POLYNOMIAL BRIDGELAND STABILITY CONDITIONS AND THE
LARGE VOLUME LIMIT

AREND BAYER

ABSTRACT. We introduce the notion of a polynomial stability conditjicgeneral-
izing Bridgeland stability conditions on triangulated egdries. We construct and
study a family of polynomial stability conditions for any mmeal projective variety.
This family includes both Simpson-stability, and largeurak limits of Bridgeland
stability conditions.

We show that the PT/DT-correspondence relating stables gairDonaldson-
Thomas invariants (conjectured by Pandharipande and Téjooaam be understood
as a wall-crossing in our family of polynomial stability aitions. Similarly, we
show that the relation between stable pairs and invaridraa@-dimensional torsion
sheaves (proven recently by the same authors) is a waksiagpformula.
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1. INTRODUCTION

In this article, we introduce polynomial stability conditis on triangulated cate-
gories. They are a generalization of Bridgeland’s notiontabiity in triangulated
categories. The generalization is motivated by trying tdaratand limits of Bridge-
land’s stability conditions; it allows for the central chgarto have values in complex
polynomials rather than complex numbers.

While Bridgeland stability conditions have been constructelg in dimension< 2
and some special cases, we construct a family of polynonaikilgy conditions on the
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derived category of any normal projective variety. Thisilgnmcludes both Simpson-
stability of coherent sheaves, and stability conditioret thie expect to be the large
volume limit of Bridgeland stability conditions.

We interpret both the PT/DT-correspondence conjecturd@®Ti®7b], and the re-
lation between stable pair invariants and one-dimensitoralon sheaves proven in
[PTO7a], as a wall-crossing phenomenon in our family of polyial stability condi-
tions.

1.1. Bridgeland’s stability conditions. Since their introduction in [Bri07], stabil-
ity conditions for triangulated categories have drawn ameaasing amount of inter-
est from various perspectives. They generalize the corafegttability from abelian
categories to triangulated categories.

Originally, Bridgeland introduced the concept as an atteimpbathematically un-
derstand Douglas’ construction [Dou02] dtstability of D-branes. Following Dou-
glas’ ideas, Bridgeland showed that the set of stability @@k on D*(X) has a
natural structure as a smooth manifold. There are alsouwsporely mathematical
reasons to study the space of stability conditions.

Definition 1.1.1 ([Bri07]). A stability condition onD®(X) is a pair (Z,P) where
Z: K(X) & K(D"X)) — C is a group homomorphism, ar is a collection of
extension-closed subcategoriéy) for ¢ € R, such that

(@) P(o+ 1) =P(e)[1],

(b) Hom(P(¢1), P(¢2)) = 0 for all ¢1 > ¢s,

(c) if0# E € P(¢), thenZ(E) € R - ¢, and

(d) for every0 # E € D°(X) there is a sequencg, > ¢ > --- > ¢, of real
numbers and a sequence of exact triangles

OZEO E1 E24>4> n—1 En:E

Al A, A,

Objects ofP(¢) are called semistable of phageand the group homomorphiséh
is called the central charge. We now restrict our attentidmtimerical” stability con-
ditions: these are stability conditions for whigh{ £) is given by numerical invariants
of E, i.e. whereZ factors via the projectio (D*(X)) — N(X) := N(D*(X)) to
the numerical-group?

1.2. The space of stability conditions. The role ofP (called “slicing”) is easily un-
derstood, as it naturally generalizes the notion of selnlistabjects in an abelian cate-
gory, together with the ordering of their slopes and theterise of Harder-Narasimhan

The numericali-group V(D (X)) is the quotient o (D?(X)) by the zero-space of the bilinear
form x(E, F) = x(RHom(E, F)).
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filtrations. The role o7 is less obvious; we will explain two aspects in the following
paragraphs.

It seems unsatisfactory that semistable objects in thevetkbigategory have to be
given explicitly, rather than characterized intrinsigddly a slope function. This defi-
ciency is somewhat corrected by the following observation:

Given a slicingP, consider the categopt = P((0, 1]) generated by all semistable
objects of phas® < ¢ < 1 and extensions. It can be seen thhts the heart of a
bounded t-structure (and in particular an abelian catggthg slicing is thus a refine-
ment of the datum of a bounded t-structure. Bridgeland shdhegcthis refinement is
uniquely determined by:

Proposition 1.2.1. [Bri07, Proposition 5.3]To give a stability condition(Z, P) is
equivalent to giving the heattt ¢ DY(X) of a bounded t-structure, and a group
homomorphisn¥ : K(A) — C with the following properties:
(a) For every object € A, we haveZ(E) € Ry - ¢™F) with 0 < ¢(F) < 1.
(b) We say an object i8-semistable if it has no subobjects— E with ¢(A) >
o»(F). We require that every object has a Harder-Narasimhan filbratvith
Z-semistable filtration quotients.

Given A and Z, the semistable objects in the derived category are thessifithe
Z-semistable objects il. The positivity condition (a) is somewhat delicate; for ex-
ample, it can’t be satisfied for the category of coherent\wean a projective surface.

There is a natural topology on the space of slicings. Howeydy together with
the central charge does the topological space of stabiiylitions become a smooth
manifold. One can paraphrase Bridgeland’s result as follo@se can equip the
spaceStab(X) of “locally finite” 2 numerical stability conditions with the structure of
a smooth manifold, such that the forgetful m@&p Stab(X) — N (X)*, (Z,P) — Z
gives local coordinates at every poinin other words, a stability condition can be
deformed by deforming its central charge.

The spacé&tab(X) is closely related to the moduli space/®f= 2 superconformal
field theories, see [Bri06]. The existence Bfhas interesting implications on the
group of auto-equivalences @°(X), as one can study its induced action Bnsee
e.g. [Bri03] and [HMSO06].

1.3. Reconstruction of X from D’(X). If the canonical bundlevy, or its inverse
wy', of a smooth varietyX is ample, then the variety can be reconstructed from its
bounded derived category, see [BOO1]. Without the assummicampleness, this
statement is wrong, and the proof already breaks down atstsstiep: the intrinsic
characterization of point-like objects in®(X) (the shiftsO, [j] of skyscraper sheaves
for closed points: € X) by the action of the Serre-functor.

However, the mathematical translation of ideas by Aspihveaiginally suggested
in [Asp03], suggests that a stability condition provideaa the missing data to char-
acterize the point-like objects. Inside the space of stglabnditions, there should be

2[Bri07, Definition 5.7]
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a special chamber, which we will call the ample chamber, wighfollowing property:
When(Z, P) is a stability condition in the ample chamber, aicc D°(X) an object
with class[E] = [O,] in the numericals-group, then® is (Z, P)-stable if and only if
E is isomorphic to the shift of a skyscraper shgaf]. One could then reconstrugt
as the moduli space ¢¥, P)-stable objects.

Moving to a chamber of the space of stability conditions eelfe to the ample cham-

ber, the moduli spac¥ of semistable objects of the same clg@s] comes with a fully

faithful functor®: D*(X) — D’(X) induced by the universal family. This suggests
that X could be a birational model ok with isomorphic derived category (e.g. a
flop), it could be isomorphic t&X with ® being a non-trivial auto-equivalence &f,
or it could be a birational contraction or a flip &f. It seems an intriguing question to
what extent the birational geometry &f can be captured by this phenomenon.

This suggestion is consistent with many of the known exaspi8ridgeland stabil-
ity conditions. Maybe most convincing is the case of a crepasolutiony” — C3/G
of a three-dimensional Gorenstein quotient singularitiie Tesults in [Cl04] can be
reinterpreted as saying that every other crepant resalitio— C3/G can be con-
structed as a moduli space of Bridgeland-stable object8’{iY); see also [Tod08b]
for the local construction of a flop along these lines.

1.4. Examples of stability conditions. The existence of stability conditions on
DP(X) for X a smooth, projective variety has only been shown in very fases:

e For a smooth curvé’, stability conditions have been constructed in [Bri07],
andStab(C') has been described by [Mac07, Oka06]; in [BKO6] the case of
singular curves of genus one was considered.

e Forthe case of a K3 surfa¢g Bridgeland completely described one connected
component oStab(.S) in [Bri03] (including a complete description of the am-
ple chamber). In [MMSO07], the authors study the space oilgtabonditions
on Kummer and Enriques surfaces. For arbitrary smooth giegesurfaces,
stability conditions have recently been constructed in [QB].

e If D*(X) has a complete exceptional collection, then stability ook exist
by [Mac04].

For complex non-projective tori, stability conditions ledween studied in [Mei07].

1.5. Stability conditions related to o-models. Let X be a smooth projective variety.
Following ideas in the physical literature (see [Dou02, ZDAsp03, ALO1)), it should

be possible to construct stability conditions 6¥(X) coming from the non-linear
o-model associated t&. At least for an open subset of these stability conditions,
skyscraper sheaves of points should be stable. Furtherkitown how the central
charge should depend on the complexifieghler moduli space: i € H?(X) is an
arbitrary class, and € H?(X) and ample class, then the central charge should be
given as

(1) Zy(E) = — /X e . ch(E)Vid X.
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However, in general not even a matching t-structure whoset lewould satisfy the
positivity condition (a) of Proposition 1.2.1 is known; iadt no example of a stability
condition on a projective Calabi-Yau threefold is known.

