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Abstract. In [BM14b], the first author and Macr̀ı constructed a family of nef divisors on any
moduli space of Bridgeland-stable objects on a smooth projective variety X. In this article,
we extend this construction to the setting of any separated scheme Y of finite type over a field,
where we consider moduli spaces of Bridgeland-stable objects on Y with compact support.
We also show that the nef divisor is compatible with the polarising ample line bundle coming
from the GIT construction of the moduli space in the special case when Y admits a tilting
bundle and the stability condition arises from a θ-stability condition for the endomorphism
algebra.

Our main tool generalises the work of Abramovich–Polishchuk [AP06] and Polishchuk
[Pol07]: given a t-structure on the derived category Dc(Y ) on Y of objects with compact
support and a base scheme S, we construct a constant family of t-structures on a category of
objects on Y × S with compact support relative to S.
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1. Introduction

1.1. Motivation. In recent years, a number of authors have applied wall-crossing techniques
for Bridgeland stability conditions in order to systematically study the birational geometry
of moduli spaces; see section 1.5 for more background. The Positivity Lemma of [BM14b]
provides a clear, geometric link between the stability manifold and the moveable cone of the
moduli space by producing a family of nef divisors on any moduli space of Bridgeland-stable
objects on a smooth projective variety X.

Rich and interesting wall-crossing structures have also been observed in semi-local settings,
including, for example, the resolution of singularities Y → SpecR of an affine singularity,
with many interesting examples coming from geometric representation theory or the study
of algebras that are finite over their centre. The main goal of this paper is to extend the
machinery of [BM14b] to such settings. In fact our approach works more generally, replacing
X by any separated scheme Y of finite type over k.
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1.2. The main result. Let k be an algebraically closed field, and let Y be a separated scheme
of finite type over k. Let D(Y ) denote the bounded derived category of coherent sheaves on
Y , and Dc(Y ) the full subcategory of objects with proper support. As we explain in more
detail at the beginning of Section 5, the usual notion of numerical stability conditions is not
well-suited for the category Dc(Y ) (and the frequently used replacement, the category DZ(Y )
of complexes supported on a proper subvariety Z ⊂ Y does not lead to nice moduli spaces).

We therefore propose to use a variant of the definition of numerical K-group: we define
Knum

c (Y ) as the quotient of the Grothendieck group of Dc(Y ) by the radical of the Euler
pairing with perfect complexes on Y . We prove in Lemma 5.1.1 that this group has finite
rank under very mild assumptions. Accordingly, a numerical Bridgeland stability condition
for compact support on Y is a pair σ = (Zσ,Pσ), where Zσ : Knum

c (Y ) → C is a group
homomorphism and Pσ is a slicing of Dc(Y ).

Let S be a separated scheme of finite type over k; we do not assume that S is proper.
We write N1(S) for the group of Cartier divisor up to numerical equivalence with respect to
proper curves in S, and N1(S) for the dual group of curve classes. For v ∈ Knum

c (Y ) and
σ ∈ Stab(Dc(Y )), let E ∈ D(Y ×S) be a family of σ-semistable objects of class v over S. This
means in particular that the derived restriction of E to the fibre in Y × S over each closed
point s ∈ S is a σ-semistable object that has numerical class v (see Section 6).

Our main result generalises [BM14b, Theorem 1.1]:

Theorem 1.2.1. Let Y be a normal, quasi-projective scheme of finite type over an algebraically
closed field k of characteristic zero, and let σ be a numerical Bridgeland stability condition for
compact support on Y . For any family E ∈ D(Y ×S) of σ-semistable objects of class v whose
support is proper over S, we obtain a nef numerical Cartier divisor class `E,σ ∈ N1(S) =
Hom(N1(S),R), defined dually by setting

`E,σ
(
[C]
)

= `E,σ · C := =

(
Zσ(ΦE(OC)

)
−Zσ(v)

)
(1.1)

for every proper curve C ⊆ S, where ΦE : D(S)→ D(Y ) is the integral functor with kernel E.
Moreover, `E,σ · C > 0 if and only if for two general closed points c, c′ ∈ C, the corresponding
objects Ec, Ec′ ∈ Dc(Y ) are not S-equivalent.

More generally, Theorem 1.2.1 holds for any scheme Y that is separated and of finite type
over an algebraically closed field such that Knum

c (Y ) has finite rank (see Theorem 6.1.4, or
Remark 5.1.2 for an alternative assumption). We also provide a geometric condition which
ensures that the family E has proper support over S (see Proposition 6.3.1): it suffices to
assume that Y is proper over an affine scheme and the fibre Es of the family over every closed
point s ∈ S is simple, in the sense that Hom(Es, Es) = k.

Corollary 1.2.2. Assume that there exists a fine moduli space Mσ(v) of σ-stable objects of
class v. Then Mσ(v) comes equipped with a family of numerically positive divisors.

Note that the moduli space Mσ(v) will not be proper in general.

1.3. Families of t-structures for compact support. The proof of Theorem 1.2.1 relies on
extending the work of Abramovich–Polishchuk [AP06] and Polishchuk [Pol07] to the setting of
objects with compact support. More precisely, given separated schemes S and Y of finite type,
we define what it means for an object of D(Y ×S) to have left-compact support, see Definition
2.1.3. This rather ad-hoc definition is more restrictive than requiring an object to have proper
support over S, but it is better behaved under derived restriction along an open immersion (see
Proposition 2.2.3 and Remark 2.3.4). Given a t-structure on the category Dc(Y ) of objects
with compact support, we construct a constant family of t-structures in the derived category
of objects on Y × S with left-compact support (Theorem 4.3.1) and show that it satisfies the
open heart property (Proposition 4.4.3). We follow the approach of [AP06, Pol07] very closely,
but for completeness we provide full proofs of most statements.
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Returning to the proof of Theorem 1.2.1, the restriction of the family E of semistable objects
to Y ×C has left-compact support for any proper curve C in S. The positivity statements from
Theorem 1.2.1 now follow as in [BM14b], where a key step invokes the open heart property
for the newly constructed t-structure for objects on Y × C with left-compact support.

1.4. Comparison with θ-stability. One situation where moduli spaces Mσ(v) are known
to exist is when Y is a smooth scheme that is projective over an affine, and that carries a
tilting bundle E. The endomorphism algebra A of E∨ has finite global dimension, and one can
write down stability conditions on Dfin(A) of the form σθ,λ,ξ, where θ is a stability parameter
for A-modules in the sense of King [Kin94], and where λ, ξ are parameters (see Lemma 7.1.3).

In this setting, we obtain stability conditions on Dc(Y ) from those on Dfin(A) by way of
the tilting equivalence, and for any such σ := σθ,λ,ξ and any class v ∈ Knum

c (Y ), the coarse
moduli space of σ-semistable objects in Dc(Y ) of class v coincides with the coarse moduli
spaceMA(θ,v) of θ-semistable A-modules of dimension vector v that is constructed by GIT.
It is then natural to compare the numerical line bundle from Theorem 1.2.1 with the polarising
ample line bundle on the moduli space given by the GIT construction. The following result is
Theorem 7.4.1 (compare Proposition 6.3.1) in the special case when ξ ∈ R is chosen to satisfy
λ(v) = 1/(ξ2 + 1).

Theorem 1.4.1. Let S be a separated scheme of finite type, and suppose that a family E ∈
D(Y ×S) of σθ,λ,ξ-semistable objects of class v has proper support over S. Then the numerical
divisor class `E(σθ,λ,ξ) on S is equal to the pullback of the polarising ample line bundle on

MA(θ,v) along the classifying morphism f : S →MA(θ,v).

Note that when v is primitive and θ generic, thenMA(v, θ) is actually a fine moduli space.
An important ingredient in the proof of Theorem 1.4.1 is the correspondence between flat

families E ∈ D(Y ×S) of σθ,λ,ξ-(semi)stable objects of class v with respect to the heart A, and
flat families F of θ-(semi)stable A-modules of dimension vector v over S (see Proposition 7.3.1).
In particular, when v is primitive and θ is generic, the universal family of σθ,λ,ξ-stable objects
of class v overMA(v, θ) is given explicitly by E = E⊗A T , where T is the tautological bundle
on MA(v, θ); and conversely, the tautological bundle satisfies T = ΨE(E

∨), where ΨE is an
integral functor with kernel E (see Proposition 2.4.2).

1.5. Additional background and outlook. In the projective setting, the link between
wall-crossing for stability conditions and birational geometry of moduli spaces has led to a
large number of results over the last five years. This was initiated with striking examples
for abelian surfaces [AB13] and P2 [ABCH13], and then exploited systematically for abelian
([MYY11, MYY14, Yos12]) and K3 surfaces ([BM14a] in the smooth case, and [MZ14] for
singular O’Grady-type moduli spaces; see also [HT15] for a survey and more applications), for
Enriques surfaces ([Nue14]), for P2 ([Woo13, CC15, CHW14, CH15a, CH14b, CH14a, LZ13,
BMW13], with the story now essentially completed in [LZ16]), and for other rational surfaces
[BC13]; it has also led to results for general surfaces [BHL+15, CH15b]. In many cases, there
is a complete description of the movable cones of the moduli spaces, along with its chamber
decomposition coming from associated minimal models.

On the other hand, a number of authors have studied stability conditions on quasi-projective
(‘local’) Calabi-Yau varieties Y , see [Tho08, Bri09, BT11, IUU10] and [Tod08, Tod09, Bri06,
BM11] for crepant resolutions of two- and three-dimensional canonical singularities, respec-
tively, and [ABM11] for higher-dimensional symplectic resolutions of singularities naturally
associated to algebraic groups. Our goal is to provide in this context the machinery that is
used in the projective setting.

Even in the case where Y is a projective crepant resolution of C3/G for a finite abelian
subgroup G ⊂ SL3(C), a rich wall-crossing picture emerges by considering Y itself as a moduli
space parametrising skyscraper sheaves of points. Indeed, a simple reinterpretation of [CI04]
(along the lines of our Section 7) says that any (projective) birational model of Y appears as a
moduli space of Bridgeland-stable objects; more generally, this result holds for any projective
crepant resolution of a Gorenstein, affine toric 3-fold by [IU13]. We anticipate that this result
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can be generalised significantly, both by allowing for more general Y , and by considering
different moduli spaces on Y . We also hope that it will simplify the study of the space of
stability conditions itself: typically, one of the crucial steps is the systematic understanding
of walls of the geometric chamber in Stab(Dc(Y )), where skyscraper sheaves of points are all
semistable, some of them being strictly semistable. Our results provide a nef line bundle on
Y , whose associated contraction should govern the wall-crossing behaviour to a large extent.

1.6. Running assumptions and notation. All our schemes are assumed to be Noetherian
schemes over an algebraically closed field k. In addition, we assume from Section 2.4 onwards
that our schemes are separated and of finite type over k.

For any scheme X, let D(X) denote the bounded derived category of coherent sheaves on
X, let Dperf(X) denote the full subcategory of perfect complexes on X, and write D(Qcoh(X))
for the unbounded derived category of quasi-coherent sheaves on X. To avoid a proliferation
of R and L, we omit these symbols in our derived functors except in writing RΓ.

Acknowledgements. The first author is grateful to Matthew Woolf for a number of helpful
conversations, as well as to Emanuele Macr̀ı for very many of them. The second author thanks
Alastair King for a helpful conversation. The first author was supported by ERC starting grant
WallXBirGeom 337039, while the second and third authors were supported by EPSRC grant
EP/J019410/1.

2. Derived category with left-compact support

In this section, we define what it means for a complex of coherent sheaves on a product
Y × S to have ‘left-compact support’. We also study the basic properties, and compare this
notion to that of an object on Y × S having proper support over S. The latter part of this
section follows closely the work of Abramovich–Polishchuk [AP06] and Polishchuk [Pol07] in
defining sheaves of t-structures over a base.

2.1. Compact and left-compact support. For any Noetherian scheme Y over k, we may
identify D(Y ) with the full subcategory of D(Qcoh(Y )) of bounded complexes with coherent
cohomology.

Definition 2.1.1. The support of a quasi-coherent sheaf G is the locus Supp(G) = {y ∈ Y |
Gy 6= 0} of points with non-zero stalk. The support of an object F ∈ D(Qcoh(Y )) is the union
of the supports of its cohomology sheaves.

Since localisation is exact, we could equivalently define

Supp(F ) = {y ∈ Y | Fy 6= 0} (2.1)

where Fy is the complex of stalks of F at the local ring at y. In addition, if F ∈ D(Y ), then
by Nakayama’s Lemma

Supp(F ) = {y ∈ Y | i∗yF 6= 0}, (2.2)

where iy is the inclusion of the spectrum Spec k(y) of the residue field of y. Also note that
for F ∈ D(Y ), the support Supp(F ) is closed. Write Dc(Y ) ⊂ D(Y ) for the full subcategory
of objects that have proper support. Following convention, we refer to such objects as having
‘compact support’. We note the following easy properties of support.

Lemma 2.1.2. Let F,E ∈ D(Y ), and let f : Y → Y ′ and g : Y ′′ → Y be morphisms between
Noetherian schemes. Then:

(i) Supp(F ⊗ E) ⊂ Supp(F );
(ii) Supp(g∗F ) = g−1(Supp(F ));

(iii) Supp(f∗F ) ⊆ f(Supp(F )).

Proof. The first part is immediate from (2.1), the second from (2.2). For the third part,

assume y /∈ f(Supp(F )); then there is an open neighborhood y ∈ U ⊂ Y ′ with F |f−1(U) = 0,
and the claim follows from flat base change. �
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Definition 2.1.3. Let Y and S be Noetherian schemes. An object F ∈ D(Y × S) is said
to have left-compact support if Supp(F ) ⊆ Z × S for some proper subscheme Z ⊆ Y . Write
Dlc(Y ×S) for the full subcategory of complexes in D(Y ×S) that have left-compact support.

Remark 2.1.4. If S is proper, then an object F ∈ D(Y × S) has left-compact support if and
only if it has compact support: Dc(Y × S) = Dlc(Y × S).

By Lemma 2.1.2, left-compact support is preserved under some standard operations:

Lemma 2.1.5. Let F ∈ Dlc(Y × S). Then:

(i) for any object E ∈ D(Y × S), we have F ⊗ E ∈ Dlc(Y × S);
(ii) for any morphism g : S′ → S, we have (idY ×g)∗F ∈ Dlc(Y × S′);
(iii) for any proper morphism g : S → S′, we have (idY ×g)∗F ∈ Dlc(Y × S′).

Corollary 2.1.6. Let S be proper. Pullback and pushforward along the projection to the first
factor p : Y × S → Y induce exact functors p∗ : Dc(Y ) → Dc(Y × S) and p∗ : Dc(Y × S) →
Dc(Y ).

Lemma 2.1.7. Let F ∈ D(Qcoh(Y × S)) and let g : S → S′ be an affine morphism of Noe-
therian schemes. If we have (idY ×g)∗F ∈ Dlc(Y × S′), then F ∈ Dlc(Y × S).

Proof. Since pushforward along f := idY ×g is exact, we obtain that F is a bounded complex
with coherent cohomology; see [Stack, Tag 08I8]. To show F has left-compact support, it
suffices to show that Supp(F ) ⊆ f−1(Supp(f∗F )). Let U be the complement of Supp(f∗F ) in
Y × S′, then U is an open subscheme of Y × S′, such that (f∗F )|U = 0. Since f is an affine
morphism, it follows that F |f−1(U) = 0, and the claim follows. �

Lemma 2.1.8. Let F ∈ D(Y × S). If S =
⋃
i Ui is a finite open cover such that F |Y×Ui has

left-compact support for each i, then F ∈ Dlc(Y × S).

Proof. The cover of S is finite, so we can find a proper Z ⊆ Y such that Supp(F |Y×Ui) ⊆ Z×Ui
for all i. Lemma 2.1.2(ii) completes the proof. �

2.2. Localisation. We now study how Dlc(Y × S) behaves under restriction to certain open
subsets in Y × S. These results extend observations of Polishchuk [Pol07, Lemma 2.3.1] (see
also Arinkin–Bezrukavnikov [AB10, §2.2]) to the left-compactly supported case.

Lemma 2.2.1 ([Pol07, Lemma 2.3.1]). Let X be a Noetherian scheme, j : U → X be an open
immersion, and let F be a bounded complex of coherent sheaves on U . Then there exists a
complex Fc on X consisting of coherent subsheaves F ic ⊂ j∗F

i such that j∗Fc = F as objects
in D(U), and such that H i (Fc) ⊂ H i (j∗F ) for all i ∈ Z.

Proof. All statements follow directly from the proof of [Pol07, Lemma 2.3.1]. The only claim
that is not made explicitly in [ibid.] is the inclusion of the cohomology sheaves; this follows
from property (i) stated in the proof and a simple diagram chase. �

Corollary 2.2.2. Let S, Y be Noetherian schemes. For any open subset U ⊆ S, let j : Y ×
U ↪−→ Y × S be the open immersion. The restriction functor j∗ : Dlc(Y × S) → Dlc(Y × U)
is essentially surjective.

