (A) =

t0
3
L2. ch

L/2
1 (A).

Since (TL).∆(A) = 3αT 6= 0, this in turn contradicts Proposition 2.6. 2

We also obtain the following result characterizing the only possible counter-examples
to Fujita’s very ampleness conjecture in case L = M5:

Proposition 4.2. Assume that Conjecture 2.3 holds for X , ω = tL and B = L
2

and
L ∼= M5 for an ample line bundle M . Then either KX ⊗ L is very ample, or there exists
a curve C of degree M.C = 1 and arithmetic genus ga(C) = 5

2
+ 1

2
KX .C such that

KX ⊗ L|C is a line bundle of degree 2ga(C) on C which is not very ample.

Proof. Assume that KX ⊗ L is not very ample. We follow the logic and the notation
of the proof of Theorem 4.1, with α = 2. As before, let A = L ⊗ IC be the destabilizing
subobject of E for t = t0− ε; here C is a purely one-dimensional subscheme of X . By the
proof of Theorem 4.1, we have L.C < 6 and thus necessarily M.C = 1 and L.C = 5. In
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particular, C is reduced and irreducible. We claim that ch
L/2
3 (A) = d

48
− 1. Indeed, setting

α = 2 in (19) gives

(20)
d

48
− 1 ≤ ch

L/2
3 (A) ≤ d

48
− 5

6
.

On the other hand, if ch
L/2
3 (A) 6= d

48
−1, then, by (18), ch

L/2
3 (A) ≥ d

48
− 1

2
, a contradiction

to the inequality (20).
From the claim, we obtain

ch3(L⊗OC) = ch3(L)− ch3(A) =
7

2

and thus

ch3(OC) = ch3(L⊗OC)− L.C = −3

2
By Hirzebruch-Riemann-Roch, we get

1− ga(C) = ch3(OC)− 1

2
KX .C.

Plugging in the previous equation and solving for KX .C shows that KX ⊗ L|C is a line
bundle of degree 2ga(C) on C. The explicit expression for ga(C) follows immediately.

Finally, the cohomology sheaves of the quotient F ∼= E/A are H−1(F ) ∼= OX and
H0(F ) ∼= L ⊗ OC(−Z) (where OC(−Z) denotes the ideal sheaf of Z ⊂ C). If F were
decomposable, F̃ would be a decomposable destabilizing subobject of E, which cannot
exist. Hence

0 6= Ext2(L⊗OC(−Z),OX) = H1(C,KX ⊗ L|C(−Z))∨.

On the other hand, KX ⊗ L|C is a line bundle of degree 2ga(C) on an irreducible Cohen-
Macaulay curve, and thus H1(KX ⊗ L|C) = 0. Hence KX ⊗ L|C is not very ample.
2

Remark 4.3. Notice that Proposition 4.2 implies Fujita’s conjecture when KX is numeri-
cally trivial (or, more generally, when KX .C is even for all integral curve classes C).

In case the curve C ⊂ X of Proposition 4.2 is l.c.i, one can be even more precise.
Let ωC be the dualzing sheaf (which agrees with the dualizing complex, as OC is pure
and thus C Cohen-Macaulay). The sheaf KX ⊗ L(−Z)|C is torsion-free of rank one
and degree 2ga(C) − 2 with H1(KX ⊗ L(−Z)|C) 6= 0, and thus Serre duality implies
KX ⊗ L(−Z)|C ∼= ωC . If N is the normal bundle, adjunction gives Λ2N ∼= L(−Z). In
particular, the normal bundle has degree 3. Since M.C = 1, bend-and-break implies that
such a curve cannot be rational.

In conclusion, we show how to reverse part of the argument in this section when Z has
length one. Indeed, in such a case we can use Ein-Lazarsfeld theorem (or better, its variant
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by Kawamata and Helmke) to show that Conjecture 2.3 holds true for this particular case,
coherently with our result:

Proposition 4.4. Let L be an ample line bundle on a smooth projective threefold X . As-
sume that L satisfies the following conditions:

(a) L3 ≥ 28;
(b) L2.D ≥ 9, for all integral effective divisor classes D.

Assume also that there exists x ∈ X such that H1(X,KX⊗L⊗ Ix) 6= 0. Then Conjecture
2.3 holds for all objects E ∈ B given as non-trivial extensions

OX [1]→ E → L⊗ Ix → OX [2].

Proof. The argument is very similar to [Kaw97], Proposition 2.7 and Theorem 3.1,
Step 1. We freely use the notation from [Laz04, Sections 9 & 10]. By [Kaw97, Lemma
2.1], given a rational number t satisfying 3/

3
√
L3 < t < 1, there exists a Q-divisor D

numerically equivalent to tL such that ordxD = 3. Let c ≤ 1 the log-canonical threshold
of D at x.

By [Kaw97, Theorem 3.1] (also [Hel97]) and our assumptions, the LC-locus LC(cD;x)
(i.e., the zero-locus of the multiplier ideal J (c · D) passing through x) must be a curve
C satisfying 1 ≤ L.C ≤ 2. We can now apply Nadel’s vanishing theorem to cD to
deduce that H1(X,KX ⊗L⊗ IC) = 0, and so that the restriction map H0(X,KX ⊗L) �
H0(X,KX ⊗ L|C) is surjective.

Consider the composition u : L⊗ IC → L⊗ Ix → Ox[2]. Then, u 6= 0 if and only if x
is a base point of KX ⊗ L which is not a base point of KX ⊗ L|C . The surjectivity of the
restriction map implies that u = 0. Hence, we get an inclusion L ⊗ IC ↪→ E in B which
destabilizes E, if (2) is not satisfied. 2
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