1.6. Polynomial stability conditions. However, if we replace by mw and letm —
+o0o (this is the large volume limit), then a matching t-struetaan be constructed: If
E is a coherent sheaf antlits dimension of support, thed(E)(m) — —(—i)¢ - oo
asm — oo. Thus the central chargg(E[|£])(m) of the shift of £ will go to —oo
or 700; this suggests that a t-structure can be constructed byatibh of dimension
of support, i. e. a t-structure of perverse coherent sheadesever, the limit of the
phase¢(E)(m) is too coarse as an information to characterize semistaijects;
instead, it is more natural to consider the central chafgg., given by equation (1)
as a polynomial inm: then we can say a perverse coherent siiee semistable if
there is no perverse coherent subsheaf E with ¢(A)(m) > ¢(E)(m) for m being
large.

Motivated by this observation, we introduce a notion of paolyial stability con-
dition in definition 2.3.1. It allows the central charge toséavalues in polynomials
C|[m] instead ofC; accordingly, the slicing? has to depend not on real numbers, but
on phases of polynomials (considered for> 0). It gives a precise meaning to the
notion of a “stability condition in the limit ofn — oo”.

1.7. Results. Our main result is Theorem 3.2.2. It shows the existence aialy
of polynomial stability conditions for every normal projse variety. Its associated
bounded t-structure is a t-structure of perverse cohetreawes. The family contains
stability conditions corresponding to Simpson stabilggég section 2.1), and stability
conditions that should be the large volume limit of Bridgelatability conditions (see
section 4).

In the case of surfaces, Proposition 4.1 makes the lastrstateprecise: the poly-
nomial stability conditionZ, P) at the large volume limit is the limit of Bridgeland
stability conditions(Z,,,, P,,,), depending omn, in the sense that objects aPestable
if and only if they areP,,-stable form > 0, and the Harder-Narasimhan filtration
with respect tdP is the same as the Harder-Narasimhan filtration with respe®t,
form > 0.

The polynomial stability conditions provide many new tustures on the derived
category of a projective variefy.They might help to construct Bridgeland stability
conditions on higher-dimensional varieties.

With Proposition 5.1, we observe that the polynomial sigbitonditions con-
structed in Theorem 3.2.2 are “ample” in the sense of sedtiBn X can be recon-
structed fromD?(X), the stability condition, and the class @,] € AV (X) as a
moduli space of semistable objects.

3The t-structures used in the construction are those destiib[Bez00], but tilting with respect
to different phase functions yields new torsion pairs, dndtnew t-structures, in the same way that
Gieseker- or slope-stability yield new t-structures bijrtg the category of coherent sheaves.
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1.8. PT/DT-correspondence as a wall-crossingln [PTO7b], the authors introduced
new invariants of stable pairs on smooth projective thiesfdn the Calabi-Yau case,
they conjecture a simple relation between their generdtingtion and the generating
function of Donaldson-Thomas invariants (introduced irN®IP06]). With Proposi-
tion 6.1.1, we show that this relation can be understood adlacnossing phenomenon
(in the sense of [Joy08]) in a family of polynomial stabildgnditions.

Similarly, we show in section 6.2 that the relation betwetble pair invariants
and invariants counting one-dimensional torsion sheaar$e understood as a wall-
crossing formula.

1.9. The space of polynomial stability conditions.In section 8, we discuss to what
extent the deformation result by Bridgeland carries oveutosguation. We introduce

a natural topology on the set of polynomial stability coiwtis, and show that the
forgetful map

Z: Stabpy(X) — Hom(N(X),C[m]), (Z,P)— Z

is continuous and locally injective. Under a strong locatdiness assumption, we can
also show that it is a a local homeomorphism.

1.10. Notation. If X is a set of objects in a triangulated categbryresp. a set of sub-
categories oD), we write (X) for the full subcategory generated Byand extensions;
i.e. the smallest full subcategory of that is closed under extensions and contains
(resp. contains all subcategoriesiin

We will write H C C for the semi-closed upper half plane

H = {z € (C}z eRog- ™ 0 < o(z) < 1},
and¢(z) for the phase of € H.

1.11. Acknowledgments. | would like to thank Yuri I. Manin for originally suggest-
ing the viewpoint of section 1.3, Richard Thomas for disaussirelated to section
6, and Aaron Bertram, Nikolai Dourov, Daniel Huybrechts, ¥ng Jiang, Davesh
Maulik and Gueorgui Todorov for useful comments and disicurss

Some of the stability conditions constructed in this agtlthve also been constructed
independently by Yukinobu Toda in [Tod08a], namely the #itglconditions at the
large volume limit of Calabi-Yau threefolds. In particuldgda also explains the key
formula (8) as wall-crossing formula in his family of statyilconditions. The com-
plete family of stability conditions considered by Todaekvon a wall of the space of
polynomial stability conditions considered here.

2. POLYNOMIAL STABILITY CONDITIONS

2.1. Example: Simpson/Rudakov stability as a polynomial stabily condition.
Before giving the precise definition of polynomial stabilitpnditions, we give an
example that is more easily constructed than the large volimit considered in the
introduction, which will hopefully motivate the definition
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Let A = Coh X C D(X) be the standard heart in the derived category of a projec-
tive variety X with a chosen ample line bundle Pick complex numbersy, p1, ..., pn
in the open upper half plang with ¢(pg) > ¢(p1) > -+ > ¢(p,) as in figure 1. For
any coherent shedf € Coh X, let xyg(m) = >_I" , a;(E)m’ be the Hilbert polyno-
mial with respect taC. We define the central charge by

Z(E)(m) = Z piai(E)m'.

ThenZ(E)(m) € H for E nontrivial andm > 0, and we can consider the phase

P2y !

Figure 1. Stability vector for Simpson stability

o(F)(m) € (0,1]. We say that a sheaf #-stable if for every subsheaf — FE, we
havep(A)(m) < ¢(F)(m) form > 0.

Then a sheat” is Z-stable if and only if it is a Simpson-stable sheaf; this isstno
easily seen by using Rudakov’s reformulation in [Rud97]. Irtipalar, stability does
not depend on the particular choice of {heln order not to lose any information, we
should consider the phase of a stable object to be the fumeti&y)(m) defined for
m > 0 rather than the limitim,,,_... ¢(E)(m); in other words, we consider its phase
to be the function germ

O(FE): (RU{+o0}) — R.
Then we can define an objeEte D’(X) to be stable if and only if it is isomorphic to
the shift F'[n] of Z-stable sheaf; its phase is given by the function ge(i) + n.

Combining the Harder-Narasimhan filtrations of arbitrargabes with respect to
Simpson stability with the filtration of a complex by its cohology sheaves, we obtain
a filtration of an arbitrary complex similar to the filtratiompart (d) of definition 1.1.1.

2.2. Slicings.

Definition 2.2.1. Let (S,>) be a linearly ordered set, equipped with an order-
preserving bijectionS — S, ¢ — ¢ + 1 (called the shift) satisfying + 1 > ¢. An
S-valued slicing of a triangulated categofyis given by full additive extension-closed
subcategorie®(¢) for all ¢ € 5, such that the following properties are satisfied:
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(a) Forall ¢ € S, we haveP(¢ + 1) = P(¢)[1].

(b) If ¢ = ¢ for ¢, € S, andA € P(¢), B € P(¢), thenHom(A, B) =0

(c) For all non-zero object& € D, there is a finite sequengg >~ ¢2 > -+ > ¢,
of elements irb, and a sequence of exact triangles

(2) 0= Ey Eq Ey—--— L, E,=F

A A, A,

This was called “stability data” or “t-stability” in [GKRO04]If S = Z, this notion
is equivalent to a bounded t-structure (see [Bri03, Lemmy,ahd forS = R, itis
a “slicing” as defined in [Bri07]. The objects iR(¢) are called semistable of phase
¢. The sequence of exact triangles in part (c) is also calledhrder-Narasimhan
filtration of E. If a Harder-Narasimhan filtration exists, then conditibhforces it to
be unique.

Definition 2.2.2. The setS of polynomial phase functions is the set of continuous
function germs
¢: (RU{+o00},+0) = R
such that there exists a polynomiglm) € C[m] with Z(m) € R.q - e™*(™ for
m > 0. Itis linearly ordered by setting

d=<1v & ¢(m)<y(m) ford < m < +oo,
and its shiftp — ¢ + 1 is given by point-wise addition.

The condition that, 1) can be written as arguments of polynomial functions guar-
antees that eithet >~ ¢ or ¢ < 1 holds; givenZ(m), the functiong(m) is of course
determined up to an even integer constant.

From now on,S will be the set of polynomial phase functions. In our constian,
S-valued slicings will play the role aR-valued slicings in Bridgeland’s construction.