Proof. Given F ∈ Dlc(Y ×U), assume that it is represented by a bounded complex of coherent
sheaves. Let Fc ⊂ j∗F be the subcomplex with F = j∗Fc by the previous Lemma. By the
assertions in the Lemma above, we obtain

Supp(Fc) =
⋃
i

Supp
(
H i(Fc)

)
⊆
⋃
i

Supp
(
H ij∗F

)
= Supp(j∗F ) ⊆ j(Supp(F ))

where the last inclusion is a case of Lemma 2.1.2(iii). By assumption, Supp(F ) ⊆ Z × U for
some proper subscheme Z ⊆ Y ; hence Supp(Fc) ⊂ Z × S, which implies the claim. �

Proposition 2.2.3. Let S, Y be Noetherian schemes. Let U ⊆ S be open and set T := S \U .
The triangulated category Dlc(Y ×U) is equivalent to the localisation of Dlc(Y ×S) with respect
to the localising class of morphisms f : F → F ′ whose cone has support contained in Y × T .
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Proof. Following Rouquier [Rou10, Remark 3.14], the pullback j∗ : D(Y × S)→ D(Y × U) is
essentially surjective and has kernel given by the subcategory of complexes supported in Y ×T .
It follows that D(Y ×U) is equivalent as a triangulated category to the quotient of D(Y ×S)
by the subcategory of complexes whose support is contained in Y × T . Now restrict j∗ to
Dlc(Y × S) and apply Corollary 2.2.2 to see that j∗ : Dlc(Y × S)→ Dlc(Y × U) is essentially
surjective and has kernel given by the subcategory of complexes (with left-compact support)
whose support is contained in Y × T . It follows that Dlc(Y ×U) is equivalent to the quotient
of Dlc(Y × S) by the subcategory of complexes supported in Y × T . �

2.3. Objects with proper support over the base. Let S, Y be Noetherian schemes.

Definition 2.3.1. An object F ∈ D(Y × S) is said to have proper support over S if the
morphism q|Supp(F ) : Supp(F )→ S is proper with respect to the reduced scheme structure on
the closed subset Supp(F ) ⊆ Y × S.

Lemma 2.3.2. Let S, Y be separated schemes of finite type. Let F ∈ D(Y × S). If F has
left-compact support, then F has proper support over S. If S is proper, the converse also holds.

Proof. The first statement follows because Supp(F ) is a closed subset of Z×S for some proper
subscheme Z ⊆ Y . For the second statement, the composition of the proper morphisms
q|Supp(F ) and S → Speck is proper, so Supp(F ) is proper. It follows that Z := p(Supp(F )) is
a proper subscheme of Y , and we have Supp(F ) ⊆ Z × S as required. �

Example 2.3.3. For Y = A1, the object O∆ ∈ D(Y × A1) has proper support over A1, but
it does not have left-compact support.

Remark 2.3.4. The previous example can be used to show that the analogue of the important
Corollary 2.2.2 is false if we replace the notion of left-compact support with that of proper
support over S. Indeed, [Pol07, Lemma 2.3.1] implies that for an open immersion j : A1 ↪→ P1,
the restriction functor (idY ×j)∗ : D(Y × P1)→ D(Y ×A1) is essentially surjective. However,
O∆ ∈ D(Y × A1) is not quasi-isomorphic to the restriction of an object F ∈ D(Y × P1) that
has proper support over P1, because otherwise Lemma 2.1.5 and Lemma 2.3.2 would imply
that O∆

∼= (idY ×j)∗F has left-compact support which is absurd.

2.4. Integral functors. It is well known that when S and Y are smooth projective varieties,
an object E ∈ D(Y × S) is the kernel for a pair of integral functors, sometimes denoted

ΦS→Y
E : D(S)→ D(Y ) and ΦY→S

E : D(Y )→ D(S).

We present here the natural extension of this statement to complexes with compact support.

Lemma 2.4.1. Let f : Y → Y ′ be a morphism of separated schemes of finite type.

(i) If Supp(F ) is proper over Y ′, then f∗F ∈ D(Y ′).
(ii) If Supp(F ) is proper, then f∗F ∈ Dc(Y

′), that is, we have f∗ : Dc(Y )→ Dc(Y
′).

Proof. The first claim follows from [Stack, Tag 08E0]. For the second, let F ∈ Dc(Y ). Since
Y ′ is separated over k and F has proper support over k, [Stack, Tag 01W6] implies that
F has proper support over Y ′. Part (i) gives f∗F ∈ D(Y ′), and the result follows from
Lemma 2.1.2(iii). �

Let p : Y ×S → Y and q : Y ×S → S denote the first and second projections respectively. An
object E ∈ D(Y ×S) is S-perfect if, locally over S, it is quasi-isomorphic to a bounded complex
of q−1(OS)-flat coherent sheaves. In this context, the definition of S-perfect introduced by
Illusie [SGA6] does not state explicitly that the q−1(OS)-flat sheaves must be coherent, but as
Lieblich [Lie06, Example 2.1.2] remarks, these notions of S-perfect are nevertheless equivalent.

Proposition 2.4.2. Let S, Y be separated schemes of finite type, and let E ∈ D(Y × S). If
E has proper support over S, then it provides an integral functor

ΦE : Dc(S) −→ Dc(Y ), F 7→ p∗(E ⊗ q∗F ).
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If in addition E is S-perfect, then we obtain a second integral functor

ΨE : Dperf(Y ) −→ Dperf(S), F 7→ q∗(E ⊗ p∗F ).

Proof. For the first claim, given F ∈ Dc(S), we need to show that p∗ (E ⊗ q∗F ) ∈ Dc(Y ).
Since E ⊗ q∗F ∈ D(Y × S), its support is closed and contained in

q−1(Supp(F )) ∩ Supp(E)

which is proper. Therefore, E ⊗ q∗F ∈ Dc(Y × S), and the claim follows from Lemma 2.4.1.
To construct the functor ΨE , let F ∈ Dperf(Y ). We have p∗F ∈ Dperf(Y × S). It follows

from [SGA6, III, Proposition 4.5] that E ⊗ p∗F ∈ D(Y × S) is S-perfect. The support of
E ⊗ p∗F is proper over S, hence q∗(E ⊗ p∗F ) ∈ D(S) by Lemma 2.4.1. On the other hand,
[SGA6, III, Proposition 4.8] shows that q∗(E ⊗ p∗F ) is S-perfect, and therefore perfect. �

2.5. On t-structures. Let D be a triangulated category. Recall that a t-structure on D is a
pair of full subcategories (D60, D>0) of D such that if for n ∈ Z we write D6n := D60[−n]
and D>n := D>0[−n], then we have

(i) D6−1 ⊆ D60;
(ii) Hom(F,G) = 0 for F ∈ D60 and G ∈ D>1; and
(iii) for F ∈ D there exists an exact triangle τ60F → F → τ>1F in D, where τ60F ∈ D60

and τ>1F ∈ D>1.

For a, b ∈ Z with a 6 b, write D[a,b] := D>a ∩D6b. More generally, we write D[−∞,b] := D6b

and D[a,∞] := D>a, and refer to the subcategory D[a,b] for any interval [a, b] that may be

infinite on one side. The heart of the t-structure is the abelian category D[0,0]. The inclusions
D6n → D and D>n → D admit right- and left-adjoints τ6n : D → D6n and τ>n : D → D>n

respectively. For F ∈ D and n ∈ Z, the corresponding truncation triangle is the exact triangle

τ6nF −→ F −→ τ>n+1F

in D, where τ6nF ∈ D6n and τ>n+1F ∈ D>n+1. For i ∈ Z, the cohomology functor
H i : D → D[0,0] is given by H i(F ) = τ60τ>0(F [i]). A t-structure (D60, D>0) is nondegenerate
if ∩nD6n = ∩nD>n = {0}, or equivalently, if the only object F ∈ D satisfying H i(F ) = 0 for
all i ∈ Z is the zero object. A t-structure is bounded if ∪nD6n = ∪nD>n = D, or equivalently,
if it is nondegenerate and if each F ∈ D satisfies H i(F ) 6= 0 for only finitely many values of
i ∈ Z. For proofs of these assertions and other facts about t-structures, see Miličić [Mil03,
Chapter 4].

Remark 2.5.1. Both [AP06] and [Pol07] say that a t-structure is ‘nondegenerate’ if it is bounded
in the sense defined above (and hence nondegenerate in the sense defined above).

Given triangulated categories D,D′ each equipped with a t-structure, a functor Φ: D → D′

is left t-exact if Φ(D>0) ⊆ (D′)>0, and it’s right t-exact if Φ(D60) ⊆ (D′)60. The functor is
t-exact if it’s both left- and right t-exact.

Lemma 2.5.2. [Pol07, Lemma 1.1.1] Let D1 and D2 be a pair of triangulated categories
equipped with t-structures and let Φ: D1 → D2 be a t-exact functor with ker Φ = 0. Then for

any interval [a, b] that may be infinite on one side, we have D
[a,b]
1 = {F ∈ D1 | Φ(F ) ∈ D[a,b]

2 }.

2.6. Sheaves of t-structures over the base. Let S, Y be Noetherian schemes. We continue
to write p : Y × S → Y and q : Y × S → S for the two projections.

Definition 2.6.1. A sheaf of t-structures on Dlc(Y × S) over S is a bounded t-structure on
Dlc(Y × U) for each open subset U ⊆ S, such that for every open subset j : U ′ ↪→ U , the
restriction functor (idY ×j)∗ : Dlc(Y × U)→ Dlc(Y × U ′) is t-exact.

This notion generalises that of a ‘t-structure on D(Y × S) that is local over S’ [Pol07] and
that of a ‘sheaf of t-structures on Y over S’ when Y and S are projective [AP06]. To justify
the terminology, we extend [Pol07, Lemma 2.3.4] to the setting of left-compact support.
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Lemma 2.6.2. Let S be a Noetherian scheme with a finite open cover S =
⋃
i Ui. Assume

that we are given a sheaf of t-structures on each Dlc(Y ×Ui) over Ui that agree on all pairwise
intersections Y × (Ui ∩ Uj). Then there exists a unique sheaf of t-structures on Dlc(Y × S)
over S that restricts to the given t-structure on Dlc(Y × Ui) for each i. Moreover, it satisfies

D
[a,b]
lc (Y × S) =

{
F ∈ D(Y × S) | F |Y×Ui ∈ D

[a,b]
lc (Y × Ui) for all i

}
. (2.3)

Proof. We first show that there is a unique t-structure on Dlc(Y ×S) such that the restriction
functors Dlc(Y × S)→ Dlc(Y × Ui) are t-exact for the given t-structures for each Ui.

Construction. The right hand side of (2.3) is contained in Dlc(Y ×S) by Lemma 2.1.8. We

first prove that (2.3) defines a t-structure on Dlc(Y ×S). The definition gives D6−1
lc (Y ×S) ⊆

D60
lc (Y × S). To show that F ∈ D60

lc (Y × S) and G ∈ D>1
lc (Y × S) satisfy Hom(F,G) = 0,

choose a finite open affine cover Ui =
⋃
j Uij to obtain a finite open affine cover S =

⋃
ij Uij .

The t-structure on Dlc(Y × Uij) induced from that on Dlc(Y × Ui) satisfies

F |Y×Uij ∈ D
60
lc (Y × Uij) and G|Y×Uij ∈ D

>1
lc (Y × Uij),

so Hom≤0(F |Y×Uij , G|Y×Uij ) = 0. For q : Y ×S → S, consider HomS(F,G) := q∗Hom(F,G) ∈
D(Qcoh(S)). The complex of sheavesHomS(F,G)|Uij = HomUij (F |Y×Uij , G|Y×Uij ) is obtained

from the complex of H0(OUij )-modules Hom(F |Y×Uij , G|Y×Uij ) by localisation, so with respect

to the standard t-structures we have HomS(F,G)|Uij ∈ D>1(Qcoh(Uij)) and HomS(F,G) ∈
D>1(Qcoh(S)), giving Hom(F,G) = 0. It remains to define the truncation functors. By
boundedness of the t-structure on each Dc(Y ×Ui) and an induction argument, we need only

prove that for any F ∈ D>0
lc (Y × S), the left truncation H0(F ) exists, as does a morphism

H0(F ) → F whose cone lies in D>1
lc (Y × S). For this, we have F |Y×Ui ∈ D

>0
lc (Y × Ui) for

each i, so the left truncation H0(F |Y×Ui) exists with a morphism H0(F |Y×Ui) −→ F |Y×Ui
whose cone lies in D>1

lc (Y × Ui). By [AP06, Theorem 2.1.9, Corollary 2.1.11], the objects
H0(F |Y×Ui) ∈ Dlc(Y × Ui) glue to give an object in D(Y × S) which we define to be H0(F ).
For every i ∈ Z, the object H0(F )|Y×Ui ∼= H0(F |Y×Ui) has left-compact support, and hence
so does H0(F ) by Lemma 2.1.8. We may also glue the morphisms H0(F |Y×Ui) → F |Y×Ui
into a global morphism H0(F ) → F by [AP06, Lemma 2.1.10]. Since the cone of this global

morphism restricts to the cone of each local morphism, which lies in D>1
lc (Y × Ui), it follows

from (2.3) that the cone of the global morphism lies in D>1
c (Y × S) as required. Thus (2.3)

defines a t-structure.
We now show that (2.3) induces the given t-structure on each Dlc(Y ×Ui). The restriction

from Y × S to Y × Ui is t-exact, so we need only show for any i and any Fi ∈ D[a,b]
lc (Y × Ui)

that there exists F ∈ D[a,b]
lc (Y × S) such that F |Y×Ui ∼= Fi. By Corollary 2.2.2, there exists

G ∈ Dlc(Y ×S) such that G|Y×Ui ∼= Fi. We take the truncation F := τ>aτ6bG ∈ D[a,b]
lc (Y ×S).

Both τ6a−1G and τ>b+1G restrict to trivial objects on Dlc(Y ×Ui), so F |Y×Ui ∼= Fi as required.
Uniqueness. Next, we show that the t-structure (2.3) is the unique t-structure on Dlc(Y ×S)

over S which induces the given t-structures on Dlc(Y ×Ui). Let D̃
[a,b]
lc (Y ×S) be another such t-

structure. Any F ∈ D̃[a,b]
lc (Y ×S) satisfies F |Y×Ui ∈ D

[a,b]
lc (Y ×Ui) for all i, so F ∈ D[a,b]

lc (Y ×S).

On the other hand, if we truncate any G ∈ D[a,b]
lc (Y ×S) with respect to the second t-structure,

then (τ̃6a−1G)|Y×Ui = τ6a−1(G|Y×Ui) = 0 for each i. The uniqueness of gluing from [AP06,
Corollary 2.1.11] implies that τ̃6a−1G = 0, and similarly we have τ̃>b+1G = 0. It follows that

G ∈ D̃[a,b]
lc (Y × S) and hence D

[a,b]
lc (Y × S) = D̃

[a,b]
lc (Y × S) as required.

Sheafify. It remains to show that our given t-structure on Dlc(Y × S) extends uniquely to
a sheaf of t-structures over S. To construct the associated t-structure over U ⊂ S, replace
S by U and Ui by U ∩ Ui in the construction and proof of uniqueness above. One easily
verifies the sheaf property by applying (2.3) for S =

⋃
i Ui and analogously for U =

⋃
i U ∩Ui

simultaneously, along with the sheaf property for the given t-structures on each Ui. �
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Remark 2.6.3. The following rephrasing of the uniqueness result in the above theorem is useful
in practice: Given a sheaf of t-structures on Dlc(Y ×S) over S and an object F ∈ Dlc(Y ×S)

satisfying F |Y×Ui ∈ D
[a,b]
lc (Y × Ui) for each i, then F ∈ D[a,b]

lc (Y × S).

Lemma 2.6.4. For any schemes Y and S, suppose that Dlc(Y ×S) has a sheaf of t-structures
over S. For L ∈ Pic(S), the functor Dlc(Y × S) −→ Dlc(Y × S) sending F to F ⊗ q∗L is
t-exact.

Proof. The functor is well-defined by Lemma 2.1.5. Let S =
⋃
i Ui be an open cover such that

L|Ui ∼= OUi for each i. Then for F ∈ D[a,b]
lc (Y ×S), we have that (F ⊗ q∗L)|Y×Ui ∼= F |Y×Ui lies

in D
[a,b]
lc (Y ×Ui) for each i, because restriction to an open subset for a sheaf of t-structures is

t-exact. The result follows from Remark 2.6.3. �

The main result of this section provides a partial converse (see [AP06, Theorem 2.1.4]):

Theorem 2.6.5. Let S be a quasi-projective scheme, let L be an ample line bundle on S, and
let (D60

lc (Y × S), D>0
lc (Y × S)) be a bounded t-structure on Dlc(Y × S) such that the functor

Dlc(Y × S) −→ Dlc(Y × S), F 7−→ F ⊗ q∗L

is t-exact. Then we obtain by restriction a sheaf of t-structures on Dlc(Y × S) over S.

Towards this goal, let T ⊆ S be a closed subset. Consider the subcategory

Dlc(Y × S)T = {E ∈ Dlc(Y × S) | SuppE ⊆ Y × T} = D(Y × S)T ∩Dlc(Y × S)

of objects with left-compact support whose support lies over T . Our proof follows closely that
of [AP06, Theorem 2.1.4], beginning with two results on the category Dlc(Y × S)T . First we
recall the following Lemma (the proof of which does not require Y to be smooth or projective):

Lemma 2.6.6 ([AP06, Lemma 2.1.5]). Let f1, . . . , fn be sections of some line bundle L on
S such that T is the set of common zeroes of f1, . . . , fn, and let F ∈ D(Y × S). Then
F ∈ D(Y ×S)T if and only if there exists d > 0 such that the morphisms fi1 ·· · ··fid : F → F⊗Ld
are zero for all sequences (i1, . . . , id) of length d.

For any i ∈ Z, we write H i
t for the i-th cohomology functor with respect to the t-structure

on Dlc(Y × S) listed as an assumption in Theorem 2.6.5.

Lemma 2.6.7. Under the assumptions of Theorem 2.6.5, let T ⊆ S be a closed subset and let
F ∈ D(Y × S). Then F ∈ Dlc(Y × S)T if and only if H i

t(F ) ∈ Dlc(Y × S)T for all i ∈ Z.

Proof. Suppose first that H i
t(F ) ∈ Dlc(Y ×S)T for all i ∈ Z. Let Zi ⊆ Y be a proper subscheme

satisfying SuppH i
t(F ) ⊆ Zi × T , where Zi is empty if H i

t(F ) = 0. The given t-structure is
bounded, so F is a finite extension of only finitely many cohomology sheaves H i

t(F ). Therefore
Supp(F ) ⊆ (

⋃
i Zi)× T where

⋃
i Zi is a proper subscheme of Y , giving F ∈ Dlc(Y × S)T .

For the opposite implication, let L denote an ample line bundle on S. Replacing L by a
suitable power, we may assume that T is the common zero-locus of sections f1, · · · , fn of L.
We apply Lemma 2.6.6 to obtain d for which f = fi1 · · · fid : F −→ F ⊗ q∗Ld is the zero map
for all such sequences. By assumption, tensoring with q∗L is t-exact for the t-structure in
question, so it commutes with taking cohomology H i

t . Therefore,

H i
t(f) : H i

t(F )→ H i
t(F )⊗ q∗Ld

is the zero map for all such sequences i1, . . . , id. The reverse direction of Lemma 2.6.6 gives
H i
t(F ) ∈ D(Y × S)T . Combined with H i

t(F ) ∈ Dlc(Y × S) by definition of a t-structure on
Dlc(T × S), this proves our claim. �

Lemma 2.6.8. Under the assumptions of Theorem 2.6.5, let A denote the heart of the given
t-structure. Then for every closed subset T ⊆ S, the subcategory Dlc(Y ×S)T ∩A of the abelian
category A is closed under subobjects, quotients and extensions.
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Proof. Tensoring with q∗L is a t-exact functor on Dc(Y × S), so it is exact on A. Given a
short exact sequence 0 → E → F → G → 0 in A, a diagram chase shows that if all maps
F → F ⊗ q∗Ld as in Lemma 2.6.6 vanish, then so do all such maps E → E ⊗ q∗Ld and
G → G ⊗ q∗Ld. Conversely, if all the maps E → E ⊗ q∗Ld and G → G ⊗ q∗Ld vanish, then
so do all the maps F → F ⊗ q∗L2d given by sequences of length 2d. The result follows from
Lemma 2.6.6. �

Proof of Theorem 2.6.5. Let U ⊆ S be an open subset. For any interval [a, b] that may be
infinite on one side, consider the subcategory

D
[a,b]
lc (Y × U) =

{
F0 ∈ Dlc(Y × U) | ∃ F ∈ D[a,b]

lc (Y × S) such that F0 = j∗F
}

(2.4)

of Dlc(Y × U). We proceed in two steps.

Step 1: We verify that (2.4) defines a bounded t-structure. Let E0 ∈ Dlc(Y × U) and apply
Corollary 2.2.2 to obtain E ∈ Dlc(Y × S) such that j∗E = E0. The given t-structure on

Dlc(Y ×S) provides F ∈ D60
lc (Y ×S) and G ∈ D>1

lc (Y ×S) such that F → E → G is an exact

triangle. Since j∗ is exact, the objects j∗F ∈ D60
lc (Y × U) and j∗G ∈ D>1

lc (Y × U) fit into
an exact triangle j∗F → E0 → j∗G as required. We next check that there are no nontrivial
morphisms between any F0 ∈ D60

lc (Y × U) and G0 ∈ D>1
lc (Y × U). Proposition 2.2.3 implies

that if a morphism F0 → G0 does exist then it’s obtained from a diagram of the form

F
f←− F ′ → G, (2.5)

where F ∈ D60
lc (Y × S) and G ∈ D>1

lc (Y × S) satisfy j∗F ∼= F0 and j∗G ∼= G0, and where the
cone C of f lies in Dlc(Y ×S)T . The long exact sequence of cohomology for the exact triangle
F ′ → F → C shows H0

t (C)→ H1
t (F ′) is surjective, so H1

t (F ) ∈ Dlc(Y ×S)T by Lemma 2.6.8;
similarly, H i

t(C) ∼= H i+1
t (F ′) for i > 1 implies H i+1

t (F ′) ∈ Dlc(Y × S)T . Thus all cohomology

sheaves of τ>1
t (F ′) lie in Dlc(Y ×S)T , and hence so does τ>1

t (F ′) by Lemma 2.6.7. This object

is the cone of g : τ60
t (F ′)→ F ′ which then lies in the localising class, and therefore the diagram

F
f◦g←− τ60

t (F ′)→ G,

is equivalent to that from (2.5). The t-structure on Dlc(Y ×S) shows that this map is zero, so
the original morphism from F0 to G0 is zero as required. Since the t-structure on Dlc(Y × S)

is bounded, there exist integers a < b such that E ∈ D[a,b]
lc (Y ×S). Hence E0 ∈ D[a,b]

lc (Y ×U),
which shows the t-structure on Dlc(Y × U) is also bounded.

Step 2: We verify that the t-structure from Step 1 defines a sheaf of t-structures over S.
For any open subsets U ′ ⊆ U ⊆ S, we have the following commutative diagrams of pullback
functors

Dc(Y × S)
j∗ //

j′′∗

22
Dc(Y × U)

j′∗ // Dc(Y × U ′).

To show that j′∗ is t-exact, consider F0 ∈ D60
c (Y ×U) and choose F ∈ D60

c (Y × S) such that
j∗F = F0. Then j′∗F0 = j′∗j∗F = j′′∗F ∈ D60

c (Y × U ′), so j′∗ is right exact. Left-exactness
is similar, so the t-structure on Dc(Y × S) induces a sheaf of t-structures over S. �

Setting L = OS in Theorem 2.6.5 immediately gives:

Corollary 2.6.9. Let S be an affine scheme. Then every bounded t-structure on Dlc(Y × S)
determines by restriction a sheaf of t-structures on Dlc(Y × S) over S.

3. Sheaf of t-structures on Dc(Y × Pr) over Pr

In this section we construct a sheaf of t-structures on Dc(Y ×Pr) over Pr following the work
of Abramovich–Polishchuk [AP06, Theorem 2.3.6].
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3.1. On resolution of the diagonal. Let Y be any scheme. For r > 0, let p : Y × Pr → Y
denote the first projection and X := (Y ×Pr)×Y (Y ×Pr) the fibre product with fibre square

X
π2 //

π1
��

Y × Pr

p

��
Y × Pr

p // Y.

For F,G ∈ D(Qcoh(Y × Pr)), write F �G := π∗1F ⊗ π∗2G ∈ D(Qcoh(X)). Let q : Y × Pr → Pr
denote the second projection, O(1) = q∗OPr(1) the relative hyperplane bundle and Ω := q∗ΩPr

the relative cotangent bundle. For F ∈ D(Qcoh(Y × Pr)) and i ∈ Z, write F (i) := F ⊗O(i).
The relative version of resolution of the diagonal ∆ ⊆ X by Orlov [Orl92] is the resolution

0 −→ Ωr(r)�O(−r) −→ · · · −→ Ω1(1)�O(−1) −→ O �O −→ O∆ −→ 0. (3.1)

For j ∈ Z, tensoring by O(−j) � O(j) gives a resolution

0 −→ Ωr(r− j)�O(j − r) −→ · · · −→ Ω1(1− j)�O(j − 1) −→ O(−j)�O(j) −→ O∆ −→ 0.

For 0 6 i 6 r and j ∈ Z, each sheaf Ωi(i−j)�O(j−i) on X defines a Fourier-Mukai transform
that we denote Φi,j : D(Y × Pr) −→ D(Y × Pr), where

Φi,j(F ) = (π2)∗

(
π∗1(F )⊗

(
Ωi(i− j)�O(j − i)

))
∼= p∗p∗

(
F ⊗ Ωi(i− j)

)
⊗O(j − i)

by the projection formula and flat base change. By Proposition 2.4.2, this functor restricts to

an integral transform Φi,j
c : Dc(Y × Pr) −→ Dc(Y × Pr).

For any fixed j ∈ Z, if we break the above resolution into short exact sequences as described
in [Huy06, Proof of Corollary 8.29], any object F ∈ Dc(Y ×Pr) can be reconstructed by taking
successive cone operations on the collection{

Φr,j
c (F ),Φr−1,j

c (F ), . . . ,Φ1,j
c (F ),Φ0,j

c (F )
}
. (3.2)

Remark 3.1.1. In writing the resolution (3.1) we could equally well have written each term as
O(−i)� Ωi(i), in which case the resulting integral functor Ψi,j would satisfy

Ψi,j(F ) ∼= p∗p∗
(
F (j − i)

)
⊗ Ωi(i− j) (3.3)

for every 0 6 i 6 r and j ∈ Z.

The next two results record several useful consequences of these observations.

Lemma 3.1.2. For any m > r + 1, there is an exact sequence

0 −→ V m
r ⊗OPr −→ V m

r−1 ⊗OPr(1) −→ · · · −→ V m
0 ⊗OPr(r) −→ OPr(m) −→ 0, (3.4)

where V m
i = H0(Pr,Ωi(m− r + i)) for 0 6 i 6 r.

Proof. The observations above for Y = Spec k and j = r show that the sheaf OPr(m) ∈ D(Pr)
can be reconstructed by taking successive cone operations using the objects

Φi,r(O(m)) = p∗p∗
(
O(m)⊗ Ωi(i− r)

)
⊗O(r − i) ∼= RΓ

(
Ωi(m− r + i)

)
⊗O(r − i)

for 0 6 i 6 r. Our assumption on m gives m − r + i > 0, so Manivel [Man96] implies that
the higher cohomology groups of Ωi(m − r + i)) vanish; hence Φi,r(O(m)) = V m

i ⊗O(r − i).
Substituting these sheaves for 0 6 i 6 r into the above cone operations yields (3.4). �

Lemma 3.1.3. Let Y be a scheme and p : Y ×Pr → Y the first projection. Let F ∈ D(Y ×Pr).
(i) We have F ∈ Dc(Y ×Pr) if and only if there exists j ∈ Z such that p∗(F (j−i)) ∈ Dc(Y )

for all 0 6 i 6 r.
(ii) If p∗F (−i) = 0 for 0 6 i 6 r, then F = 0.
(iii) There is a semi-orthogonal decomposition

Dc(Y × Pr) =
〈
p∗Dc(Y )(−r), · · · , p∗Dc(Y )(−1), p∗Dc(Y )

〉
. (3.5)
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Proof. For (i), the ‘only if’ direction follows from Lemma 2.1.5(i) and Corollary 2.1.6. Con-
versely, the object F ∈ D(Y × Pr) can be reconstructed by taking successive cone operations
on the collection

{
Ψr,j(F ),Ψr−1,j(F ), . . . ,Ψ1,j(F ),Ψ0,j(F )

}
from (3.3); by Proposition 2.4.2,

we have Ψr−1,j(F ) ∈ Dc(Y × Pr), and hence F ∈ Dc(Y × Pr). For (ii), our assumption
on F ensures that the objects Ψi,0(F ) from (3.3) are trivial for 0 6 i 6 r, so F ∼= 0 after
taking cones. For (iii), Lemma 2.1.5(i) and Corollary 2.1.6 imply that we obtain a functor
φi : Dc(Y ) → Dc(Y × Pr) for each 0 6 i 6 r by setting φi(F ) := p∗(F ) ⊗ O(−i). Each φi
is fully faithful by the projection formula. The approach of Orlov [Orl92, §2] shows that the
sequence of subcategories on the right-hand side of (3.5) is semiorthogonal. As for generation,
consider F ∈ Dc(Y × Pr). For 0 6 i 6 r, the object Φi,0(F ) = p∗p∗(F ⊗ Ωi(i))⊗O(−i) from
collection (3.2) lies in p∗Dc(Y )(−i), so after taking cones we have that F is contained in the
right side of (3.5) as required. �

Proposition 3.1.4. Let L be an ample bundle on a projective scheme S, and write q : Y ×S →
S for the second projection. For any F ∈ D(Y × S), we have

F ∈ Dc(Y × S) ⇐⇒ p∗(F ⊗ q∗Ln) ∈ Dc(Y ) for all n� 0. (3.6)

Proof. One direction is immediate from Lemma 2.1.5(i) and Corollary 2.1.6. For the other
direction, it is enough to show that Supp(F ) ⊆ Supp(p∗(F ⊗ q∗Ln)) × S for n � 0. To
prove this claim, we just need to choose n large enough such that for each cohomology sheaf
H i(F ), the tensor product H i(F ) ⊗ q∗Ln is globally generated over Y , in other words, that
the canonical map p∗p∗

(
H i(F )⊗ q∗Ln

)
→ H i(F )⊗ q∗Ln is surjective. �

3.2. A family of t-structures. From now on we work under the following assumption:

Assumption 3.2.1. Let (D60
c (Y ), D>0

c (Y )) be a Noetherian, bounded t-structure on Dc(Y ).

For any interval [a, b] that may be infinite on one side, we obtain a subcategory D
[a,b]
c (Y )

of Dc(Y ), where A := D
[0,0]
c (Y ) is the heart. For i ∈ Z, we write H i

Y (−) := τ>0
Y τ60

Y (−[i]) for

the i-th cohomology functor, where τ60
Y , τ>0

Y denote the truncation functors.
The following purely categorical result, which combines [Pol07, Lemma 3.1.1-3.1.2], enables

us to glue t-structures of subcategories arising in a semi-orthogonal decomposition.

Lemma 3.2.2 ([Pol07]). Let D = 〈A1, · · · ,An〉 be a semi-orthogonal decomposition, and

let (A60
i ,A>0

i ) be a t-structure on Ai for 1 6 i 6 n. Assume in addition that each inclusion
Ai ↪→ D has a right adjoint ρi : D → Ai, and that for each pair of indices i < j, the restriction
functor ρi|Aj : Aj → Ai is right t-exact. Then we obtain a t-structure on D by setting

D[a,b]
ρ =

{
F ∈ D | ρi(F ) ∈ A[a,b]

i for all i = 1, · · · , n
}

for any interval [a, b] that may be infinite on one side.

Proposition 3.2.3. For n > 0, there exists a bounded t-structure on Dc(Y × Pr), where for
any interval [a, b] that may be infinite on one side, we have

D[a,b]
c (Y × Pr)n :=

{
F ∈ D(Y × Pr) | p∗F (n+ i) ∈ D[a,b]

c (Y ) for 0 6 i 6 r
}
.

Proof. Lemma 3.1.3(i) implies that each D
[a,b]
c (Y × Pr)n is contained in Dc(Y × Pr). By

tensoring with O(−n), it suffices to prove the result for n = 0. In this case, we show that
Lemma 3.2.2 applies to semiorthogonal decomposition of Dc(Y ×Pr) from (3.5). For 0 6 i 6 r,
identifyDc(Y ) with p∗Dc(Y )(−i) via the fully faithful functor φi : Dc(Y )→ Dc(Y×Pr) sending
F to p∗(F )(−i). In particular, each p∗Dc(Y )(−i) inherits a t-structure. The right-adjoint to
φi is ρi : Dc(Y × Pr) → Dc(Y ) where ρi(F ) = p∗(F (i)). For any i < j and F ∈ Dc(Y ), we
obtain

(ρj ◦ φi)(F ) = F ⊗ p∗O(j − i) = F ⊗H0(O(j − i)).
Therefore ρj ◦φi is t-exact for any t-structure on Dc(Y ), so Lemma 3.2.2 gives the t-structure
on Dc(Y ×Pr). To show boundedness, let F ∈ Dc(Y ×Pr). For 0 6 i 6 r we have p∗(F (n+i)) ∈
Dc(Y ) by Corollary 2.1.6. Boundedness of the t-structure on Dc(Y ) gives k0, . . . , kr such that
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p∗(F (n + i)) ∈ D6kic (Y ). Then k = max06i6r ki gives p∗(F (n + i)) ∈ D6kc (Y ) for 0 6 i 6 r,
and hence F ∈ D6kc (Y × Pr)n as required. �

For n > 0 and i ∈ Z, let H i
n(−) := τ>0

n τ60
n (−[i]) denote the ith cohomology functor of the

t-structure from Proposition 3.2.3, where τ60
n and τ>0

n denote the truncation functors.