The following easy lemma is implicitly used in both [Bri07]&fGKR04], but we
will make it explicit:

Lemma 2.2.3.Let 51, S, be two linearly ordered sets equipped with shiftsr,, and
let7: S; — S5 be a morphism of ordered sets commuting with~. Thenr induces
a push-forward of stability conditions as follows: 7 is an S;-valued slicing, then

7. P(¢2) for somep, € S; is defined ag{P(¢1) | (1) = ¢p2}).

The proof is an exercise in the use of the octahedral axiom.

We will make use of the following push-forwards: By the pradjes 7: S —
R, ¢ — ¢(o0), we obtain ariR-valued slicing from everys-valued slicing. Further,
for each¢, € S we get a projectiomr®: S — Z,¢ — max,cz ¢o +n =< ¢ (We
could also choose — max,cz ¢9 + n < ¢). This produces a bounded t-structure
from everyS-valued slicing; in other words, afi-valued slicing is a refinement of a
bounded t-structure, breaking up the category into everiesnsdices.
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For any interval/ in the set of phases, we get an extension-closed subcate-
gory P(I) = ({P(¢) | » € I}). In the case of art-valued slicing, the categories
P(lp,¢ + 1)) andP((¢, ¢ + 1]) are abelian, as they are the hearts of the t-structures
constructed in the last paragraph. The proof for theserstatts carries over literally
from the one given by Bridgeland: we can include these caieganto the abelian
categoryP([¢, ¢ + 1)). The slicesP(¢) are abelian.

2.3. Central charge. We now come to the main definition:

Definition 2.3.1. A polynomial stability condition on a triangulated categdp is
given by a pair(Z, P), whereP is an S-valued slicing ofD, and Z is a group ho-
momorphismZ: K (D) — C[m], with the following property: i) # E € P(¢),
then

Z(E)(m) € Ry - €™
form > 0.

In the case where& maps to constant polynomiald C C[m], this is equivalent
to Bridgeland’s notion of a stability condition. Similarlg that case, a polynomial
stability condition can be constructed from a boundeduestre and a compatible
central chargée’:

Definition 2.3.2. A polynomial stability function on an abelian categofyis a group
homomorphisn¥ : K (.A) — C[m] such that there exists a polynomial phase function
oo € S with the following property:

For any0 # E € A, there is a polynomial phase functio£) with ¢y < ¢(F) <
b0 +1andZ(E)(m) € Ryg - e™#0™) for m > 0.

This definition allows slightly bigger freedom than reqogiZ(FE)(m) € H for
m > 0.

We call ¢(E) € S the phase oft; the functionOb A \ {0} — S, E — ¢(E)
is a slope function in the sense that it satisfies the see-sapegy on short exact
sequences (cf. [Rud97]). An object+# F is calledsemistable with respect tg
if for all subobjects) # A C E, we havep(A) < ¢(F); equivalently, if for every
quotientE — B in A we havep(E) < ¢(B). We say that a stability function has the
Harder-Narasimhan property if for al € A, there is a finite filtratiord = E, —
E, — ... — E, = FE such thatt;/E,;_, are semistable with slopeg E,/F,) >
O(EyJEy) = -+ = ¢(E,/Eynq).

Finally, note that the set of polynomial§ E) for which a polynomial phase func-
tion ¢(E) as in the above definition exist forms a convex coneCim|. Its only
extremal ray is the set of polynomials with £') = ¢, + 1. This is an important reason
why many of the proofs of [Bri07] carry over to our situation.

We restate two propositions by Bridgeland in our contextpiteofs are identical to
the ones given by Bridgeland:
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Proposition 2.3.3. [Bri07, Proposition 5.3|Giving a polynomial stability condition
on D is equivalent to giving a bounded t-structure hand a polynomial stability
function on its heart with the Harder-Narasimhan property.

The following proposition shows that the Harder-Narasimpeoperty can be de-
duced from finiteness assumption.éfwith respect ta7:

Proposition 2.3.4. [Bri07, Proposition 2.4JAssume that4 is an abelian category,
Z: K(A) — C[m] a polynomial stability function, and that they satisfy tbkdwing
chain conditions:

Z-Artinian: There are no infinite chains of subobjects
L= j+1(—>Ej(—>...(—>E2‘—>E1

with ¢(Ej41) = ¢(E;) for all 5.
Z-Noetherian: There are no infinite chains of quotients

El—»EQH?...—»Ej—»Ej_;'_l—»...

with ¢(E;) = ¢(E;+1) for all 5.
ThenA, Z have the Harder-Narasimhan property.

3. THE STANDARD FAMILY OF POLYNOMIAL STABILITY CONDITION

In this section, we will construct a standard family of sli#piconditions on the
bounded derived categody®(X) of an arbitrary normal projective variety. Letn
be the dimension ok

3.1. Perverse coherent sheavesThe t-structures relevant for our stability conditions
are t-structures of perverse coherent sheaves. The thepeywverse coherent sheaves
is apparently originally due to Deligne, and has been d@esidoy Bezrukavnikov
[Bez00] and Kashiwara [Kas04]. We will need only a speciatazfperverse coherent
sheaves, which are given by filtrations of dimension.

Definition 3.1.1. A functionp: {0,1,...,n} — Zis called a perversity function j
is monotone decreasing, angif {0, 1, ...,n} — Z (called the dual perversity) given
byp(d) = —d — p(d) is also monotone decreasing.

In other words we require thatd) > p(d + 1) > p(d) — 1. Given a perversity
function in the above sense, the functi@if® — Z, x — p(dim ) is amonotone and
comonotongerversity function in the sense of [Bez00].

Let AP=<* be the following increasing filtration afoh X by abelian subcategories:

APSF = [ F € Coh X | p(dimsupp F) > —k}
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Theorem 3.1.2.[Bez00, Kas04]f p is a perversity function, then the following pair
defines a bounded t-structure @ (X):

3
DP<0 = {E € D"(X) ’ H"E)e A=F forall k € Z}

(4)
P20 _ {E € D'(X) |Hom(A,E) =0 forallkec ZandA € AP=F[k + 1]}

This description is slightly different to the one given in @8, Kas04] but easily
seen to be equivalent. Oné® =’ is given,D?=" is of course determined as the right-
orthogonal complement dd”=~!. Our notation is somewhat intuitive a&><* can be
recovered asi N D=k, which completely determines the t-structure.

Obijects in the heartl? = D?=° N DP<0 are called perverse coherent sheaves.

3.2. Construction of polynomial stability conditions.

Definition 3.2.1. A stability vectorp is a sequencépy, p1, - - ., pn) € (C*)"*! of non-
zero complex numbers such tk}% is in the open upper half plane for< d < n—1.

Given a stability vectop, we callp: {0,1,...,n} — Z a perversity function asso-
ciated top if it is a perversity function satisfying-1)?(% p; € Hforall 0 < d < n.

Suchp is uniquely determined by(0), and givenp(0) such a perversity function
exists if p(0) is of the correct parity; see figure 2 for an example on a 5-fdltie
numberp(0) — p(d) counts how often the piecewise linear path— p; — -+ — pq
crosses the real line. We will construct stability condigdy giving a polynomial
stability functions onA?.

Figure 2: A stability vector with associated perversity dtion p(0) = p(1) = 0,
p(2) = p(3) = 1, p(4) = p(5) = -2
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In the following, a Weil divisorw € A'(X)g is called ample if for any effective
classa € A44(X), we havev? - o > 0.

Theorem 3.2.2.Let the dat&?2 = (w, p, p, U) be given, consisting of

an ample class € A'(X)g,

a stability vectorp = (po, . . ., pn),

a perversity functiop associated t@, and

a unipotent operatot/ € A*(X)c (i.e. U = 1+ N whereN is concentrated
in positive degrees).

LetZo: K(X) — C[m] be the following central charge:

Zao(E)(m) = Z paw’m® - ch(E) - U
X =0

ThenZ,(E)(m) is a polynomial stability function fad? with the Harder-Narasimhan
property.

By Proposition 2.3.3, this gives a polynomial stability ciiwh (Zqg, Pq) on
D(X).

We will drop the subscripgf from the notation. In this section we will just prove that
Z is a polynomial stability function according to definitiorB2 with¢, = ¢ for some
small constant > 0. In other words, we have to prove that for evérye A?, we
haveZ(E)(m) € ¢ - H for m > 0. The proof of the existence of Harder-Narasimhan
filtrations will be postponed until section 7.

We start the proof with the following immediate observation

Lemma 3.2.3.Given a non-zero objedt € A”, let k be the largest integer such that
H=*(E) # 0, and letd be the dimension of support &f*(E). Thenp(d) = —k,
the sheaf/ ~*(E) has no torsion in dimensia#f whenevep(d') > —k, and all other
cohomology sheaves éfare supported in smaller dimension.

We calld the dimension of support df.
Proof. By E € DP<" we havep (dim supp H *#)(E)) > —k. The claim follows
from £ ¢ D»=% and
Hom(AP=F"1 H*(E)) = Hom(AP=*"'[k], H*(E)[k]) = Hom(AP=*"'[k], E) = 0
O
Choose > 0 such that—1)P(@ p, is in the interior ofH, = ¢ - H for all d; we will
first show thatZ (E)(m) € H, for m > 0.

Let k be as in the lemma, antl= dim supp H*(E). Since all other cohomology
sheaves of” are supported in lower dimension, we have

(ch(E) - U),_g = (=1)" chy—g(H*(E)).
Sincew is ample andh,,_,(H *(E)) is effective, the intersection product= |, w-

ch,,_4(H=*(FE)) is positive. Thus the leading term &f{ E')(m) is a(—1)?pgm?. Since
a(—1)%p, € H,, the same must hold fdf (E)(m) and largen.
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3.3. Dual stability condition. Letwx be a local dualizing complex of, and let
D: D*(X) — D(X), E~ RHom(E,wx)

be the associated dualizing functor. Lietbe such thab x| ysmeon iS the shift of a line
bundle byD.

To every polynomial stability conditiofZq, Pq) of Theorem 3.2.2 one can explic-
itly construct a stability condition dual t@Z, P) underD. In the case wher&’ is not
smooth, this will be a stability condition di( D*( X)) rather thanD?(X); however, its
associated heart is still given by a category of perverserest sheaves as described
earlier.

Let P: A.(X) — A.(X) be the parity operator acting biy-1)""¢ on A4(X).
Given the data) = (w,p,p,U) as in Theorem 3.2.2, we define the dual data
QO = (w,p*,p,U") by piy = (=1)P+ip;, U* = (—1)P ch(wx)~' - P(U). Consider
the central charg€q. : K(X) — C[m] defined by the same formula &g, in 3.2.2.

Proposition 3.3.1. The central charge&Z- induces a polynomial stability function on
D(AP). The induced polynomial stability conditig@,«, Po-) is dual to(Zg, Pq) in
the following sense:

(a) An objectF is (Zq, Pq)-stable if and only iD(E) is (Zq-, Pq-)-Stable.

(b) If E, F are (Zq, Pg)-stable, then

¢(E) = ¢(F) & ¢(D(E)) < o(D(F))

(c) The Harder-Narasimhan filtration db(£) with respect to( Zq«, Pq-) is ob-
tained from that of’ with respect tq Z,, Py,) by dualization.

By the uniqueness of HN filtrations, (a) and (b) imply (c). Tmeqs of (a) and (b)
will also be postponed until section 7.

4. THE LARGE VOLUME LIMIT

Fix 3 € AY(X)r and an ample class, € A'(X)g. Letp; = —% and let
U =e"./td(X). Thenp(d) = —|%] is a perversity function associated o=
(po, - - -, pn), @and the central chargé = Z, of Theorem 3.2.2 fof) = (w, p,p,U) is

given by

Z(E)(m) = — /X ¢=F=im . ch(B)+/5d(X)

This is the central chargg; ., discussed in section 1.6 as the central charge at the
large-volume limit.

This stability condition has many of the properties pregticby physicists for the
large volume limit. For example, both skyscraper sheavepoafts andu-stable
vector bundles are stable; the prediction that their phestes by 7 is reflected by
#(Oy)(+00) = Landg(E)(+o0) = 1 — 5.
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It may be worth mentioning that even for vector bundles &nd 0, stability at the
large volume limit does not coincide with Gieseker-stajilBoth stability conditions
are refinements of slope stability, but they are differefiheznents.

If X is a smooth Calabi-Yau variety, and2if = ¢, (L) is the first Chern class of a
line bundleL, then the stability condition is self-dual in the sense afddsition 3.3.1,
with respect ta~![n] as dualizing complex.

Now consider the case of a smooth projective surface. TAfeis the category of
two-term complexes complexéswith H~!(F) being torsion-free, ané®( F') being
a torsion sheaf.

In the case of a K3 surface, the ample chamber is describegletety by [Bri03,
Proposition 10.3]; and for an arbitrary smooth projectiveface, the stability con-
dition constructed in [ABLO7, section 2] are also part of thepée chamber. The
following proposition gives a precise meaning to the catotape “polynomial stabil-
ity conditions at the large volume limit are limits of Bridgeld stability conditions in
the ample chamber”:

Proposition 4.1. Let S be a surfaces € A'(X)gr be a divisor classy € A'(X)g
a rationalample class, and lep, p be as above. Consider either of the following
situations:

(a) SisaK3surface; letZ,,, P,,) be the stability condition constructed[iri03]
from 3 andw = n - wy (@ssumingo? > 2), and let(Z, P) be the polynomial
stability condition constructed from the data

(b) S is a smooth projective surface; Ie¥,,, P,,) be the stability condition con-
structed in[ABLO7] from § andw = n - wy, and let(Z, P) be the polynomial
stability condition constructed frof)’ = (w, p,p, U = e P).

ThenE € D*(S) is (Z,,, Pnm)-stable form > 0 if and only if it is (Z, P)-stable. If
E € D(S) is an arbitrary object, then the HN-filtration df with respect tq Z, P) is
identical to the HN-filtration with respect taZ,,, P,,,) for m > 0.

In either case, the stability function is of the form
2
G)  Z(E)(m) = chy(E)w?- % +i(wehy (B) — cho(E)Bw)m + c(E)

ch; (E)w
cho(F)

for some real constam{ F). Let uu, =
sheaves oy defined byw.

Lemma 4.2. Let E € D*(S) be a(Z, P)-semistable object with < ¢(E) < 1. Then
E satisfies one of the following conditions:
(a) Eis au,-semistable torsion sheaf.
(b) E is atorsion-freeu,-semistable sheaf with, (E£) > 5 - w.
(c) H7'(E) is torsion-freep,,-semistable sheaf of slope,(H'(E)) < 3 - w,
H°(E) is zero-dimensional, and all other cohomology sheavesstani

Proof. Note that such ait’ satisfies € A” or E € AP[—1], asA? = P((3, 3]).

be the slope function for torsion-free
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If £ € A?[—1],thenH'(E) is a torsion sheaf by the definition gf. In fact, H'(E)
has to vanish: otherwis¢(H'(FE)) < 1, and because af(E[1]) = ¢(E) +1 = 1
the surjection®[1] —» H'(F) would destabilizeZ[1] in A?. HenceF is a torsion-free
sheaf. Furtherf must beyu,-semistable: for any surjectio — B with B torsion-
free andu, (E) > u,(B), the surjection thak’[1] — B[1] would destabilizeF[1] in
AP. Sinceg(E[1]) > 1, we must havéy(Z(E)(m) < 0 for m > 0; this is equivalent
to w ch; (E[1]) — cho(E[1])fw < 00r pu,(E) > 3 - w.

Similarly, one shows that i? € .A? andH ~!(F) does not vanish, then it is torsion-
free andy,,-semistable of slopg,(H(E)) < - w. Also, H(FE) is of dimension
zero: otherwisep(H"(E))(+o0) = 3, in contradiction top(E)(+o00) = 1 and the
surjectionE — H°(E) in A”.

Finally, if £ € A? and H~!(E) vanishes, thet is a torsion sheaf, which is easily
seen to be: -semistable. O

One-dimensional torsion sheaves

Zero-dimensional
torsion sheaves
E of type (c) E of type (b)

)
-

Figure 3: Asymptotic directions of (F) for Z-stable object& € A(j,w)

Proof[of proposition 4.1] Letd = P((0, 1]). We first show tha# is identical to the
heartA(/,w) defined in [Bri03, Lemma 6.1], respectivejg)ngF) defined in [ABLO7,
section 2]. Recall thatl(3,w) is characterized as the extension-closed subcategory of
D*(S) generated by torsion sheaves, lpy-semistable sheaves of slope ., (F) >
3 - w, and by the shift§'[1] of 1,,-semistable sheaveds of slopep,(F) < (- w.

Since A(5,w) is extension-closed and evefy in the above list is an element of
A(B,w), it follows that.A C A(5,w). As both categories are the heart of a bounded
t-structure, they must be equal.

The first statement of the Proposition thus simplifies to tlanctthat an object
E € Ais Z-stable if and only ifE is Z,,-stable form > 0. By definition, we have
o(E) = ¢(F)ifand only if ¢,,,(E) = ¢(E)(m) > ¢m(F) = ¢(F)(m) for m > 0;in
particular, if £ € A is Z-unstable, then it will beZ,,,-unstable form > 0.

Conversely, assume thatis Z-semistable. In case (a) of the lemn#ais Z,,-stable
for all m. We now assume case (c); case (b) can be dealt with similféyneed to
show the following:GivenFE, there is a constant/ such that whenevet — F — B
is a short exact sequence i theng(E)(m) < ¢(B)(m) forall m > M.

If B is a zero-dimensional torsion sheaf, the claim is evidesulysfied. Otherwise
write £ := H-Y(F), B := H~'(B); let F be the image of the induced mé&p— 5, and
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G the cokernel. The induced mgp— H°(A) has zero-dimensional cokernel; hence
B w < u,(H°(A)) = u,(G). Since€ surjects ontaF, we haveu, () < u.(F).
Combined with the definition (3, w), we obtain

(6) 1o(€) < pu(B) <w - B.