Corollary 3.2.4. Let F ∈ Dc(Y × Pr).
(i) If m > r + 1, then p∗F (m) can be reconstructed by taking successive cone operations

using the objects V m
i ⊗ p∗F (i)[r − i] for 0 6 i 6 r.

(ii) If m > 0 and F ∈ D[0,0]
0 , then p∗F (m) ∈ D[−r,0]

c (Y ).

Proof. Pull the resolution of OPr(m) from Lemma 3.1.2 back along q : Y × Pr → Pr, tensor
with F and pushforward along p : Y × Pr → Y to obtain a resolution of p∗F (m) in terms of

p∗

(
F ⊗ q∗

(
V m
i ⊗OPr(i)[r − i]

))
= V m

i ⊗ p∗F (i)[r − i]

for 0 6 i 6 r which gives the first statement. It also follows that p∗F (i)[r − i] ∈ D[−r,0]
c (Y ),

giving the second claim for m > r+1. If in addition we have F ∈ D[0,0]
0 , then p∗F (i) ∈ D[0,0]

c (Y )
for 0 6 i 6 r, which completes the proof of the second claim. �

Lemma 3.2.5. The t-structures (D60
n , D>0

n ) from Proposition 3.2.3 satisfy

D60
0 ⊆ D60

1 ⊆ D60
2 ⊆ · · · ⊆ D6r0 ; (3.7)

D>0
0 ⊇ D>0

1 ⊇ D>0
2 ⊇ · · · ⊇ D>r0 . (3.8)

In particular, for each i ∈ Z there is a morphism H i
n(−) −→ H i

n+1(−) of cohomology functors.

Proof. For the two chains of inclusions, it is enough to prove D60
0 ⊆ D60

n and D>r0 ⊆ D>0
n for

all n > 0. We first consider the former. Since the t-structures are bounded, it is in fact enough

to prove D
[0,0]
0 ⊆ D60

n . But this claim follows from Corollary 3.2.4(ii) and the definition of

D60
n . For the other inclusion, it is enough to show that D

[0,0]
0 ⊆ D>−rn , and the proof is similar.

To construct the morphism of cohomology functors, note that the inclusion D60
n ⊆ D60

n+1

implies that the morphism τ60
n (F ) → F for each F ∈ Dc(Y × Pr) factors through τ60

n+1(F ),

giving a transformation τ60
n → τ60

n+1. The inclusion D>0
n+1 ⊆ D>0

n similarly gives τ>0
n → τ>0

n+1.

Then for all i ∈ Z we have a morphism τ60
n (F [i])→ τ60

n+1(F [i]), and hence a morphism

H i
n(F ) = τ>0

n τ60
n (F [i]) −→ τ>0

n τ60
n+1(F [i]) −→ τ>0

n+1τ
60
n+1(F [i]) = H i

n+1(F )

as required. �

3.3. On graded S-modules in an abelian category. For V = H0(Pr,O(1)), the sym-
metric algebra of V is a graded k-algebra S =

⊕
m>0 S

m generated by r + 1 variables of
degree one. We now recall several categorical notions and results from [AP06, Section 2.2],
where the abelian category of interest is the heart A of the t-structure on Dc(Y ) given by
Assumption 3.2.1.

A graded S-module in A is a collection M = {Mn | n ∈ Z} of objects in A and a collection of
morphisms {ϕm,n : Sm ⊗Mn →Mm+n | m,n ∈ Z,m > 0} satisfying the obvious associativity
condition, such that ϕ0,n is the identity for each n ∈ Z. We typically write M = ⊕n∈ZMn.
A morphism of graded S-modules in A is a collection of morphisms {fn : Mn → M ′n | n ∈ Z}
satisfying fm+n ◦ ϕm,n = ϕ′m,n ◦ (idSm ⊗fn) for all m,n ∈ Z. A free graded S-module of finite
type in A is a finite direct sum of graded S-modules in A of the form S⊗M(i) for some M ∈ A
and i ∈ Z, where the nth graded piece of S ⊗M(i) is Sn+i ⊗M , such that the morphisms

Sm ⊗ (Sn+i ⊗M) −→ Sn+m+i ⊗M
for m,n, i ∈ Z are induced by the multiplication in S, namely Sm ⊗ Sn+i → Sm+n+i. A
graded S-module M in A is of finite type if there is a surjective map P → M for a free
graded S-module of finite type in A. The main result we require is the following [AP06,
Theorem 2.2.2].



14 AREND BAYER, ALASTAIR CRAW, AND ZIYU ZHANG

Theorem 3.3.1. The category of graded S-modules of finite type in A is abelian and Noe-
therian.

We record the following examples for later use.

Examples 3.3.2. Let F ∈ A be any object.

(i) Let ` > 0. If ⊕nMn is a graded S-module of finite type, then so is
⊕

m>`Mn. It follows
that the graded S-module

⊕
m>` Sn ⊗ F is of finite type in A.

(ii) For m > 0, tensor the Euler exact sequence on Pr by OPr(m) and apply the global

sections functor to see that H0(Pr,Ω1(m)) is the kernel of a map S
⊕(r+1)
m−1 → Sm.

The direct sum of all such maps shows that
⊕

m>0H
0(Pr,Ω1(m)) is the kernel of a

homomorphism S(−1)⊕(r+1) → S of free graded S-modules. Theorem 3.3.1 implies
that

⊕
m>0H

0(Pr,Ω1(m)) ⊗ F is a graded S-module of finite type in A, so for any

` > 0, part (1) shows that
⊕

m>`H
0(Pr,Ω1(m)) ⊗ F is a graded S-module of finite

type in A.

Lemma 3.3.3. Let M = ⊕nMn be a graded S-module of finite type in A. The complex

0 −→
∧r+1 V ⊗Md−(r+1) −→ · · · −→

∧2 V ⊗Md−2 −→ V ⊗Md−1 −→Md −→ 0 (3.9)

obtained as the strand of the Koszul complex for M in degree d is exact for d� 0.

Proof. The proof is contained in [AP06, Step 5 of Proof of Proposition 2.3.3]. �

3.4. A sheaf of t-structures on Dc(Y × Pr). We now use the family of t-structures from
Proposition 3.2.3 to construct a ‘limiting’ t-structure on Dc(Y × Pr) that is actually a sheaf
of t-structures over Pr. We continue to work under Assumption 3.2.1.

As a first step, we provide an application of the categorical results from the previous section
by establishing a technical result that will be used in the proof of Proposition 3.4.2 to follow.

Recall that D
[0,0]
0 denotes the heart of the 0th t-structure on Dc(Y × Pr) constructed in

Proposition 3.2.3.

Lemma 3.4.1. Let F ∈ D[0,0]
0 . Then Gn := H0

0 (F (n)) satisfies p∗Gn(i) ∈ A for 0 6 i 6 r+ 1
and n� 0.

Proof. Since F,Gn ∈ D[0,0]
0 , we have p∗F (i), p∗Gn(i) ∈ A for 0 6 i 6 r. It remains to prove

that p∗Gn(r + 1) ∈ A. We proceed in three steps.

Step 1: For 0 6 i 6 r, show that p∗Gn(i) ∼= H0
Y (p∗F (n+ i)).

Since F ∈ D60
0 ⊆ D60

n by Proposition 3.2.3, we have F (n) ∈ D60
0 and hence Gn =

H0
0 (F (n)) = τ>0

0 F (n). We therefore have an exact triangle τ6−1
0 F (n) → F (n) → Gn. For

0 6 i 6 r, by tensoring with O(i) and pushing forward, we get another exact triangle

p∗
(
τ6−1

0 F (n)(i)
)
−→ p∗F (n+ i) −→ p∗Gn(i) (3.10)

The left-hand object in (3.10) lies in D6−1
c (Y ) for 0 6 i 6 r because τ6−1

0 F (n) ∈ D6−1
0 . Since

p∗Gn(i) ∈ A ⊆ D>0
c (Y ), the exact triangle (3.10) is a standard truncation triangle and hence

by uniqueness of objects in such triangles we have p∗Gn(i) = τ>0
Y p∗F (n + i). It remains to

note that p∗F (n+ i) ∈ D[−r,0]
c (Y ) for n > r + 1 and 0 6 i 6 r by Corollary 3.2.4, from which

we obtain H0
Y (p∗F (n+ i)) ∼= τ>0

Y p∗F (n+ i) ∼= p∗Gn(i) as required.

Step 2: For 0 6 i 6 r, show p∗Gn(i) is a graded piece of an S(V )-module of finite type in A.

For m > r+ 1 and V m
i = H0(Pr,Ωi(m− r+ i)), Corollary 3.2.4 shows p∗F (m) ∈ D[−r,0]

c (Y )
is the cone of a morphism V m

1 ⊗ p∗F (r− 1)→ V m
0 ⊗ p∗F (r). The direct sum of all such maps

for m > r + 1 is a graded S(V )-module homomorphism

φ :
⊕

m>r+1

H0(Pr,Ω1(m− r + 1))⊗ p∗F (r − 1) −→
⊕

m>r+1

H0(OPr(m− r))⊗ p∗F (r).
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Examples 3.3.2 and Theorem 3.3.1 imply that the cokernel of this map cok(φ) = ⊕jCj is a
graded S(V )-module of finite type in A. Moreover, for any n > r + 1 and 0 6 i 6 r, the
equality V n+i

0
∼= S(V )n+i−r shows that the (n+ i− r)-graded piece of this module satisfies

Cn+i−r = cok
(
V n+i

1 ⊗ p∗F (r − 1) −→ V n+i
0 ⊗ p∗F (r)

) ∼= H0
Y (p∗F (n+ i)) ∼= p∗Gn(i)

by Step 1 above. This completes Step 2.

Step 3: Deduce that p∗Gn(r + 1) ∈ A using a resolution by p∗Gn(i) = Cn+i−r for 0 6 i 6 r.

The twist of the Koszul complex associated to the space V = H0(Pr,O(1)) is the resolution

0 −→
∧r+1 V ⊗OPr −→

∧r V ⊗OPr(1) −→ · · · −→ V ⊗OPr(r) −→ OPr(r + 1) −→ 0.

As in the proof of Corollary 3.2.4, pull this resolution back along q : Y ×Pr → Pr, tensor with
Gn and pushforward along p : Y × Pr → Y to obtain a quasi-isomorphism from the complex∧r+1 V ⊗ p∗Gn −→

∧r V ⊗ p∗Gn(1) −→ · · ·
∧2 V ⊗ p∗Gn(r − 1) −→ V ⊗ p∗Gn(r) (3.11)

of objects in A to p∗Gn(r + 1). To show that p∗Gn(r + 1) ∈ A, we need only show that
the complex (3.11) has nonzero cohomology only in the right-hand position. For this, Step 2
enables us to rewrite this complex as∧r+1 V ⊗ Cn−r −→

∧r V ⊗ Cn−r+1 −→ · · · −→
∧2 V ⊗ Cn−1 −→ V ⊗ Cn,

which we recognise from (3.9) as forming part of the Koszul complex of degree n+1 associated
to the graded S(V )-module ⊕nCn in A. We need only show that this latter complex is exact
for n� 0, but this is immediate from Lemma 3.3.3 because ⊕nCn is of finite type. �

The key observation in constructing the sheaf of t-structures is the following stabilisation
result for the cohomology objects H i

n(F ) associated to the family of t-structures (D60
n , D>0

n )
on Dc(Y × Pr) constructed in Proposition 3.2.3. Recall from Lemma 3.2.5 that there exist
canonical morphisms H i

n(F ) −→ H i
n+1(F ) for all n > 0 and i ∈ Z.

Proposition 3.4.2. For every F ∈ Dc(Y ×Pr), there exists N ∈ Z such that for every n > N ,
the canonical morphism H i

n(F )→ H i
n+1(F ) is an isomorphism for all i ∈ Z.

Proof. We claim that it suffices to prove that the highest nonzero cohomology group of F
stabilises. Indeed, boundedness of the t-structure (D60

0 , D>0
0 ) gives a, b ∈ Z such that F ∈

D
[a,b]
0 , so the inclusions (3.7) and (3.8) imply that for all n > 0 we have F ∈ D[a−r,b]

n . If we can
find N > 0 such that Hb

n(F ) ∼= Hb
n+1(F ) for n > N , then truncating at b gives an isomorphism

τ6b−1
n F //

��

F

=

��

// Hb
n(F )

∼=
��

τ6b−1
n+1 F // F // Hb

n+1(F )

of exact triangles and hence τ6b−1
N F ∈ D[a−r,b−1]

n for n > N . Now consider τ6b−1
N F , and apply

induction on the length of the interval [a− r, b] to obtain the statement of the proposition.

To simplify the claim, shift F by b to obtain F ∈ D60
0 and hence F ∈ D60

n for n > 0 by

(3.7). Proving the claim is equivalent to proving that τ>0
n F → τ>0

n+1F is an isomorphism for

n� 0. Since τ>0
n annihilates all objects in D6−1

0 ⊆ D6−1
n by (3.7), applying τ>0

n to the triangle

τ6−1
0 F → F → τ>0

0 F gives τ>0
n F ∼= τ>0

n τ>0
0 F . Thus, we may replace F by τ>0

0 (F ) throughout,

i.e., we may assume F ∈ D[0,0]
0 . Similarly, since τ>0

n+1 annihilates objects in D6−1
n ⊆ D6−1

n+1 by

(3.8), we have τ>0
n+1F

∼= τ>0
n+1τ

>0
n F . The claim now reduces to proving that τ>0

n (F ) ∈ D>0
n+1.

This means H0
n(F ) ∈ D>0

n+1, or equivalently, H0
n(F )(n+ 1) ∈ D>0

0 . Tensoring by O(n) defines

an autoequivalence of Dc(Y × Pr) that takes the t-structure (D60
n , D>0

n ) to (D6n0 , D>n0 ), so

H0
n(F ) = H0

0 (F (n))(−n). As a result, the claim is equivalent to requiring that each F ∈ D[0,0]
0

satisfies H0
0 (F (n))(1) ∈ D>0

0 for n � 0. To complete the proof, it remains to show that for



16 AREND BAYER, ALASTAIR CRAW, AND ZIYU ZHANG

F ∈ D[0,0]
0 , the object Gn := H0

0 (F (n)) satisfies Gn(1) ∈ D>0
0 . This is equivalent to showing

that p∗Gn(i+1) ∈ D>0
c (Y ) for 0 6 i 6 r and n� 0 which is immediate from Lemma 3.4.1. �

Theorem 3.4.3. Consider the t-structure on Dc(Y ) from Assumption 3.2.1. Then there is a
sheaf of t-structures on Dc(Y × Pr) over Pr, where for any interval [a, b] that may be infinite
on one side, we have

D[a,b]
c (Y × Pr) = {F ∈ D(Y × Pr) | p∗F (n) ∈ D[a,b]

c (Y ) for all n� 0}.