SinceZ(B)(m) and Z(E)(m) are in the semi-closed upper half plaHefor all m,
the assertion is equivalent &(Z(E)(m)Z(B)(m)) < 0. Using equation (5) with
cho(E) = —rk(€) andch, (£) = — ch, (&) etc., this can be simplified to:

wm? c(B) c(E)

T(:U“w(B) - Nw(g)) > I'k(—B)<ﬁw - :uw(g)) - rk(—é’)(ﬁw - Mw(B))
By inequality (6), all the expressions in parentheses arenagative. Sincd” is Z-
semistable, the inequality is satisfied far>> 0; in particular, in the casg,(B) =
1, (€) it holds for all m. Excluding this case, the claim follows if we can bound
11s(B) — 11,(€) from below by a positive constant aréf- from above.

If G = 0, then the rank o3 is bounded above. By the rationality of the set of
possible values aob - ch;(B) is discrete, giving a positive lower bound fay,(B) —

1. (€). Otherwise, the lower bound follows from,g) > 3 - w and the upper bound
on the rank ofF.

To prove the upper bound gf(B—)), we restrict to the case (b) of the proposition. Case
(a) can be proved similarly (and similarly to the proof of [@3i Proposition 14.2]);
the argument is similar to the proof of the existence of $itglwonditions in [ABLO7,
section 2].

It is sufficient to bound the numbﬁ% for every HN filtration quotient3; of B

with respect taZ, andB; = H'(B;). ThenB; is u,-semistable, and its slope still
satisfies the inequality

) Ho(E) < po(Bj) < 6 w.
Using the Bogomolov-Gieseker inequality far,(B;), we get:

o(B;j) = —e 7 - ch(B;) = chy(B;) — chy(H°(B;)) — B - chy(B;) + fk(Bj)%Q
chy(B;)* i
< QT(BJ) — - chy(B;)) + rk(Bj)?

o(Bj) 1 (ch(B)) e ’
I‘k(BJ) 2 I'k(BJ)
Due to inequality (7) and the Hodge index theorem, this nunidéounded from
above.
It remains to show the statement about the Harder-Narasirfiieations. It is

enough to show this foF € A, as we already showeB((0,1]) = A = P,,((0, 1]).
Let Ay, As, ..., A, be the Harder-Narasimhan filtration quotientsfofwith respect
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to P. Then the claim follows ifm is big enough such that every evety is Z,,-
semistable, and such thatA;)(m) > ¢(As)(m) > --- > ¢(A,)(m). O

5. X AS THE MODULI SPACE OF STABLE POINTLIKE OBJECTS

As a toy example of moduli problems in the derived categorymieshow that in
the smooth case, the moduli space of stable point-like tbjscgiven byX itself.
It shows that all our polynomial stability conditions arerfple” in the sense of the
ample chamber in the introduction.

Given a polynomial stability conditiofZ, P) on X, a family of stable objects over
S is an objectE € D’(X x S) such that for every closed poist€ S, the object
Li*E € DYX)is (Z,P)-stable. SinceExt<’(E, E) = 0 for any stable object, it
is known that the moduli problem of stable objects is an alststack (see [Lie06,
Proposition 2.1.10] for a precise statement and refer@n¢ésvever, in general it is
not known whether this stack is an algebraic Artin stack;[$ed07b] for a proof in a
large class of examples.

Let ¢ be a class in the numerical-group. By some abuse of notation, we denote
by M.(Z,P) the substack ofZ, P)-stable objects such that}£ is an element of4?
and of class.

Proposition 5.1. Assume thatX is a smooth projective variety ovéi. Let (Z,P)

be any of the polynomial stability conditions constructedrheorem 3.2.2 that has
p(0) = 0. The moduli stack/j»,;(Z,P) of stable objects of the class of a point is
isomorphic to the trivialC*-gerbe X /C* over X.

The assumption ensures that every skyscraper she& an objects of4? (other-
wise the same would be true after a shift, and we might havepiace/O, | by —[O, |
in the proposition).

Proof. If A — O, — B is a short exact sequence 4P, then the long exact
cohomology sequence combined with lemma 3.2.3 showsHhat) = 0 = H*(B)
for k #£0,and soA = O, or B = O,. Hence every), is stable.

Conversely, lef? € A? be any object withE] = [O,]. From lemma 3.2.3 it follows
that H*(E) = 0 for k # 0, and henceZ = O, for somex € X.

Hence the mapX’ — Mo, )(Z, P) given by the structure sheaf of the diagonal in
X x X is bijective on closed points. By the deformation theory afptexes (see
[Lie06, section 3] or [Ina02]) and, X = Ext'(O,,O,), it induces an isomorphism
on tangent spaces. Singeis smooth, the map is surjective. O

6. WALL-CROSSINGS PT/DT-CORRESPONDENCE AND ONEDIMENSIONAL
TORSION SHEAVES

In [PTO7b], Pandharipande and Thomas introduced new imtsriof smooth pro-
jective threefolds. They are obtained from moduli spacestaifle pairs constructed
by Le Potier in [LP95]; in their context, a stable pair is atg®ts: Ox — F of a pure
one-dimensional shedf that generically generatés.
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In the Calabi-Yau case, the authors conjecture that the ggngifunction of stable
pairs invariants equals the reduced generating functiddosfaldson-Thomas invari-
ants introduced in [MNOPOG6]. A heuristic justification okthonjecture was given in
[PTO7b, section 3.3] by interpreting the formula as a wadlssing formula under a
change of Bridgeland stability conditions, assuming thetexice of certain stability
conditions.

With proposition 6.1.1, we will show that this wall-crosgiocan actually be achieved
in a family of polynomial stability conditions, thus makirige heuristic justification
one step more rigorous.

Further, in the subsequent article [PT07a], the authors gimew geometric def-
inition of BPS state counts. It relies on a relation betweesriants of stable pairs
and invariants of one-dimensional torsion sheaves (se@7&TProposition 2.2]). In
section 6.2, we show that this relation can similarly berpteted as a wall-crossing in
our family of polynomial stability condition; in fact the Wacrossing formula is much
simpler than in the case of the PT/DT-correspondence.

We refer to [Tod07a] for a similar use of a wall-crossing ttate (differently de-
fined) BPS state counts on birational Calabi-Yau threefolds.

6.1. PT/DT-correspondence.Let X be a smooth complex threefold. Fix an ample
classw € A, and letp be the perversity function(d) = —[£|. Then the category of
perverse coherent sheavds can be described explicitly: a compléx € D’(X) is
an element of4? if

e H(E)=0fori+#0,—1,

e HY(E) is supported in dimensiod 1, and

e H!(FE) has no torsion in dimensiof 1.

Consider stability vectorg such thatp is an associated perversity function, i.e.
po, p1 € H andpy, p3 € —H. Let U be arbitrary, and consider the polynomial stability
functions given by

Z(E)(m) = Zpdmdwd -ch(E) - U.
d=0

We further assumeé(—p3) > ¢(p;). We call it aDT-stability functionif ¢(—p3) >
®(po) and aPT-stability functionif ¢(pg) > ¢(—ps), see figure 4.

If wis the class of an ample line bundle U = td X andh(E)(m) = >5_, agm?
is the Hilbert polynomial off’ with respect toZ, then the central charges can also be
written as the complexified Hilbert polynomidl( E)(m) = S°5_, d'paaam?®.

Fix numerical invariantgy € A™™ andn € A, = Z. We consider the moduli
problemM{ ;. (Z,P) of Z-stable objects inA” with trivialized determinant and
numerical invariants im2"™ given bych(F) = (—1,0, 5, n).

Proposition 6.1.1.Let.S be of finite type ovet, andl € Db(X x S) be an object with
ch(ls) = (—1,0,5,n) for every closed point € S, and with trivialized determinant.
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4 —P3

Po

P2

P3

(a) DT-stability (b) PT-stability

Figure 4: PT/DT wall-crossing

If Z is a DT-stability function, therd is a Z-stable family of objects id? if and
only if it is quasi-isomorphic to the shiff 1] of a flat family of ideal sheaves of one-
dimensional subschemes.

If Z is a PT-stability function an@ # 0, thenl € D*(X x S) is a Z-stable family
of objects in4? if and only if it is quasi-isomorphic to the complé¥k s — F (with
F in degree zero) of a family of stable pairs as definefLiP95, PTO7b]

Thus in both cases we get an isomorphism of moduli space®af stheaves/stable
pairs with the moduli spac&?{ | , ,, (Z,P) of Z-stable objects with trivialized de-
terminant.

If 5 = 0andZ is a PT-stability function, then the only semistable objeaD x[1]
of class(—1,0,0,0). This does not agree with the definition of stable pairs, lo&tsd
give the correct generating function, so that the conjectuvall-crossing formula of
[PTO7b] holds for alls.

Proof. Let Z be a DT-stability function, and let assume tlias a family of stable
objects. If for any closed pointe S, we would have bott#7 ~!(7,) # 0 and H°(I,) #

0, then the short exact sequence

Hil([s)[l] — I, — HO([S)

would destabilizel,: for large m, the phase ofZ(H~!(I,)[1])(m) is approaching
o(—p2) or ¢(—ps3) (depending on the dimension of supportiof; while the phase
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of Z(H°(Is))(m) is approachings(p;) or ¢(po). Hencel is the shift of a flat fam-

ily J of sheaves of rank orfeTo be both stable and an element.4f, it has to be
torsion-free. Its double dual is locally free by [Kol90, Lera 6.13]. Since7 has
trivialized determinant, the double dudl* is the structure shed . s; the natural
inclusions — J** exhibits 7 as a flat family of ideal sheaves. Conversely, any such
flat family of ideal sheaves gives a family of stable objents!f.

(In fact, the DT-stability conditions are obtained from thiability conditions of
section 2.1 corresponding to Simpson stability by a rotetibthe complex plane and
accordingly tilting the heart of the t-structure. Hence steble objects are exactly the
shifts of Simpson-stable sheaves; their moduli space iskmelwn to be isomorphic
to the Hilbert scheme.)

Now let Z be a PT-stability function. We have to show thats stable for alls if
and only if I is quasi-isomorphic to a family of stable pairs: a compi®x,s — F
such that

(1) Fis flat oversS, and
(2) Ox — F,is astable pair for alt € S.

Given such a family of stable pairs, the associated complaxXamily of objects in4?
with trivialized determinant.

First assume thaf is Z-stable. By the same argument as in the DT-c&8&./,)
must be zero-dimensional, ard~!(I,)[1] torsion-free of rank one with trivialized
determinant.

It follows that@ := H(I) is zero-dimensional ovet, and thatf ! () is a torsion-
free rank one sheaf with trivialized determinant. LetZ X x S be the complement
of the support of), and letl;; := I|y[—1] be the restriction of [—1] to U. Then the
derived pull-back of;; to every fiber oves € S is a sheaf; sd; = H~!(I)|y is itself
a sheaf, flat ovef. HenceH ~!(I) is flat overS outside a set of codimension 3.

By the same arguments as in the proof of [PTO7b, Theorem 2fd]liws that
H~(I) is a family of ideal sheaveg, of one-dimensional subschemesXf The
complex! is the cone of a maf) — Jz[2]. Since( is zero-dimensional ove$, we
haveExt' (Q, Oxxs) = 0 = Ext*(Q, Oxs); combined with the short exact sequence
Jz — Oxxs — Oz, we get a unique factorizatio — Oz[1] — Jz[2]. Using the
octahedral axiom associated to this composition, we seel ttgathe cone of a map
Oxxs — JF,whereF (in degree zero) is the extension®@f, and( given as the cone
of the mapl) — Oy[1] above.

It remains to prove thal, is Z-stable if and only ifOx — F is a stable pair.
Assume thaf, is Z-stable, and note that(7,)(+o0) = ¢(—ps).

Since( # 0, the sheafF, is one-dimensional. It cannot have a zero-dimensional
subsheat) — F,, as this would induce an inclusia@p — I, in AP, destabilizing/,

4Here, and again later in the proof of the PT-case, we are uhimgollowing standard fact (cf.
[Huy06, Lemma 3.31]): Iff is a complex onX x S such that for every closed poiate S, the derived
pull-back/, is a sheaf, theii is a sheaf, flat oves.
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due top(Q) = ¢(po) > ¢(—p3). ThusF; is purely one-dimensional, ardy — F;
is stable by [PTO7b, Lemma 1.3].

Conversely, assume that is a stable pair. Consider any destabilizing short exact
sequenced — I, — B in A? with ¢(A) >~ ¢(I;) = ¢(B), and its long exact
cohomology sequence

H Y (A) — HYI,) - HYB) - H(A) — H°(I,) - H(B).

If H-'(A) — H!(I,) is a proper inclusion, theff ~!( B) is supported in dimension
2, and we get the contradictiop( B)(+00) = ¢(—p2) > ¢(I5)(+00). So either
H™Y(A) = H'(I,) or H'(A) = 0. In the former cased ' (B) = 0; sinceB =
H°(B) is supported in dimension zero, we get the contradictioR) = ¢(py) >
&(1,)(+00). Inthe latter cased = H°(A) must be zero-dimensional to destabilize
by the purity of F,, this impliesHom(A, F,) = 0. Together withExt'(A, Ox) = 0
and the exact trianglé; — I, — Ox/1], this shows the vanishing &fom(A, ;). O
The reason to expect a wall-crossing formula in a situatsosbeve is the following:
Denote byZpr a PT-stability function, and bypt a DT-stability function. IfE
is Zpr-semistable buZpr-unstable, then we can writE as an extension afpr-
semistable objects (by the existence of Harder-Narasirfilti@tions); and conversely
for Zpr-semistable bufpr--unstable objects. Hence one can expect an expression for
the difference between the counting invariantsZgf;- respectivelyZpr-semistable
objects in terms of lower degree counting invariants. Thisaovation (due to D. Joyce,
cf. [Joy08]) can be made more concrete and precise in thatisituconsidered below.

6.2. Stable pairs and one-dimensional torsion sheaved.et X be a Calabi-Yau
threefold, andi, n as before. By a counting invariant we will always denote thesd
weighted Euler characteristic (in the sense of [Beh05]) ofalnh space of stable
objects of some fixed numerical class, and with trivializetedminant.

In the very recent preprint [PT07a], the authors give a newrgric description of
BPS state counts for irreducible curve classesforThey use the counting invariants
N, s of the moduli spaces\,,(X, 3) of stable one-dimensional torsion sheaves of
class(0,0,3,n). At the core of their argument is the following relation: ffis an
irreducible effective class anél, (X, 5) denotes the counting invariant of stable pairs
of class(—1,0, 3, n), they prove that

(8) Pn<X7ﬁ) _an<X7ﬁ) = (_1)n71nNn,ﬁ-

To make the subsequent discussion more specific, wg xR~ (—1), p1 € Rog-

i, po € Rog. We keepw, p, and in particular continue to work with the same category
of perverse coherent sheavd®. Assume thatP’(U) = U, e.g. U € A*®\X)g. For

a > 0 write Z, for the polynomial stability function o@l? obtained fronp; = —b-i+a

(for someb > 0), and similarlyZ_, for p; = —b - i — a; see also the figure.

Then Z, is a “PT-stability function” (in the terminology of the prieus section),
hence the stable objects of cldssl, 0, 5, n) are the stable pairs= Ox — F. If we
cross the walk = 0 (the large volume limit), then short exact sequerice» [ —
Ox|1] destabilized for a < 0.
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Let D be the dualizing functoff — RHom(E, Ox[2]). Then the polynomial sta-
bility condition obtained fron¥, is dual to that ofZ_; this can be seem from propo-
sition 3.3.1 and the fact that in our cadgis a tilt of A?", compatible with the stability
condition.

It follows that if « < 0, then the stable objects
of same class are the derived duals of stable pairs
of class(—1, 0, 3, —n); their counting invariant is
thus given byP_,, (X, ().

If we additionally assume that is irreducible,
thenF is stable for bottZ, andZ_,, and the short
/ exact sequenc& — I — Ox|[1] is the HN filtra-

I tion with respect taZ_, of a stable pai/. Con-

, versely, the dual short exact sequer@g[l] =
D(Ox[1]) — D(I) — D(F) will be the HN filtra-

Cps,a>0 tion of D(/) with respect taZ, (whereD(F)) is a
stable sheaf of clag$, 0, 3,n)). Hence the wall-

Figure 5: Wall-crossing betweencrossing formula can be written schematically as

PT itnvafiap}ﬁ xapd_BPS stgie—; (Extensions of)x[1] with F)
counts — #(Extensions ofF” with Ox[1]),

where 7, F' can be any stable sheaf of class

91.\
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(0,0,5,n).

If the dimensions ofixt! (Ox[1], F) = H°(F) andExt'(F', Ox[1]) = H'(F')*
were constant, then the moduli spaces of extensions woyddjective bundles over
M, (X, 3); in this case, formula (8) would follow immediately. Withidhis simplify-
ing assumption, one can still hope to prove formulas sucB)ass{ng a stratification of
the moduli spaces and the formalism of [Beh05]. In fact, tlwpmn [PTO7a] exactly
follows this general principle, the key ingredient beingaatrol of the constructible
functions of [Beh05] by [PTO7a, Theorem 3].

7. EXISTENCE OFHARDER-NARASIMHAN FILTRATIONS

In this section we will prove that the category of perversberent sheaves has
the Harder-Narasimhan property for the polynomial stgbfiinction Z defined in
Theorem 3.2.2. The proof is complicated by the fact tHatis in general neither
Z-Artinian nor Z-Noetherian.