Moreover, this t-structure satisfies

D60
c (Y × Pr) =

⋃
n>0

D60
c (Y × Pr)n and D>0

c (Y × Pr) =
⋂
n>0

D>0
c (Y × Pr)n. (3.12)

Proof. Lemma 3.1.3(i) implies that each D
[a,b]
c (Y ×Pr) is contained in Dc(Y ×Pr). Write D60 =

D60
c (Y × Pr) and D>0 = D>0

c (Y × Pr). Now (3.12) follows from (3.7) and (3.8), and hence
D6−1 ⊆ D60. Moreover, D>1 is right-orthogonal to D60, because for F ∈ D>1 =

⋂
n>0D

>1
n ,

we have Hom(E,F ) = 0 for all n > 0 and E ∈ D60
n , so F is orthogonal to

⋃
n>0D

60
n = D60. To

define the truncation functors, Proposition 3.4.2 associates to each F ∈ Dc(Y ×Pr) an integer

N such that H i
N (F ) ∈ D[0,0]

n for all n > N and i ∈ Z. In particular, τ60
N F ∈

⋃
n>N D

60
n ⊆ D60

and τ>1
N F ∈

⋂
n>N D

>1
n ⊆ D>1 by (3.7) and (3.8) respectively. Define

τ60 : Dc(Y × Pr) −→ D60 and τ>0 : Dc(Y × Pr) −→ D>0 (3.13)

by setting τ60F = τ60
n F for n � 0, and τ>0F = τ>0

n F for n � 0. For any F ∈ Dc(Y × Pr),
the truncation triangle is τ60

n F → F → τ>1
n F for n � 0, so (D60, D>0) is a t-structure. For

boundedness, let F ∈ Dc(Y × Pr). Since the t-structures (D60
n , D>0

n ) are bounded for n > 0,

there exists an, bn ∈ Z such that F ∈ D[an,bn]
n for n > 0. Proposition 3.4.2 gives N ∈ Z such

that the cohomology groups stabilise for t-structures indexed by n > N and hence F ∈ D[aN ,bN ]
n

for n > N . For a := min06i6N ai and b := max06i6N bi, we have F ∈ D>an ∩D6bn = D
[a,b]
n for

n > 0. Therefore F ∈ D[a,b]
c (Y × Pr) as required. Finally, tensoring by q∗OPr(1) preserves the

heart, so it’s t-exact, and the result follows from Theorem 2.6.5. �

For i ∈ Z, let H i(−) := τ>0τ60(−[i]) denote the ith cohomology functor of the t-structure
from Theorem 3.4.3, where the truncation functors are given by (3.13).

3.5. The Noetherian property. Theorem 3.4.3 provides a bounded t-structure on Dc(Y ×
U) for each open subset U ⊆ Pr. We now show that every such t-structure has a Noetherian

heart. For this, associate to each F ∈ D[0,0] a graded S-module M(F ) in the category A by
setting

M(F )n :=

{
H0
Y (p∗F (n)) for n > 0

0 otherwise,

where H i
Y (−) is the ith cohomology functor for the t-structure on Dc(Y ) from Assump-

tion 3.2.1, and where the maps S1 ⊗ M(F )n −→ M(F )n+1 giving the S-module structure
are obtained by applying H0

Y (p∗F (− ⊗ O(n + 1))) to the right-hand map from the Euler se-

quence on Pr. Note that M(−)n : D[0,0] → A is a functor for each n ∈ Z, and hence so is
M(−) := ⊕nM(−)n.

Lemma 3.5.1. The functors M(−)n and M(−) are left-exact, while M(−)n is exact for

n� 0. Moreover, for F ∈ D[0,0] we have that:

(i) the graded S-module M(F ) in A is of finite type.
(ii) if a subobject F ′ ⊆ F satisfies M(F ′)n = M(F )n for n� 0, then F ′ = F .

Proof. For the first statement, consider an exact sequence

0 −→ F1 −→ F2 −→ F3 −→ 0
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in D[0,0]. Apply p∗(− ⊗ O(n)) and take the long exact sequence in cohomology for the t-
structure on Dc(Y ) from Assumption 3.2.1 to see that M(−)n and hence M(−) is left-exact.
Since p∗F1(n) ∈ AY for n� 0, we have H1

Y (p∗F1(n)) = 0 for n� 0, so

0 −→M(F1)n −→M(F2)n −→M(F3)n −→ 0

is an exact sequence in A for n � 0. This completes the proof of the first statement. For
F ∈ D[0,0], part (i) is stated and proved as a claim in the course of [AP06, Proof of Theo-

rem 2.3.6(2)]. For (ii), let f : F ′ → F denote the inclusion and set F ′′ := cok(f) ∈ D[0,0]. For
n � 0, apply the exact functor M(−)n to the short exact sequence 0 → F ′ → F → F ′′ → 0

in D[0,0] to obtain M(F ′′)n = 0. Since F ′′ ∈ D[0,0], we have p∗F
′′(n) = 0 for n � 0, so we

can twist to get p∗F
′′(−i) = 0 for 0 6 i 6 r. Lemma 3.1.3(i) gives F ′′ = 0, so F ′ = F as

required. �

Proposition 3.5.2. The sheaf of t-structures on Dc(Y × Pr) over Pr from Theorem 3.4.3
is Noetherian, i.e., for every open U ⊆ Pr, the heart of the t-structure on Dlc(Y × U) is
Noetherian.

Proof. Consider first the case U = Pr. For F ∈ D[0,0], consider an increasing chain

F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ F (3.14)

of subobjects in D[0,0]. Applying the left-exact functor M(−) gives an increasing chain of
subobjects in the category of graded S-modules of finitely type inA. This latter chain stabilises
by Theorem 3.3.1, so Lemma 3.5.1(ii) implies that (3.14) also stabilises as required.

For arbitrary open U ⊆ Pr, suppose (3.14) is an increasing chain of objects in the heart

D[0,0] of the bounded t-structure on Dlc(Y ×U) given by Theorem 3.4.3. Each Fi is a complex
of sheaves, so an inclusion Fi ⊆ Fi+1 is equality if the restriction to each open subset in
an open cover is equality. Thus, we may assume U is affine with complement D given by a
section of OPr(d) for some d ∈ Z. Note that F and hence each Fi has left-compact support.
Corollary 2.2.2 gives an extension F ∈ Dc(Y ×Pr) of F . Restriction to the open subset Y ×U
is t-exact, so H0(F )|Y×U = H0(F |Y×U ) = F . Replacing F by H0(F ) if necessary, we may

assume F ∈ D[0,0], and similarly for each Fi. The result of [AP06, Lemma 2.1.8] extends
verbatim to the case of left-compact support, so we may replace Fi by Fi(−kiD) and hence
assume that the injection Fi ↪→ F extends to a morphism φi : Fi −→ F . The restriction to
Y × U is unchanged by this, as is the property of having left-compact support, so we obtain
an increasing chain

F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ F (3.15)

of objects in D
[0,0]
c (Y ×Pr) satisfying Fi|Y×U = Fi for all i > 0. The sequence (3.15) stabilises

by the case U = Pr above, and restricting this chain to Y ×U shows that (3.14) also stabilises.
�

4. Sheaf of t-structures over an arbitrary base

In this section we follow closely the approach of Polishchuk [Pol07] in extending the con-
struction of the sheaf of t-structures on Dc(Y ×Pr) over Pr to an arbitrary base scheme S that
is separated and of finite type. We then extend the work of Abramovich–Polishchuk [AP06]
to show these these t-structures satisfy the open heart property.

4.1. Extending t-structures to the quasi-coherent setting. Let D be a triangulated
category. A full subcategory P is a pre-aisle if P is closed under extensions and the shift
functor X → X[1] for any X ∈ P . For any subcategory S ⊆ D, the pre-aisle generated by
S is the smallest pre-aisle containing S, denoted p-aD[S]. A full subcategory P ⊆ D is an
aisle if P = D60 for some t-structure (D60, D>0) on D. Every aisle is a pre-aisle, but the
converse is false in general; see [Pol07, Remark of Section 2.1]. If we assume further that D is
a triangulated category in which all small coproducts exist, then a pre-aisle P is cocomplete
if it is closed under small coproducts. For any subcategory S ⊆ D, the cocomplete pre-aisle
generated by S is the smallest cocomplete pre-aisle containing S, denoted by p-aD[[S]].
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Lemma 4.1.1. Let Y and S be Noetherian schemes. Any t-structure (D60, D>0) on Dlc(Y×S)
can be extended to a t-structure on D(Qcoh(Y × S)) that satisfies

D60(Qcoh(Y × S)) = p-aD(Qcoh(Y×S))[[D
60]]; (4.1)

D>0(Qcoh(Y × S)) =
{
F ∈ D(Qcoh(Y × S)) | Hom(D6−1, F ) = 0

}
. (4.2)

Furthermore, for every interval [a, b] that may be infinite on one side, we have that

D[a,b]
(
Qcoh(Y × S)

)
∩Dlc(Y × S) = D

[a,b]
lc (Y × S). (4.3)

Proof. All small coproducts exist in D(Qcoh(Y ×S)) by [Nee96, Ex 1.3]. Since Dlc(Y ×S) is an
essentially small full subcategory of D(Qcoh(Y ×S)), we’re done by [Pol07, Lemma 2.1.1]. �

Remark 4.1.2. Equation (4.3) implies that if two t-structures on Dlc(Y × S) extend to the
same t-structure on D(Qcoh(Y × S)), then the original t-structures are equal.

4.2. Sheaf of t-structures over an affine base. Given a Noetherian, bounded t-structure
on Dc(Y ), Theorem 3.4.3 gives a sheaf of t-structures on Dc(Y × Pr) over Pr. We now study
the restriction of this t-structure to subcategories Dlc(Y ×U), where U is an affine scheme of
finite type over k. The main result of this section is the following:

Proposition 4.2.1. Let U, Y be schemes of finite type, with Y separated and U affine. Ex-
tend the t-structure on Dc(Y ) from Assumption 3.2.1 to a t-structure on D(Qcoh(Y )) using
Lemma 4.1.1. There exists a sheaf of Noetherian t-structures on Dlc(Y ×U) over U , such that
for any interval [a, b] that may be infinite on one side, we have

D
[a,b]
lc (Y × U) =

{
F ∈ Dlc(Y × U) | p∗F ∈ D[a,b](Qcoh(Y ))

}
, (4.4)

where p : Y ×U → Y is the projection to the first factor. Moreover, p∗ : Dc(Y )→ Dlc(Y ×U)
is t-exact with respect to these t-structures.

We prove this result in two stages. We first restrict along an open immersion Y×Ar → Y×Pr
to prove the special case U = Ar; our proof runs parallel to that of [Pol07, Lemma 3.3.2-3.3.4].
We then restrict further along a closed immersion Y × U → Y ×Ar to prove the general case
following [Pol07, Proof of Theorem 3.3.6].

Proof of Proposition 4.2.1 for Ar. Let j : Ar → Pr be an open immersion, and let p : Y ×Ar →
Y denote the first projection. The local nature of the sheaf of t-structures on Dc(Y ×Pr) over
Pr from Theorem 3.4.3 (and Proposition 3.5.2) induces a sheaf of Noetherian t-structures
on Dlc(Y × Ar) over Ar such that (idY ×j)∗ is t-exact. The projection formula shows that
pullback along the first projection p′ : Y × Pr → Y is t-exact, hence so is p∗ = (idY ×j)∗ ◦ p′∗.
It remains to show that the t-structure on Dlc(Y × Ar) satisfies (4.4). We proceed in three
steps:

Step 1: We first claim that

D60
lc (Y × Ar) = p-a[p∗D60

c (Y )]. (4.5)

For one inclusion, let F ∈ D60
lc (Y ×Ar) and write F = (idY ×j)∗G for some G ∈ D60

c (Y ×Pr).
Let N ∈ N satisfy Gn := p′∗G(n) ∈ D60

c (Y ) for n > N . Deduce from (3.2) that G lies in the
extension closure of {p′∗GN+i ⊗ q∗Ωr−i(−N − i)}06i6r. Pull back to Y × Ar to see that F
lies in the extension closure of {p∗GN+i ⊗ Ei}06i6r, where Ei = (idY ×j)∗(q∗Ωr−i(−N − i))
is a trivial bundle of finite rank on Y × Ar for all 0 6 i 6 r. Thus F ∈ p-a[p∗D60

c (Y )]. For

the opposite inclusion, we need only show that p∗D60
c (Y ) ⊆ D60

lc (Y × Ar). For F ∈ D60
c (Y ),

t-exactness of p′∗ gives p′∗F ∈ D60
lc (Y × Pr), and hence p∗F ∈ D60

lc (Y × Ar) as required.

Step 2: We deduce (4.4) for Ar by applying Lemma 2.5.2 to p∗ : Dlc(Y×Ar)→ D(Qcoh(Y )),
and for this we must check that p∗ is t-exact and has trivial kernel. For left t-exactness, let
F ∈ D60

c (Y ). We know D60(Qcoh(Y )) is closed under small coproducts by (4.1). The pro-
jection formula gives p∗p

∗F = F ⊗k H
0(Ar,OAr) ∈ D60(Qcoh(Y )) and hence p∗p

∗D60
c (Y ) ⊆
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D60(Qcoh(Y )). Since the image of a pre-aisle under p∗ is still a pre-aisle and since D60(Qcoh(Y ))
is itself a pre-aisle, we deduce from Step 1 above that

p∗D
60
lc (Y × Ar) = p∗ p-a[p∗D60

c (Y )] ⊆ D60(Qcoh(Y ))

as required. For right t-exactness, use Lemma 4.1.1, adjunction and Step 1 to obtain

D>0
lc (Y × Ar) = {F | Hom(D6−1

lc (Y × Ar), F ) = 0}
= {F | Hom(p-a[p∗D6−1

c (Y )], F ) = 0}
= {F | Hom(p∗D6−1

c (Y ), F ) = 0}
= {F | Hom(D6−1

c (Y ), p∗F ) = 0}.

Now p∗D
>0
lc (Y×Ar) ⊆ D>0(Qcoh(Y )) by (4.2), so p∗ is right t-exact. Finally, if F ∈ Dlc(Y×Ar)

satisfies p∗F = 0, then F = 0 by [Stack, Tag 08I8] because p : Y × Ar → Y is affine.

This establishes Proposition 4.2.1 for U = Ar. �

The proof of the general case relies on the following result which extends to our setting the
statement and proof of [Pol07, Theorem 2.3.5].

Lemma 4.2.2. Let Y, S and S′ be separated schemes of finite type, and let g : S′ → S be
a finite morphism of finite Tor dimension. Let (D60

lc (Y × S), D>0
lc (Y × S)) be a Noetherian

t-structure on Dlc(Y × S). There exists a Noetherian t-structure on Dlc(Y × S′), where for
any interval [a, b] that may be infinite on one side, we have

D
[a,b]
lc (Y × S′) =

{
F ∈ D(Y × S′) | (idY ×g)∗F ∈ D[a,b]

lc (Y × S)
}
. (4.6)

Proof. Any object F ∈ D(Y ×S′) satisfying (idY ×g)∗F ∈ Dlc(Y ×S) has left-compact support
by Lemma 2.1.7, so the right-hand side of (4.6) is contained in Dlc(Y × S′). The functors

Φ := (idY ×g)∗ : Dlc(Y ×S′) −→ Dlc(Y ×S) and Ψ := (idY ×g)∗ : Dlc(Y ×S) −→ Dlc(Y ×S′)

are well-defined by Lemma 2.1.5. We check that the hypotheses of [Pol07, Theorem 2.1.2]
hold:

(i) Φ is obtained by restriction from (idY ×g)∗ : D(Qcoh(Y × S′)→ D(Qcoh(Y × S)), and
Ψ by restriction from its left adjoint (idY ×g)∗ : D(Qcoh(Y × S))→ D(Qcoh(Y × S′)).

(ii) (idY ×g)∗ : D(Qcoh(Y × S′)) → D(Qcoh(Y × S)) commutes with small coproducts by
[Nee96, Lemma 1.4] because Y × S′ is quasi-compact and separated.

(iii) Φ◦Ψ is right t-exact with respect to the given t-structure. For this, let F ∈ Dlc(Y ×S).
The projection formula gives (Φ ◦Ψ)(F ) ∼= F ⊗ (idY ×g)∗OY×S′ , so we need only show
that tensoring by (idY ×g)∗OY×S′ is right t-exact. Since g has finite Tor dimension,
(idY ×g)∗OY×S′ is quasi-isomorphic to a bounded complex of flat sheaves, and the
result follows as in the proof of [Pol07, Theorem 2.3.5].

(iv) if F ∈ D(Qcoh(Y ×S′)) satisfies (idY ×g)∗F ∈ Dlc(Y ×S), then we have F ∈ Dlc(Y ×S′)
by Lemma 2.1.7.

(v) if F ∈ Dlc(Y × S′) satisfies (idY ×g)∗F = 0, then we have F = 0 by [Stack, Tag 08I8].

The result now follows from [Pol07, Theorem 2.1.2]. �

Proof of Proposition 4.2.1. For the general case, let U be an affine scheme of finite type.
Choose a closed immersion i : U ↪→ Ar, and write p : Y × U → Y and p′ : Y ×Ar → Y for the
first projections, so p = p′ ◦ (idY ×i).

We first show that (4.4) defines a sheaf of Noetherian t-structures on Dlc(Y × U) over U .
The morphism i has finite Tor dimension, so applying Lemma 4.2.2 to the t-structure on
Dlc(Y ×Ar) constructed in the special case above gives a t-structure on Dlc(Y ×U), satisfying

D
[a,b]
lc (Y × U) =

{
F ∈ Dlc(Y × U) | (idY ×i)∗(F ) ∈ D[a,b]

lc (Y × Ar)
}

=
{
F ∈ Dlc(Y × U) | p∗(F ) ∈ D[a,b](Qcoh(Y ))

}
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for any interval [a, b] that may be infinite on one side. This gives (4.4). Corollary 2.6.9 and
Proposition 3.5.2 imply that we obtain a sheaf of Noetherian t-structures on Dlc(Y ×U) over
U .

To prove that p∗ is t-exact, let F ∈ D
[a,b]
c (Y ). By (4.4) and the projection formula, we

must show that p∗p
∗F = F ⊗k H

0(U,OU ) ∈ D[a,b](Qcoh(Y )). For this, the k-vector space V
underlying H0(U,OU ) has a countable basis. If V has a finite k-basis, then clearly F ⊗k V ∈
D

[a,b]
c (Y ) ⊆ D[a,b](Qcoh(Y )). Otherwise, V has a countably infinite k-basis. The trick [Pol07,

Lemma 3.3.5] is to observe that V ∼= H0(A1,OA1) as a k-vector space. Proposition 4.2.1
holds for U = A1, so pullback along the first projection p′′ : Y ×A1 → Y is t-exact and hence

p′′∗(F ) ∈ D[a,b]
lc (Y × A1). The projection formula and (4.4) for U = A1 give

F ⊗k V = F ⊗k H
0(A1,OA1) ∼= p′′∗p

′′∗(F ) ∈ D[a,b](Qcoh(Y )).

This completes the proof that p∗ is t-exact and hence concludes the proof of Proposition 4.2.1.
�

4.3. Construction over an arbitrary base. We are now in a position to establish the first
main result of this section following [Pol07, Theorem 3.3.6].

Theorem 4.3.1. Let S, Y be separated schemes of finite type. Extend the t-structure on Dc(Y )
from Assumption 3.2.1 to a t-structure on D(Qcoh(Y )) using Lemma 4.1.1. Then there is a
sheaf of Noetherian t-structures on Dlc(Y × S) over S such that for any interval [a, b] that
may be infinite on one side, we have

D
[a,b]
lc (Y × S) =

{
F ∈ Dlc(Y × S) | p∗(F |Y×U ) ∈ D[a,b](Qcoh(Y ))

for any open affine U ⊆ S

}
(4.7)

where we abuse notation by writing p for the first projection from Y × U . Moreover

(i) for any finite open affine covering S =
⋃
i Ui, we have that

F ∈ D[a,b]
lc (Y × S) ⇐⇒ p∗(F |Y×Ui) ∈ D[a,b](Qcoh(Y )) for every i;

(ii) the functor p∗ : Dc(Y )→ Dlc(Y × S) is t-exact with respect to these t-structures.
(iii) Assume in addition that S is projective. Then this t-structure satisfies

F ∈ D[a,b]
c (Y × S) ⇐⇒ p∗(F ⊗ q∗Ln) ∈ D[a,b]

c (Y ) for n� 0, (4.8)

where L is any ample bundle on S and q : Y × S → S is the second projection.

Before the proof we present a compatibility result for open immersions of affine schemes.
This extends to our setting a statement from the proof of [Pol07, Theorem 3.3.6].

Lemma 4.3.2. Let j : U1 ↪→ U2 be an open immersion of affine schemes of finite type. Then

(idY ×j)∗ : Dlc(Y × U2) −→ Dlc(Y × U1)

is t-exact with respect to the t-structures on both sides given by (4.4).

Proof. We have all the elements in place to reproduce the proof of this statement from [Pol07,
Proof of Theorem 3.3.6] so we provide only an outline. Extend the t-structures on Dc(Y ) and
Dlc(Y × Ui) to t-structures on D(Qcoh(Y )) and D(Qcoh(Y × Ui)) by Lemma 4.1.1.

Step 1: For any interval [a, b] that may be infinite on one side, we prove that

D[a,b](Qcoh(Y × U2)) =
{
F ∈ D(Qcoh(Y × U2)) | p2∗F ∈ D[a,b](Qcoh(Y ))

}
,

where p2 : Y ×U2 → U2 is the first projection. We have ker p2∗ = 0 by [Stack, Tag 08I8], so it
suffices by Lemma 2.5.2 to show that p2∗ : D(Qcoh(Y × U2)) → D(Qcoh(Y )) is t-exact. This
follows exactly as in the proof of [Pol07, Theorem 3.3.6].

Step 2: We now claim that

D60(Qcoh(Y × U1)) = (idY ×j)∗D60(Qcoh(Y × U2)). (4.9)
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Indeed, for F ∈ D[a,b](Qcoh(Y × U1)), we have p2∗((idY ×j)∗F ) = p1∗F ∈ D[a,b](Qcoh(Y )),

and hence (idY ×j)∗F ∈ D[a,b](Qcoh(Y ×U2)) by Step 1. Equation (4.2) and adjunction now
imply

D60(Qcoh(Y × U2)) ⊆ {F | Hom((idY ×j)∗F,D>1(Qcoh(Y × U1))) = 0},
so the right-hand side of (4.9) is contained in the left. The opposite inclusion follows because
each F ∈ D60(Qcoh(Y × U1)) satisfies F = (idY ×j)∗(idY ×j)∗F ∈ (idY ×j)∗D60(Qcoh(Y ×
U2)).

Step 3: Lemma 4.1.1 gives

D60(Qcoh(Y × U1)) = p-aD(Qcoh(Y×U1))[[D
60
lc (Y × U1)]]. (4.10)

Pulling back along idY ×j commutes with extensions and left shifts, and it respects coproducts
(see [Nee01, Proposition 1.21]), so Step 2 gives

D60(Qcoh(Y × U1)) = p-aD(Qcoh(Y×U1))[[(idY ×j)∗D
60
lc (Y × U2)]]. (4.11)

Equation (2.4) shows that (idY ×j)∗D60
lc (Y × U2) is an aisle in Dlc(Y × U1) which by (4.11)

extends to a t-structure on D(Qcoh(Y × U1)). On the other hand, D60
lc (Y × U1) is an aisle

in Dlc(Y × U1) which extends to the same t-structure on D(Qcoh(Y × U1)) by (4.10). In
particular, Remark 4.1.2 implies that these t-structures coincide as desired. �

Proof of Theorem 4.3.1. Given a finite open affine cover S =
⋃
i Ui, Proposition 4.2.1 deter-

mines a sheaf of t-structures on Dlc(Y × Ui) over Ui for each i. For any pair i, j and for any
open affine V ⊆ (Ui ∩ Uj) of finite type, restricting from Dlc(Y × Ui) and Dlc(Y × Uj) gives
two a priori different sheaves of t-structures on Dlc(Y × V ). These agree by Lemma 4.3.2,
and Lemma 2.6.2 gives a unique sheaf of t-structures on Dlc(Y × S) over S that, by (4.4), is
characterised by the condition from Theorem 4.3.1(i). This t-structure is independent of the
choice of open cover because property (4.7) follows from Theorem 4.3.1(i), Proposition 4.2.1,
Lemma 4.3.2 and Lemma 2.6.2.

To see that this t-structure is Noetherian, the restriction of any ascending chain of subob-

jects in D
[0,0]
lc (Y × S) is an ascending chain of subobjects in D

[0,0]
lc (Y × Ui). This latter chain

stabilises by Proposition 4.2.1, and since the open cover is finite, the original chain stabilises.
Finally, to show that p∗ is t-exact, write pi : Y × Ui → Y and p : Y × S → Y for the first

projections. If F ∈ D[a,b]
c (Y ), then Proposition 4.2.1 gives p∗(F )|Y×Ui = p∗iF ∈ D

[a,b]
c (Y × Ui)

for each i, and hence p∗F ∈ D[a,b]
lc (Y × S) because we have a sheaf of t-structures over S.

For the final statement, let S be projective. Recall from Proposition 3.1.4 that F ∈ D(Y ×S)
has compact support if and only if p∗(F ⊗ q∗Ln) ∈ Dc(Y ) for n � 0. First, reduce to the
case when L is very ample using Lemma 2.6.4. In this case, let i : S → Pr be the closed
immersion such that L = i∗O(1). Given the sheaf of t-structures on Dc(Y × Pr) over Pr from
Theorem 3.4.3, pullback along the closed immersion idY ×i using Lemma 4.2.2 to obtain a
sheaf of Noetherian t-structures on Dc(Y × S) over S. To see that this coincides with the
above t-structure, take an open affine cover of S, confirm that Theorem 4.3.1(i) holds, and
apply Lemma 2.6.2. �

4.4. The open heart property. Let Y and S be a separated schemes of finite type, and
consider the sheaf of Noetherian t-structures on Dlc(Y ×S) over S from Theorem 4.3.1. For any
subset V ⊆ S that is either open or closed, let AV denote the heart of the induced t-structure
on Dlc(Y × V ) and let H i

V (F ) denote the i-th cohomology of an object F ∈ Dlc(Y × V ).

Lemma 4.4.1. Let T ⊂ S be an effective Cartier divisor. Any object F ∈ D
[a,b]
lc (Y × S)

satisfies F |Y×T ∈ D[a−1,b]
lc (Y × T ).

Proof. Let i : T ↪→ S denote the closed immersion, and let f ∈ H0(OS(T )) be a defining

section for T . Lemma 2.6.4 implies that F ⊗ q∗OS(−T ) ∈ D[a,b]
lc (Y × S). Since

F ⊗ q∗OS(−T )
·f−→ F −→ (id×i)∗(F |Y×T ) (4.12)
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is an exact triangle in Dlc(Y ×S), it follows from the cone construction that (id×i)∗(F |Y×T ) ∈
D

[a−1,b]
lc (Y × S). The result follows from Lemma 4.2.2. �

Recall from [AP06, Definition 3.1.1] that an object F ∈ AS is S-torsion if it is the pushfor-
ward of an object E ∈ D(Y × T ) for some closed subscheme T in S. Equivalently, for every
effective Cartier divisor D ⊂ S containing T with defining section f ∈ H0(OS(D)), there is
an integer k such that the morphism fk : F → F ⊗ q∗OS(kD) is zero. We say that F ∈ AS
is S-torsion-free if it contains no nonzero S-torsion subobject. The next result follows [AP06,
Lemma 3.3.4].

Lemma 4.4.2. Let T ⊂ S be an effective Cartier divisor, and let E ∈ AS. If H0
T (E|Y×T ) = 0

then there is an open neighborhood T ⊆ U ⊆ S such that E|Y×U = 0.

Proof. The support of E is closed, so it suffices to prove that E|Y×T = 0. Let f ∈ H0(OS(T ))
be a defining section for T . Since the abelian category AS is Noetherian, there is a maximal
S-torsion subobject Etor ⊂ E supported in T and a short exact sequence

0 −→ Etor −→ E −→ F −→ 0

in AS . By restricting to Y × T and applying Lemma 4.4.1, we obtain an exact triangle

Etor|Y×T −→ E|Y×T −→ F |Y×T , (4.13)

all of whose terms lie in D
[−1,0]
lc (Y × T ). It suffices to prove that F |Y×T = 0 = Etor|Y×T .

First consider F |Y×T . Since H0
T (E|Y×T ) = 0, the cohomology sequence for (4.13) implies

that H0
T (F |Y×T ) = 0. We claim that H−1

T (F |Y×T ) = 0, in which case F |Y×T = 0. For this, the
morphism F ⊗ q∗OS(−T )→ F in the category AS is injective because F is S-torsion-free. It
follows from (4.12) that (id×i)∗(F |Y×T ) is the cokernel and hence also lies in AS . We obtain
F |Y×T ∈ AS by Lemma 4.2.2, so H−1

T (F |Y×T ) = 0 which proves the claim.
It remains to show that Etor|Y×T = 0. Since F |Y×T = 0, we may assume from the

beginning that E is S-torsion with support in T . Let k > 0 be the minimal value such
that E is annihilated by fk. Lemma 4.4.1 and the assumption H0

T (E|Y×T ) = 0 imply that

E|Y×T ∈ D[−1,−1]
lc (Y ×T ), so (id×i)∗(E|Y×T ) ∈ D[−1,−1]

lc (Y ×S) by Lemma 4.2.2. In particular,
H0
S((id×i)∗(E|Y×T )) = 0, so the cohomology sequence for the exact triangle

E ⊗ q∗OS(−T )
·f−→ E −→ (id×i)∗(E|Y×T )

shows that the morphism E⊗ q∗OS(−T ) = H0
S(E⊗ q∗OS(−T ))

·f−→ H0
S(E) = E is surjective.

If k > 0, then fk−1 annihilates f(E ⊗ q∗OS(−T )) = E which contradicts minimality of k, so
k = 0 and hence E|Y×T = 0. �

The next result extends [AP06, Proposition 3.3.2] and [Pol07, Proposition 2.3.7] to our
setting.

Proposition 4.4.3 (The open heart property). Let Y and S be separated schemes of finite
type, and let T ⊂ S be a local complete intersection. Let F ∈ Dlc(Y × S). If F |Y×T ∈ AT ,
then there is an open neighborhood T ⊆ U ⊆ S such that F |Y×U ∈ AU .

Proof. It suffices to prove the statement under the additional assumption that T is an effective
Cartier divisor in S, as an induction on the codimension of T in S proves the general case.

Let a, b ∈ Z be such that F ∈ D[a,b]
lc (Y × S) with b > 0. We proceed in two steps:

Step 1: We find an open neighbourhood T ⊆ U ⊆ S such that F |Y×U ∈ D[a,b−1]
lc (Y × U),

and hence by induction, shrinking U at each step if necessary, we deduce that F |Y×U ∈
D

[a,0]
lc (Y × U). For this, restrict a truncation exact triangle for F restrict to Y × T to obtain

an exact triangle

τ6b−1F |Y×T −→ F |Y×T −→ Hb
S(F )[−b]|Y×T . (4.14)
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Lemma 4.4.1 gives τ6b−1F |Y×T ∈ D[a−1,b−1]
lc (Y ×T ), so the long exact sequence in cohomology

for (4.14) gives

H0
T

(
Hb
S(F )|Y×T

)
= Hb

T

(
Hb
S(F )|Y×T [−b]

)
= Hb

T (F |Y×T ) = 0

because b > 0. Applying Lemma 4.4.2 gives an open neighbourhood T ⊆ U ⊆ S such that

Hb
S(F )|Y×U = 0, and hence F |Y×U ∈ D[a,b−1]

lc (Y × U) as required.

If a = 0 then we’re done. Otherwise, a < 0 and we proceed to:

Step 2: We show that τ6−1F |Y×T = 0. On one hand we have τ6−1F |Y×T ∈ D[a−1,−1]
lc (Y ×T )

by Lemma 4.4.1. On the other hand, restricting a truncation exact triangle for F to Y × T
gives

τ6−1F |Y×T −→ F |Y×T −→ H0
S(F )|Y×T , (4.15)

Applying Lemma 4.4.1 to H0
S(F ) gives H0

S(F )|Y×T ∈ D[−1,0]
lc (Y × T ), and since F |Y×T ∈ AT

holds by assumption, the exact triangle (4.15) shows that the object

τ6−1F |Y×T = cone(F |Y×T → H0
S(F )|Y×T )[−1]

lies in D
[0,1]
lc (Y × T ). These two statements force τ6−1F |Y×T = 0 as claimed.

To conclude, the support of τ6−1F is closed in S, so there exists an open neighbourhood
T ⊆ U ⊆ S such that τ6−1F |Y×U = 0. Thus F |Y×U = H0

S(F )|Y×U ∈ AS as required. �

5. Numerical Bridgeland stability conditions for compact support

The goal of this section is to provide the right setting for stability conditions for objects
with compact support on a non-compact quasi-projective variety Y . Note that the K-group
of Dc(Y ) almost always has infinite rank (for example, skyscraper sheaves of points that do
not lie on proper subvarieties of positive dimension have linearly independent classes), and
yet the numerical K-group of Dc(Y ) is not defined when Y is singular. Even when Y is
smooth, the class of skyscraper sheaves of points is 0, so Dc(Y ) is unlikely to admit numerical
stability conditions (where one requires that the central charge factors via the numerical
Grothendieck group). To get around these problems, many authors (see Section 1.5) have
instead considered stability conditions on DZ(Y ), the derived category with objects supported
on a proper subvariety Z ⊂ Y . However, this does not lead to moduli spaces of finite type:
even the moduli space of skyscraper sheaves of points would be the completion of Y at Z.

We therefore propose to use a variant of the numerical Grothendieck group of Dc(Y ), defined
via the Euler pairing with perfect complexes.

5.1. Numerical Grothendieck groups. Let Y be a separated scheme of finite type over k.
For any objects E ∈ Dperf(Y ) and F ∈ Dc(Y ), the vector space

⊕
i HomD(Y )(E,F [i]) is of

finite dimension over k. The Euler form

χY : K(Dperf(Y ))×K(Dc(Y ))→ Z

between the Grothendieck groups of these categories is the bilinear form given by

χY (E,F ) =
∑
i∈Z

(−1)i dimk Hom(E,F [i]). (5.1)

The quotient of K(Dperf(Y )) and K(Dc(Y )) with respect to the kernel of χ on each factor
defines the numerical Grothendieck groups Knum

perf (Y ) and Knum
c (Y ) respectively, and we use

the same notation

χY : Knum
perf (Y )×Knum

c (Y )→ Z
for the induced perfect pairing. Our interest lies in studying the categoryDc(Y ) when Knum

c (Y )
has finite rank. Here we present a sufficient condition for this to hold.