7.1. Perverse coherent sheaves and tiltingeEssential for the proof is a more detailed
understanding of the category of perverse coherent sheans precisely the exis-
tence of certain torsion pairs in that category. We recadiflyrthe notion of a torsion
pair and a tilt of a t-structure:

Definition 7.1.1. A torsion pair in an abelian category is a pair of full subcategories
7T, F such that
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(@) Hom(T,F)=0forall T € 7 andF € F.
(b) For everyE € A there is a short exact sequente— E — F in A with
T eTandF € F.

If (7,F) satisfy both conditions, thef, F' are uniquely determined b¥. They
depend functorially o, and the functory — T and E — F are left-exact and
right-exact, respectively.

Now assumeA is the heart of a bounded t-structure in a triangulated cayed,
with associated cohomology functafs, : D — A. Given a torsion paif , F in A,
then the following defines the headt of a related t-structure (called the tilt of, see
[HRS96]): An objectA is in Af if

HY(A)eT, H;'(A)eF, and HY(A) =0 ifi#0,-1.

The new heard? evidently satisfiest* C (A, A[1]), and on the other hand every heart
of a bounded t-structure with this property is obtained al.aTthis is shown by the
following lemma, which is a slight reformulation of a lemnme[Pol07]:

Lemma 7.1.2.Let A, A* be the hearts of bounded t-structures in a triangulated-cate
gory D. If they satisfyd* C (A, A[1]) (or, equivalently,A C (A% A*[—1])), then

T=ANnA, F:=AnA[-1]

defines a torsion pair itd, the heartA* is obtained fromA by tilting at this torsion
pair, and F[1], 7 is a torsion pair inA*.

Proof. If (D=, D=) and(D*=°, D*<0) are the two t-structures, either assumption
is equivalent to either of the following equivalent assuiomms:

D20 c D20 c D=t or D0 o pE0 5 pst

This is the assumption of [Pol07, Lemma 1.1.2]. O
Now consider a perversity functignand anyk € Z such thatc = —p(d) for some
0 < d < n. Consider the functiop*: {0,...,n} defined by

_Jp(@) ifp(d) = -k
M@_{m@+1ﬁm@<—k

Then p*(d) is a perversity function, and the hearts of perverse coheseeaves
AP AP satisfy the assumptions of the lemma. Hence

Fe= AN T, = AN A"[1]

defines a torsion pair isl?.
From the definition of the t-structures in Theorem 3.1.2, frath lemma 3.2.3, it
can easily be seen that the torsion pairs can be describedas: b
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Proposition 7.1.3. Letp be a perversity function ank € Z such thatp(0) > —k >
p(n). There is a torsion pai(7j, ;) in A? defined as follows:

Fk:{EeAp

H¥(B)=0 fork' >k}

Tk:{EEA”

H¥(E) € AP<F=1 for k' < k;}

The subcategory;. is closed under subobjects and quotients.

The only thing left to prove is the statement abdyt It is always the case for
a torsion pair thatF is closed under subobjects afidunder quotients. Thaf; is
additionally closed under quotients follows easily frone flong exact cohomology
sequence.

We denote byt : A» — 7, andrk: AP — F the associated functors; then for any
short exact sequencé— FE — B in AP there is a (not very) long exact sequence

(9) T?-A — T?—E — T?—B — T]k:A — TJ’,@E —» T]k:B.

Note thatr% will in general not coincide with the truncation functeg ;. of the
standard t-structure; in fact, givéh e A” there is no reason why. _(E) should also
be an object of4?.

7.2. Dual stability condition. The proof in the following section is substantially sim-
plified by the use of the dual stability condition construacie Proposition 3.3.1. To
use it, we need a partial proof of the duality here.

It is constructed from the dual t-structure. Let, D, D be as in section 3.3.

Proposition 7.2.1([Bez00]). Letp be a perversity function, arjthe dual perversity
function (cf. definition 3.1.1); let* = p + D — n be the dual perversity normalized
according to the choice afx. DefineDP"=°, DP"=0 c D(D*(X)) by the analogues
of equations (3) and (4), respectively. Then the t-striest@ssociated tp, p* are dual
to each other with respect 0.

D (DP=%) = D"=° and D (DP=") = D=0

By some abuse of notation, we will writd”" for the intersectiorD?" =N DP"<0
D(D*(X)).

Lemma 7.2.2.Given() and Q* as in Proposition 3.3.17q- is a polynomial stability
function for the category of perverse sheavs of the dual perversity. 16, ¢* are
the polynomial phase functions df, Z, and A?", Z,., respectively, then

(10) P(E1) < ¢(E2) & ¢(D(Ez)) < ¢(D(Ey)).
An objectE € A? is Zg-stable if and only ifD(E) € AP is Zq--stable.
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Proof. Sincech(D( )) P(ch(FE)) - ch(wx), we have

Ze+ (D /X 1) P5mtmd - P(ch(E)) ch(wy) - (—1)P ch(wy )~ P(T)

= [ mt P () = (1Y 2w
X d=0
This shows thatZ,- is a polynomial stability function, a&qo-(ID(E)(m)) is in the
interior of (—1)"™'e~* - H wheneverZo(E(m)) is in the interior ofe’ - Hj it also
shows the equivalence (10).
SinceD turns inclusionsk; — E, in AP into quotientsD(E,) — D(E;) in A?",
and vice versa, this also implies the claim about stablectdje O
The lemma yields part (a) and (b) of Proposition 3.3.1.

7.3. Induction proof.

Lemma 7.3.1. Consider the quotient category? =+ = AP=k/Ap<k=1 =~ T /T,
and letZ’: K (A»=*) — C[m] be the restricted stability function defined by

ThenAP=* is Noetherian and stronglg’-Artinian.
Here “stronglyZ’-Artinian” says that there is no sequence of inclusions
Lo j+1‘—>Ej‘—>...‘—>E2‘—>E1

as in Proposition 2.3.4 with the weaker assumptiof; 1) = ¢(E;) for all ;.

Proof. For both statements, the proof is almost identical to th@fpod the same
statement fotd = Coh X and Simpson stability. We will prove that the category is
strongly Z’-Artinian.

Consider an infinite sequence of inclusions as above. Simcdithension of the
support of E; is decreasing, we may assume it is constant, equdl t&imilarly,
we may assume that the lengthsiof at the generic points of the (finitely many)
dimensional components of its support are constant. Inqodat the leading term of
Z'(E;)(m) given byw? - ch,,_4(F;)ps - m® is constant. The quotie®; = F;/E;,; is
supported in strictly smaller dimensiah < d. Hence the leading term &' (B;)(m)
is a positive linear multiple ofgm® . This implies¢(E)(+00) = ¢(pq) < d(pa) =
o(B)(+00), sincep(d’) = p(d) andp is a perversity function associated o Thus
#(E;) < ¢(B;), in contradiction tapp,, = ¢, and the see-saw property. a

We now come to the main proof As mentioned before, we canptyaProposi-
tion 2.3.4. Nevertheless, our proof follows Bridgeland’'sgirof the corresponding
statement [Bri07, Proposition 5.3] quite closely:
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Step 1: Every non-semistabl& € AP has a semistable subobjett— FE such that
®(A) = ¢(F), and a semistable quotieAt— B with ¢(F) >~ ¢(B).

Step 2: Every objectE has a maximal destabilizing quotient (mdg)— B.

Step 3: LetE;4; — E; — ... — L be the sequence of inclusionsitf determined
by B, being the mdq of2;, andE;; being the kernel of the surjectidi;, —
B;. Then this sequence terminates.

A mdq is a quotient? — B such that for every other quotieAt — B’, we have
¢(B') = ¢(B), and such that equality holds if and only if the quotient dastvia
E — B — B’. The proof of [ibid.] shows that the existence of Hardera$amhan
filtrations is equivalent to the existence of a mdq for evdyjeot, and the termination
of the sequence defined in step 3.

Step 1.Define a sequence of inclusions as followWsE; is not semistable, then among
all subobjectsd — E; with ¢(A) >~ ¢(E}), let E;,; be one such that the dimension
of supportd(B;) of B; is maximal, where3; is the cokernel ot ; — E;. It suffices
to prove that this sequence terminates.

By the definition ofE;,, the sequencé( ;) of dimension of support is monotone
decreasing. By induction, we just need to show that any sugplesee withi(B;) = d
for all j must terminate.

Let & = —p(d), and consider the functorg:, 7% of Proposition 7.1.3. Sinc8; €
Fi, we haverk(B;) = 0. By the exact sequence (9), this shows tHatE; ;) =
78T (E;) and that

0 — 75(Ejs1) — 75(E;) — B — 0
is exact. Taking cohomology, we get an induced short exagtesece
0— H " (15(Ejn1)) — H " (t3(E))) — H " (B;) = 0
in A»=*. From the lemma it follows that there must bgyawith
¢ (T.I;'(Ejo-i-l)) < Qb (T,;C—'(Ejo)) = ¢ (Bjo) .

By the see-saw propertys E;, is another subobject of;, with ¢(T5E;,) = ¢(E},).
By the definition ofE;, .1, this impliesd(tk(E;)) = d(B;) for j = j,, and thus also
for all 5 > jo, which is impossible.

This shows that every object has a semistable subobjecsasdeBy applying the
same arguments to the dual perversity and dual stabilitgtiom, this also shows that
every object has a semistable quotient as claimed.

Step 2. We will prove steps 2 and 3 in a 2-step induction: To prove &tép an object
supported in dimensiod, we assume that steps 2 and 3 have been proven for objects
supported in dimension at mast- 1. To prove step 3, we will assume that step 2 has
been proven in dimensiafy and that step 3 has been proven in dimengienl. The
reason this induction works well is that the subcategoryobf objects supported in
dimension at most is closed under subquotients.
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To prove step 2, we will instead show the dual statement: yJEvgject has aninimal
destabilizing subobjeg¢mds), i.e. a subobject — E such that for everyl’ — E we
haveg(A) < ¢(A’), with equality if and only if there is a factorizatioff — A — FE.

Let F; € AP be supported in dimensiaf) and letk = —p(d). Define the sequence
of objectsE; as follows:

(1) If E; is semistable, stop.

(2) If there is a semistable quotieflf — B; with ¢(E;) = ¢(B;) andH ~*(B;) #
0, then lett; ., be its kernel.

(3) Otherwise, letB; be the maximal destabilizing quotientfﬁ‘lEj, which ex-
ists by induction; andZ;,, be the kernel of the compositids; — 75 ' E; —
B;.

If neither case (1) nor (2) applies, there must be a a senestpiotient? — B with

¢(E) = ¢(B) andH~*(B) = 0. Then the quotient must factor &— 75 'E; — B.

Then the mdgB; of 75 E; satisfiesp(B) = ¢(B;) by definition.

Hence both in case (2) and (3), we have a short exact seqignce— E; — B;
with B; semistable and(E;) > ¢(B;). By the arguments dual to those given by
Bridgeland, a mds of/;,, is also be a mds of;, and if £ is semistable it is its own
mds. So we just need to prove that the above algorithm tetesna

By the lemma, case (2) will only happen a finite number of tinkémwever, in case
(3) we get a short exact sequence

k—1 k—1
Ty B — 15 Ej > By,

where B, is the mdq ofrﬁ‘lEj. By the induction assumption about step 3, this se-
guence must terminate as well.

Finally, note that ifE' is supported in dimensiod, then so isD(£). Again we
can use the same arguments in the dual setting and proveigtenme of an mdq for
objects supported in dimensidras well.

Step 3.Let £ = —p(dim E;). Again, by lemma 7.3.1, the sequence of inclusions
H=*(E;41) — H~*(E;) will become an isomorphism in the quotient categaity="
after a finite number of steps. Théfir *(B;) is in A%><*~1; by lemma 3.2.3 it must be
zero. SoB; € F._;, and the quotient must factor vig; — 75 'E; — B;. ThenB;
must be the mdq oﬂi‘lEj, and by induction we know that the sequence of inclusions
will terminate.

This finishes the proof of Theorem 3.2.2.

8. THE SPACE OF POLYNOMIAL STABILITY CONDITIONS

In this section, we will describe to what extent Bridgelandiformation result for
stability conditions carries over to polynomial stabildgnditions. We will first intro-
duce a natural topology on the space of polynomial staliliyditions (with respect
to which the stability conditions of Theorem 3.2.2 form artiigy”).
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We will also briefly discuss what assumptions are necessguyof a deformation
result comparable to [BriO7, Theorem 1.2].

We will omit most proofs; after having adjusted all necegshafinitions, they carry
over almost literally from Bridgeland’s proofs.

8.1. The topology. We continue with the following translations of definition§ o
[Bri07] to our situation:

Definition 8.1.1. If the triangulated categoryp is linear over a field, a polynomial
stability condition(Z,P) on D is callednumericalif Z: K (D) — C[m)] factors via
N (D), the numerical Grothendieck group.

Let Stabp, (D) be the set of stability conditions dh, andStabp, (D) the subset
of numerical ones.

By asemi-metricon a se® we denote a functiod: ¥ x ¥ — [0, co] that satisfies
the triangle inequality and(x, ) = 0, but is not necessarily finite or non-zero for two
distinct elements. Similarly, we call a functidn ||: V' — [0, co] on a vector space a
semi-normf it satisfies subadditivity and linearity with respect taltiplication with
scalars.

Bridgeland introduced the following semi-metric on the spafiR-valued slicings:

For anyX € D and anR-valued slicing, letp,(X) and ¢ (X) be the smallest
and highest phase appearing in the Harder-Narasimhartidittraf X according to
2.2.1(c), respectively. Thef(P, Q) € [0, oo] is defined as
d(P,Q) = sup {|¢p(X) — do(X)|, |o5(X) — ¢5(X)][}.

0£X€eD
Via the projectiont: S — R, ¢ — ¢(+00), we can pull backl to get a semi-metric
ds on the space of-valued slicings.

Following [Bri07, section 6], we introduce a semi-norm on ithiénite-dimensional
linear spacélom (K (D), C[m]) for all o = (Z, P) € Stabpe(D):

I llo: Hom(K(D), Clm]) — [0, oc]
= su im su M
|Ull; = sup {lm%op Z(E)(m)|

The next step is to show that [Bri07, Lemma 6.2] carries over:0F< ¢ < }1 and
o= (Z, P) € Stabpol(D) defineBe(U) C Stabpol(D) as

B(o) ={r=(Q,W)|||W — Z||, < sin(me) andds(P, Q) < €} .
Lemma 8.1.2.1f 7 = (Q,W) € B.(0), then the semi-norms- ||, || - ||- of o and

are equivalent, i.e. there are constants i, such thatk;|U||, < ||U]|, < ko||U]|, for
all U € Hom(K(D), C[m]).

The proof is identical to that of [Bri07, Lemma 6.2].
OnHom(X(D), C[m]) we have the natural topology of point-wise convergence; via
the forgetful map(Z, P) — Z we can pull this back to get a system of open sets in

)

FE semistable irar}
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Stabp (D). Now equipStabp. (D) with the topology generated, in the sense of a
subbasiy by this system of open sets and the g&t&r) defined above.
By the definition of the topology and Lemma 8.1.2, the subspace

{U € Hom(K(D), C[m]) [ |U]|5 < oo}

is locally constant irStabp, (D) and hence constant on a connected compoRent
denoted by (X). Itis equipped with the topology generated by the topoldigyaint-
wise convergence and the semi-noijm§, for o € X (which are equivalent by lemma
8.1.2); we have obtained:

Proposition 8.1.3. For each connected componentot- Stabp, (D) there is a topo-
logical vector spacé/ (%), which is a subspace d¢fom (K (D), C[m]), such that the
forgetful mapX — V' (X) given by(Z, P) — Z is continuous.

Let £ be stable in some polynomial stability conditien= (Z,P) € . Then for
anyZ' € V(X), the degree of’(E) is bounded by the degree &f F). In particular,
if K (D) is finite dimensional, thei’ (X) is finite-dimensional. Further, Bridgeland’s
spaceStab(D) is a union of connected componentsSofibp, (D).

Proposition 8.1.4. Suppose that = (Z,P) andr = (Z, Q) are polynomial stability
conditions with identical central chargg andds(P, Q) < 1. Then they are identical.

Again, the proof of [Bri07, Lemma 6.4] carries over literally
Combining the two previous propositions, we obtain a natooaitinuous and lo-
cally injective map

Stabpe (D) D ¥ — V(X) € Hom(K (D), C[m]).

The discussion applies equally to numerical polynomiabiitg conditions: for
every connected componeiit C Stabp,’ (D) there is a subspac® (X) C
Hom(N (D), C[m]) with the structure of a topological vector space, such thafdr-
getful map(Z, P) — Z induces a locally injective continuous map

Y - V(D).

8.2. Deformations of a polynomial stability condition.

Definition 8.2.1. A polynomial stability conditioiZ, P) is calledlocally finiteif there
exists a real number > 0 such that for allp € S, the quasi-abelian catego® ((¢ —
€, ¢ + €)) is of finite length.

Under this strong finiteness assumption, an analogue of 8add’s deformation
result can be proven:

5A topology T on a setS is generated by a subbagisof subsets of5 if open sets ifl” are exactly
the (infinite) unions of finite intersections of setdin
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Theorem 8.2.2.Leto = (Z, P) be alocally finite polynomial stability condition. Then
there is ane > 0 such that if a group homomorphishi: (D) — C[m] satisfies
\W — Z||, < sin(we), there is a locally finite stability condition = (W, Q) with
@ﬂP,Q><6.

In other words, a locally finite polynomial stability condn in the connected com-
ponentX can be deformed uniquely by deforming its central charg&énsubspace
V(X) € Hom(K (D), C[m]), and the space of locally finite polynomial stability con-
ditions is a smooth manifold.

The theorem can be shown exactly along the lines of Bridg&gmdof. Since we
are not using the result in this paper, we omit the proof.
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