Lemma 5.1.1. Let Y be a normal, quasi-projective scheme of finite type over a field k of
characteristic zero. Then Knum

c (Y ) has finite rank.
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Proof. First assume that Y is smooth. We may choose a smooth projective completion Y of
Y . Write j : Y → Y for the open immersion. Let E,E′ ∈ Dc(Y ) satisfy [E] = [E′] ∈ Knum

c (Y ).
For any P ∈ Dperf(Y ), we have

χY (P, j∗E) = χY (j∗P,E) = χY (j∗P,E′) = χY (P, j∗E
′)

by adjunction, so the map j∗ : Knum
c (Y )→ Knum(Y ) given by j∗([E]) = [j∗E] is well-defined.

We claim that j∗ is injective. Indeed, let E,E′ ∈ Dc(Y ) satisfy [j∗E] = [j∗E
′] ∈ Knum(Y ).

Each P ∈ Dperf(Y ) is of the form j∗P = P for some P ∈ Dperf(Y ) by [Pol07, Lemma 2.3.1],
so

χY (P,E) = χY (j∗P ,E) = χY (P , j∗E) = χY (P , j∗E
′) = χY (j∗P ,E′) = χY (P,E′).

It follows [E] = [E′] ∈ Knum
c (Y ) as required. Since Y is smooth and projective, the numerical

Grothendieck group Knum(Y ) = Knum
c (Y ) has finite rank by Hirzebruch-Riemann-Roch.

Now assume that Y has normal singularities. Let π : Y ′ → Y be a resolution of singularities.
Write π∗ : CohY ′ → CohY and π∗ : CohY ′ → CohY for the underived pushforward and
pullback respectively. Since Y is normal, we have π∗OY ′ = OY . Pushforward and pullback
gives a pair of adjoint functors Dc(Y

′) → Dc(Y ) and Dperf(Y
′) → Dperf(Y ), and thus an

induced map Knum
c (Y ′) → Knum

c (Y ). By the (underived) projection formula, the functor π∗
is essentially surjective. Since Knum

c (Y ) is generated by classes of coherent sheaves, it follows
that the map Knum

c (Y ′)→ Knum
c (Y ) is surjective. �

Remark 5.1.2. From now on, we assume for simplicity that Knum
c (Y ) has finite rank. All

our arguments work equally well if we assume instead that the central charge of each sta-
bility condition on Dc(Y ) factors through a fixed finite rank lattice Λ via a homomorphism
α : Knum

c (Y )→ Λ.

5.2. Stability conditions for compact support. We assume that the reader is familiar
with the notion of stability condition as introduced in [Bri07], in particular the notion of
slicing. We note that typically the category Dc(Y ) is decomposable into infinitely many
factors; indeed, any closed point y ∈ Y that does not lie on a proper subvariety of positive
dimension of Y gives rise to such a factor. Hence, instead of applying the notion of stability
condition verbatim to the category Dc(Y ), we restrict to the situation where Knum

c (Y ) is a
finite rank lattice and we allow only central charges that factor through Knum

c (Y ).

Definition 5.2.1. Assume that Knum
c (Y ) has finite rank. A numerical stability condition for

compact support on Y is a pair (Z,P), where Z : Knum
c (Y ) → C is a group homomorphism

and P is a slicing of Dc(Y ), such that the following properties hold:

(i) For any φ ∈ R and any non-zero E ∈ P(φ), we have Z([E]) ∈ R>0 · eπiφ; and
(ii) There exists a quadratic form Q on Knum

c (Y )⊗ R such that:
• for any φ ∈ R and any E ∈ P(φ), we have Q([E]) ≥ 0; and
• Q is negative definite on KerZ ⊆ Knum

c (Y )⊗ R.

Let Stab(Dc(Y )) denote the space of numerical stability conditions for compact support on
Y .

The deformation results of Bridgeland [Bri07] extend to this setting (see e.g. [BMS14,
Appendix A] for a discussion under the assumptions as formulated above); in particular,
Stab(Dc(Y )) is a complex manifold of dimension equal to the rank of Knum

c (Y ).
Moreover, the results of [Bri08, Section 9] carry over completely to give a wall-and-chamber

structure on Stab(Dc(Y )) for any given class v ∈ Knum
c (Y ). More precisely, there exists a

locally finite set of walls (real codimension one submanifolds) such that the set of σ-semistable
objects of class v does not change as σ varies within a connected component of the complement
of walls (called a chamber), and such that on every wall there exist strictly semistable objects
that become unstable on one side of the wall.
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6. The linearisation map with compact support

The goal of this section is to prove the main result. Let Y and S be separated schemes of
finite type, and write p : Y × S → Y and q : Y × S → S for the first and second projection
respectively.

6.1. The linearisation map. For any closed point s ∈ S, define Ys := Y × {s} and write
iY×{s} : Ys → Y × S for the closed immersion. For E ∈ D(Y × S), we identify Ys ∼= Y and let

Es := i∗Y×{s}E ∈ D(Y )

denote the derived pullback of E to Ys.

Definition 6.1.1. Let A ⊂ Dc(Y ) be the heart of a bounded t-structure on Dc(Y ). An S-
perfect object E ∈ D(Y ×S) is a flat family over S with respect to A if there exists v ∈ Knum

c (Y )
such that Es ∈ A and [Es] = v for every closed point s ∈ S. When we wish to make the reference
to v explicit, we call this a flat family of class v over S with respect to A.

Remark 6.1.2. When Y is proper and S is connected, the condition that [Es] = v for every
closed point s ∈ S and some v ∈ Knum

c (Y ) is superfluous, because the class [Es] ∈ Knum
c (Y )

is constant over S. Thus, our notion of flat family generalises the standard one, see [BM14b,
Definition 3.1].

Definition 6.1.3. Let S, Y be separated and of finite type over k. Let (Z,P) be a numerical
Bridgeland stability condition for compact support on Y in the sense of Definition 5.2.1. We
say that E ∈ D(Y × S) is a family of semistable objects of class v ∈ Knum

c (Y ) if E is a flat
family over S with respect to P((φ, φ+ 1]) of class v for some φ ∈ R, and if in addition each
object Es is semistable with respect to (Z,P).

Assume that S is separated and of finite type over k. Let N1(S) denote the vector space of
real Cartier divisor classes modulo numerical equivalence; here numerical equivalence is taken
with respect to proper curves C ⊂ S. Dually, N1(S) denotes the space of proper 1-cycles in S
modulo numerical equivalence (with respect to Cartier divisor classes on S). Let [C] ∈ N1(S)
denote the class of a 1-cycle.

Theorem 6.1.4. Let S, Y be separated schemes of finite type. Assume that Knum
c (Y ) has finite

rank. Let σ = (Zσ,Pσ) be a numerical Bridgeland stability condition for compact support on
Y , and let E be a family of σ-semistable objects of class v ∈ Knum

c (Y ). Assume that the support
of E is proper over S. There is a nef Cartier divisor class `E,σ ∈ N1(S) on S, defined dually
by

`E,σ
(
[C]
)

= =

(
Zσ(ΦE(OC)

)
−Zσ(v)

)
∈ Hom(N1(S),R) ∼= N1(S). (6.1)

Moreover, `E,σ([C]) = 0 if and only if for two general closed points c, c′ ∈ C, the corresponding
objects Ec, Ec′ ∈ Dc(Y ) are S-equivalent.

In fact, for a fixed family E , equation (6.1) defines a numerical Cartier divisor on S for any
numerical stability condition for compact support on Y . The resulting map

`E : Stab(Dc(Y ))→ N1(S)

obtained by sending a stability condition σ′ to the divisor class `E,σ′ is the linearisation map
of the family E .

We present the proof of Theorem 6.1.4 in two stages. We first prove that the linearisation
map is well-defined, postponing until the next subsection the proof of the positivity statements.

Lemma 6.1.5. The assignment of (6.1) defines a numerical Cartier divisor class `E,σ ∈
N1(S).

Lemma 6.1.6. Let S, Y be schemes of finite type. Let E ∈ Dlc(Y × S) be S-perfect and let
F ∈ Dperf(Y ). For any proper subscheme i : T ↪→ S, we have

χY
(
F, p∗(E ⊗ q∗i∗OT )

)
= χT

(
i∗q∗(E ⊗ p∗F∨)

)
. (6.2)
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Proof. Use the projection formula repeatedly to obtain

χY (F, p∗(E ⊗ q∗i∗OT ) = χY (F∨ ⊗ p∗(E ⊗ q∗i∗OT ))

= χY (p∗(p
∗F∨ ⊗ E ⊗ q∗i∗OT ))

= χS(q∗(p
∗F∨ ⊗ E ⊗ q∗i∗OT ))

= χS(q∗(E ⊗ p∗F∨)⊗ i∗OT )

= χS(i∗(i
∗q∗(E ⊗ p∗F∨)))

= χT (i∗q∗(E ⊗ p∗F∨))

as required. �

Proof of Lemma 6.1.5. Note first that the integral functor ΦE : Dc(S)→ Dc(Y ) is well-defined
by Proposition 2.4.2. Since the stability condition is assumed to be numerical, we can choose
Pi ∈ Dperf(Y ) and ai ∈ R for 1 6 i 6 m such that

m∑
i=1

aiχY (Pi,−) = = Zσ(−)

−Zσ(v)
∈ Hom(Knum

c (Y ),R) and χY (Pi,v) = 0 for all i.

It is sufficient to show that for each i, there exists a Cartier divisor class Li on S, such that

χY (Pi,ΦE(OC)) = Li.C (6.3)

for all projective curves C ⊆ S. Proposition 2.4.2 gives ΨE(P
∨
i ) := q∗(E ⊗ p∗P∨i ) ∈ Dperf(S).

We claim that the object ΨE(P
∨
i ) has rank zero. Indeed, for any closed point s ∈ S, apply

Lemma 6.1.6 to the closed immersion i : Speck(s) ↪→ S to obtain

rk
(
ΨE(P

∨
i )
)

= χSpec k(s)(i
∗q∗(E ⊗ p∗P∨i )) = χY (Pi, p∗(E ⊗ q∗i∗k(s))) = χY (Pi,v) = 0.

Now apply Lemma 6.1.6 to the closed immersion i : C ↪→ S and deduce from Riemann–Roch
that

χY (Pi,ΦE(OC)) = χC(C, i∗ΨE(P
∨
i )) = 0 · (1− g(C)) + deg ΨE(P

∨
i )|C = deg ΨE(P

∨
i )|C .

Since ΨE(P
∨
i ) is perfect, it has a determinant line bundle Li by [KM76]. By the compatibility

of the determinant construction with restriction to C we conclude Li.C = deg ΨE(P
∨
i )|C and

thereby also equation (6.3). �

6.2. Positivity. We now establish the positivity statements from Theorem 6.1.4, and for this
we follow closely the approach of [BM14b, Section 3].

We continue to work under the assumptions of Theorem 6.1.4. In particular, Dc(Y ) carries
a Noetherian bounded t-structure with heart A. For any proper curve C ⊆ S, we obtain a
sheaf of Noetherian t-structures on Dlc(Y × C) over C by Theorem 4.3.1. Write AC for the
heart of this t-structure.

Lemma 6.2.1. Given the assumptions of Theorem 6.1.4, let C ⊆ S be a proper curve and
let EC denote the derived restriction of E to Y × C. Then EC ∈ AC . Moreover, for any line
bundle L of sufficiently high degree on C, we have ΦE(L) ∈ A.

Proof. The support of EC is proper over C, so the object EC ∈ D(Y × C) has left-compact
support by Lemma 2.3.2 because C is proper. In particular, the object EC ∈ Dlc(Y × C)
satisfies the open heart property from Proposition 4.4.3. The first statement now follows
as in [BM14b, Lemma 3.5], where we use the integral functor ΦEC : D(C) → Dc(Y ) from
Proposition 2.4.2. The projection formula and flat base change give that ΦE(F ) = ΦEC (F )
for any F ∈ D(C). The proof of [BM14b, Lemma 3.6] applies verbatim to give the second
statement. �

Proof of Theorem 6.1.4. For any σ ∈ Stab(Dc(Y )), we may assume that Zσ(v) = −1 using
the C-action on Stab(Dc(Y )).

We first prove that the numerical divisor class `E,σ ∈ N1(S) is nef. Let C be a proper curve
in S. As in [BM14b, Proposition 3.2], it is straightforward to show that the value of `E,σ([C])
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from (6.1) is unchanged if we replace OC by any line bundle L on C. In particular, if L is of
sufficiently high degree on C, Lemma 6.2.1 gives ΦE(L) ∈ A and hence

`E,σ · C = =
(
Zσ(ΦE(OC))

)
= =

(
Zσ(ΦE(L)))

)
> 0

as required, because Zσ sends objects of A to the semi-closed upper half plane.
To prove the second statement, suppose first that `E,σ ·C = 0. For any smooth point c ∈ C

and for any L ∈ Pic(C) of sufficiently high degree, applying ΦE to the short exact sequence

0 −→ L(−c) −→ L −→ k(c) −→ 0

and invoking Lemma 6.2.1 gives a short exact sequence

0 −→ ΦE(L(−c)) −→ ΦE(L) −→ Ec −→ 0.

of objects in A. We have 0 = `E,σ · C = =Zσ(ΦE(L)) and Zσ(v) = −1, so both ΦE(L) and
Ec have phase 1. Since Ec is a quotient of ΦE(L) in A, each Jordan–Hölder factor of Ec is a
Jordan–Hölder factor of ΦE(L). The latter factors don’t depend on the choice of the smooth
point c ∈ C. Since k is an infinite field, [BM14b, Lemma 3.7] implies that Ec is S-equivalent
to Ec′ for any c, c′ ∈ C. For the other direction, assume Ec is S-equivalent to Ec′ for any two
general closed points c, c′ ∈ C. The analogue of [BM14b, Lemma 3.9] gives a filtration of
E|C×Y of length n, say, whose successive quotients are of the form p∗Fi ⊗ q∗Li, where each
Li ∈ Pic(C) and each Fi ∈ AY has phase 1. The projection formula, flat base change give

Zσ(ΦE(OC)) =
n∑
i=1

Zσ(Fi ⊗ p∗q∗Li) =
n∑
i=1

Zσ(Fi ⊗RΓ(Li)) =
n∑
i=1

χC(Li)Zσ(Fi),

which lies on the real axis. Therefore `E,σ([C]) = 0 as required. �

Proof of Theorem 1.2.1. This is immediate from Lemma 5.1.1 and Theorem 6.1.4. �

6.3. A geometric condition to ensure proper support. The goal of this subsection is
to show that one of the assumptions of Theorem 6.1.4, namely that the universal family has
proper support over S, holds for moduli spaces of simple objects when Y is semi-projective.

We continue to assume that all our schemes are separated and of finite type over k.

Proposition 6.3.1. Assume that Y admits a proper morphism τ : Y → X to an affine scheme
X. Choose a nonzero class v ∈ Knum

c (Y ), and let E be a flat family of class v over S with
respect to some bounded t-structure on Dc(Y ). Assume that for all closed points s ∈ S, the
object Es satisfies Hom(Es, Es) = k. Then E has proper support over S.

We begin with two Lemmas, for which we make the same assumptions as in Proposition
6.3.1.

Lemma 6.3.2. Let s ∈ S be any closed point. Then Supp(Es) is connected and τ(Supp(Es))
is a single closed point in Xs := X × {s}.

Proof. If Supp(Es) is disconnected, we can write Es = E ′s ⊕ E ′′s where the summands have
disjoint support; this contradicts the assumption that Es has only k as endomorphism. Simi-
larly, assume that τ(Supp(Es)) contains more than one point. Since X is affine, there exists a
function on X whose pullback to Y acts on one of the cohomology sheaves of Es as an endo-
morphism that is not proportional to the identity. Thus it induces a non-trivial map Es → Es
which is absurd. �

Let τS := τ×idS : Y ×S → X×S, and consider W := τS(Supp(E)) as a topological subspace
of X×S. Note that by Lemma 2.1.2(ii), the formation of W commutes with base change. The
induced map of topological spaces q : W → S is bijective on closed points by Lemma 6.3.2.

Lemma 6.3.3. Assume additionally that S is irreducible. Then W is irreducible.
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Proof. Assume that W is reducible. If S′ ⊆ S is any open or closed subscheme that intersects
the images of two different irreducible components of W , then W is still reducible after base
change to S′. We may therefore assume that S is affine, and one-dimensional. After base
change to the normalisation, we may assume that S is a smooth affine curve.

Since q is injective, there is an irreducible component of W that maps to a point s ∈ S.
It follows that this component is a point, and is therefore a connected component of W ;
consequently, E = E0 ⊕ E ′ where the support of E0 is contained in Y × {s} for some closed
point s ∈ S, and the support of E ′ is disjoint from Y × {s}.

Let is : Y × {s} → Y × S be the inclusion. We claim that [i∗sE ] = 0 in Knum
c (Y ), in

contradiction to our assumption. Replacing S by an open subset if necessary, we may assume
that s ∈ S is the scheme-theoretic zero locus of a regular function f ∈ H0(OS). Each
cohomology sheaf Hj(E0) has a filtration 0 ⊂ kerf ⊆ kerf2 ⊆ . . . whose successive quotients
are isomorphic to the pushforward (is)∗F of a coherent sheaf F on Y . Restricting the short
exact sequence

F �OS
·f−→ F �OS → (is)∗F

to Y × {s} shows that the class of i∗s(is)∗F in the K-group of Dc(Y ) vanishes. Since E0 is a
successive extension of its (finitely many nonzero) cohomology sheaves Hj(E0), the same holds
for the class of i∗sE0. However, this is absurd because [i∗sE0] = [i∗sE ] = v 6= 0 in Knum

c (Y ). �

Proof of Proposition 6.3.1. We first claim that the bijective morphism q : W → S is a homeo-
morphism. As this can be checked after base change to the normalisation of S, we may assume
that S is normal and irreducible. By Lemma 6.3.3, W is irreducible. Let W be the reduced
subscheme W ⊆ X × S; then the induced morphism q : W → S is a bijective map of varieties
over k, with S normal. Since k is algebraically closed of characteristic zero, the dominant
morphism q is birational. The original form of Zariski’s main theorem implies that q is an
open immersion, so it’s an isomorphism and hence a homeomorphism.

The claim implies that W is proper over S. Indeed, the base change of a homeomorphism is
also a homeomorphism, so q is universally closed. Since τS is proper, and Supp(E) is a closed

subset of τ−1
S (W ), it follows that the support of E is proper over S. �

7. On schemes admitting a tilting bundle

The goal of this section is to prove Theorem 1.4.1. To this end, we slightly modify the
standard set-up for stability conditions for quiver algebras of finite global dimension: rather
than working with the category of nilpotent representations, we work with representations
that are finite-dimensional over k, but insist that the central charge factors via a variant of
the numerical Grothendieck group, see Section 7.1; this is analogous to our set-up in Section
5. In fact, when Y admits a tilting bundle, we show that these notions yield a compatible
notion of stability conditions in Section 7.2, a compatible notion of flat families in Section
7.3, and finally compatible nef and semiample line bundles in the sense of Theorem 1.4.1 in
Section 7.4.

7.1. Stability conditions for quiver algebras. Let Q be a quiver where both the vertex set
Q0 and the arrow set Q1 are finite. The path algebra kQ is graded by path length; we do not
require that Q is acyclic, so kQ may be infinite-dimensional as a k-vector space. A k-algebra
A is called a quiver algebra if there exists a quiver Q and a two-sided ideal I ⊂ kQ generated
by linear combinations of paths of length at least one, such that A ∼= kQ/I. For each vertex
i ∈ Q0, let ei ∈ A denote the idempotent corresponding to the trivial path at vertex i, and let
Si := eikei denote the corresponding vertex simple A-module. The indecomposable projective
A-module Pi := Aei corresponds to paths in Q emanating from vertex i.

Let D(A) and Dfin(A) denote the bounded derived categories of finitely-generated A-
modules and finite-dimensional A-modules respectively, and let K(A) and Kfin(A) respectively
denote the Grothendieck groups of these categories. The Euler form χA : K(A)×Kfin(A)→ Z
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is

χA(E,F ) =
∑
i∈Z

(−1)i dimk ExtiA(E,F ).

We write Knum(A) for the quotient Kfin(A)/K(A)⊥; by abuse of language, we call it the
numerical Grothendieck group of Dfin(A).

Lemma 7.1.1. Let A be a quiver algebra of finite global dimension. Then K(A) =
⊕

i∈Q0
Z[Pi],

Knum(A) =
⊕

i∈Q0
Z[Si], and there is a perfect pairing χA : K(A)×Knum(A)→ Z.

Proof. Since A has finite global dimension, the Grothendieck group K(A) is generated by the
indecomposable projective A-modules, giving a surjective map f :

⊕
i∈Q0

Z[Pi]→ K(A). The

dimension vector gives a homomorphism Kfin(A)→ Z|Q0| such that {[Si]}i∈Q0 is the preimage
of the standard basis, so the free abelian group

⊕
i∈Q0

Z[Si] is a subgroup of Kfin(A). Since

ExtkA(Pj , Si) =

{
k for k = 0 and i = j;
0 otherwise

, (7.1)

the map g : K(A) → (
⊕

i∈Q0
Z[Si])

∨ sending [Pi] to χA(Pi,−) is surjective. Thus g ◦ f and

hence f are isomorphisms, giving K(A) ∼=
⊕

i∈Q0
Z[Pi]. Equation (7.1) shows

⊕
i∈Q0

Z[Si] is

isomorphic to its image in Knum(A), and that K(A)/Kfin(A)⊥ is isomorphic to
⊕

i∈Q0
Z[Pi].

The perfect pairing
⊕

i∈Q0
Z[Pi]×Knum(A)→ Z induced by χA gives Knum(A) ∼=

⊕
i∈Q0

Z[Si].
�

Remark 7.1.2. We simplify notation by writing θ(v) := χA(θ, v) for θ ∈ K(A) and v ∈
Knum(A).

Fix once and for all a dimension vector v :=
∑

i∈Q0
vi[Si] ∈ Knum(A). Consider the vector

subspace of K(A)⊗Z R given by

Θv := v⊥ =
{
θ ∈ Hom(Knum(A),R) | θ(v) = 0

}
.

For θ ∈ Θv, an A-module M of class v ∈ Knum(A) is θ-semistable if θ(N) > 0 for every
nonzero proper A-submodule N of M . The notion of θ-stability is defined by replacing > with
>; if v is primitive, we say θ ∈ Θv is generic if every θ-semistable A-module is θ-stable. The
choice of dimension vector v ∈ Knum(A) therefore determines a wall and chamber structure
on the space Θv of stability parameters, where two generic parameters θ, θ′ ∈ Θv lie in the
same chamber if and only if the notions of θ-stability and θ′-stability coincide.

For any integral parameter θ ∈ Θv, King [Kin94] constructs the coarse moduli space
MA(v, θ) of S-equivalence classes of θ-semistable A-modules of dimension vector v as a GIT
quotient

MA(v, θ) = X//χθG,

where X is an affine scheme, G =
(∏

i∈Q0
GL(vi)

)
/k×, and χθ ∈ G∨ is a character determined

by θ. In particular, MA(v, θ) is projective over an affine, where the polarising ample line
bundle L(θ) on MA(v, θ) descends from the linearisation of OX by χθ. Note that MA(v, θ)
is projective when the quiver Q is acyclic.

If the dimension vector v ∈ Knum(A) is indivisible and if θ ∈ Θv is generic, then MA(v, θ)
coincides with the fine moduli space MA(v, θ) of isomorphism classes of θ-stable A-modules
of class v. The universal family on MA(v, θ) is a locally free sheaf T =

⊕
i∈Q0

Ti together

with a k-algebra homomorphism A→ End(T ), such that the fibre of T at any closed point of
MA(v, θ) is the corresponding θ-stable A-module of dimension vector v.

Let A denote the abelian category of finite-dimensional A-modules, so A is the heart of the
standard t-structure on Dfin(A). Define

Λ :=
{
λ ∈ Hom(Knum(A),R) | λ([Si]) > 0 for all i ∈ Q0

}
.

For M ∈ A, we have λ(M) > 0 for all λ ∈ Λ, where equality holds iff M = 0. The next results
extend the observation of Bridgeland [Bri07, Example 5.5] on finite-dimensional algebras.
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Lemma 7.1.3. For θ ∈ Θv, λ ∈ Λ and ξ ∈ R, define Zθ,λ,ξ : Knum(A)→ C by setting

Zθ,λ,ξ(M) := θ(M) +
(√
−1 + ξ

)
· λ(M).

Then σθ,λ,ξ := (Zθ,λ,ξ,A) is a Bridgeland stability condition on Dfin(A), satisfying the support
property with respect to Knum(A).

Proof. For θ ∈ Θv, the image under Zθ,λ,ξ of any nonzero object of A lies in the upper half
plane, so Zθ,λ,ξ is a stability function on A. Objects of A have finite dimension over k,
so Harder–Narasimhan filtrations exist [Bri07, Proposition 2.4] and hence σθ,λ is a stability
condition on the bounded derived category of A, that is, on Dfin(A).

By the original definition of the support property [BMS14, Lemma A.4], we must exhibit
C > 0 such that

|Zθ,λ,ξ(E)| > C‖[E]‖

for all semistable objects E, and with respect to some norm ‖ · ‖ on Knum(A)⊗R ∼= RQ0 . We
may choose the supremum norm on RQ0 . Up to shift, any semistable object lies in the heart
A ⊂ Dfin(A), so its class in Knum(A) is a non-negative linear combination of the classes [Si] for
the simple objects for i ∈ Q0. Setting C := mini∈Q0 λ([Si]), the claim becomes evident. �

Remark 7.1.4. Since stability conditions are characterised by their heart and central charge
[Bri08, Lemma 3.5], the set of stability conditions of the form σθ,λ,ξ can be identified with the
interior of the set of stability conditions whose heart is the category A of finite-dimensional
A-modules.

Lemma 7.1.5. For θ ∈ Θv, λ ∈ Λ, ξ ∈ R, an object E ∈ Dfin(A) of class v is σθ,λ,ξ-
(semi)stable and of phase in (0, 1] if and only if it is a θ-(semi)stable A-module.

Proof. An object E ∈ Dfin(A) of class v is σθ,λ,ξ-semistable of phase in (0, 1] if and only if E
lies in the heart A, and the phase of Zθ,λ,ξ(F ) is smaller than the phase of Zθ,λ,ξ(E) for every

proper nonzero submodule F ⊂ E. Since θ(v) = 0, we have Zθ,λ,ξ(E) ∈ R>0 ·
(√
−1 + ξ

)
, so

this is equivalent to θ(F ) > 0. Thus, the σθ,λ,ξ-(semi)stable objects in Dfin(A) of class v are
precisely the θ-(semi)stable A-modules of class v. �

Let Stab(Dfin(A)) denote the space of numerical stability conditions on Dfin(A) that satisfy
the support property with respect to Knum(A). Combining the above results gives the following
picture.

Proposition 7.1.6. Let v ∈ Knum(A). Then there is a continuous map

f : Θv × Λ× R→ Stab(Dfin(A)), (θ, λ, ξ) 7→ σθ,λ,ξ (7.2)

such that for any fixed λ ∈ Λ, ξ ∈ R, the wall-and-chamber structure on Θv is obtained by
pulling back the wall-and-chamber structure on Stab(Dfin(A)) with respect to v. Moreover,
for each triple (θ, λ, ξ), the moduli stack of σθ,λ,ξ-(semi-)stable objects gets identified with the
moduli stack of θ-(semi)stable quiver representations.

When v is indivisible and θ generic, the map (7.2) gives an identification of fine moduli
spaces; otherwise, the moduli stack of σθ,λ,ξ-semistable objects of class v has MA(v, θ) as
coarse moduli space, which, as noted above, is projective over an affine.

7.2. On schemes with a tilting bundle. Let Y be a scheme that is projective over an affine
scheme. A tilting bundle on Y is a locally-free sheaf E of finite rank such that Extk(E,E) = 0
for k > 0, and such that if F ∈ D(Y ) satisfies Hom(E,F ) = 0, then F = 0. Given a tilting
bundle E, let A := End(E)op denote the algebra opposite to the endomorphism algebra of E.
Replacing A by a Morita equivalent algebra if necessary, we may assume that E =

⊕
16i6k Ei is

a finite decomposition into indecomposable summands in which Ei and Ej are non-isomorphic
for i 6= j.
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Theorem 7.2.1. Let Y be a smooth scheme that is projective over an affine scheme, and let
E be a tilting bundle on Y . Then A ∼= End(E∨) is a quiver algebra of finite global dimension,
and the derived Hom functor gives an exact equivalence

Hom(E,−) : D(Y ) −→ D(A) (7.3)

with quasi-inverse E⊗A−. Moreover, the restriction of this equivalence is an exact equivalence
between Dc(Y ) and Dfin(A).

Proof. Hille–Van den Bergh [HVdB07] establishes the equivalences and finite global dimension
of A. For the presentation of A as a quiver algebra, see Karmazyn [Kar14, Section 2.4]. �

Corollary 7.2.2. Let Y be a smooth scheme that admits a tilting bundle E =
⊕

16i6k Ei,
where Ei 6∼= Ej for i 6= j and all Ei indecomposable. Then K(Y ) =

⊕
16i6k Z[Ei] is a lattice,

and the Euler form induces a perfect pairing χY : K(Y )×Knum
c (Y )→ Z.

Proof. For A := End(E)op, Theorem 7.2.1 gives an isomorphism K(Y ) → K(A) that sends
[Ei] to [Pi] for 1 6 i 6 k, and an isomorphism K(Dc(Y ))→ K(Dfin(A)). The Euler forms χA
and χY are compatible across the equivalences, giving an isomorphism Knum

c (Y ) ∼= Knum(A).
Since Y is smooth, Theorem 7.2.1 implies that A has finite global dimension. Now apply
Lemma 7.1.1. �

The tilting equivalence identifies the space Stab(Dfin(A)) with the space of numerical sta-
bility conditions on Y for compact support in the sense of Definition 5.2.1. For any class
v ∈ Knum

c (Y ) and for any θ ∈ Θv, λ ∈ Λ and ξ ∈ R, we abuse notation and also write σθ,λ,ξ
for the resulting stability condition on Dc(Y ).

We now compute explicitly the image of σθ,λ,ξ under the linearisation map `E determined by
any flat family E . For this, let S be any separated scheme of finite type, and for any numerical
Bridgeland stability condition (Z,P) for compact support on Y , let E ∈ D(Y ×S) be a family
of semistable objects of class v ∈ Knum

c (Y ).

Lemma 7.2.3. For any v ∈ Knum
c (Y ), assume that the flat family E of semistable objects of

class v is proper over S. Then for any θ =
∑
θi[Pi] ∈ Θv, λ ∈ Λ and ξ ∈ R, we have that

`E(σθ,λ,ξ) =
1

(ξ2 + 1)λ(v)
·
∑

16i6k

θi · det
(
ΨE(E

∨
i )
)
. (7.4)

Proof. The central charge of the stability condition f(θ, λ, ξ) = σθ,λ,ξ on Dc(Y ) is identified
with the central charge Zθ,λ,ξ from Lemma 7.1.3 under the isomorphism K(Y )C → K(A)C
that sends [Ei] to [Pi] for 1 6 i 6 k. A simple calculation shows that

=
(
Zθ,λ,ξ(−)

−Zθ,λ,ξ(v)

)
=

θ(−)

(ξ2 + 1)λ(v)
.

Now, θ =
∑

16i6k θi[Pi] ∈ K(A)R is identified with
∑

16i6k θi[Ei] ∈ K(Y )R. The result follows
from the proof of Lemma 6.1.5. �

7.3. Comparison of flat families. We continue to assume that Y is a smooth scheme with
a tilting bundle E as in Corollary 7.2.2, where A = End(E∨); note that Y is projective over
an affine base. Let S be any separated scheme of finite type. Our next goal is to extend
the functor from (7.3) to obtain a natural correspondence between flat families of certain
Bridgeland-semistable objects over S on one hand, and flat families of King-semistable objects
over S on the other.

First, let P → A denote the minimal projective resolution of A as an (A,A)-bimodule.
Following Butler–King [BK99], the term of P in degree l ∈ Z is

P l =
⊕

16i,j6k

Aei ⊗ V l
i,j ⊗ ejA,

where e1, . . . , ek are the orthogonal idempotents corresponding to the summands E∨1 , . . . , E
∨
k ,

and V l
i,j = TorlA(Si, Sj) is a finite dimensional k-vector space. Set dli,j := dimk V

l
i,j .
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Let F be a locally-free sheaf on S that is also a left A-module, and write F =
⊕

i Fi for
the idempotent decomposition as an A-module. The left End(E)-module E =

⊕
iEi becomes

a right A-module, and the derived tensor product E ⊗A F is represented by the complex
E ⊗A P ⊗A F , whose term in degree l ∈ Z is the locally-free sheaf on Y × S given by

E ⊗A P l ⊗A F =
⊕

16i,j6k

Ei ⊗k V
l
i,j ⊗k Fj

=
⊕

16i,j6k

(
Ei ⊗k Fj

)⊕dli,j
=

⊕
16i,j6k

(
p∗Ei ⊗OY×S q

∗Fj
)⊕dli,j , (7.5)

where p : Y × S → Y and q : Y × S → S are the first and second projections. The maps of
the complex E ⊗A P ⊗A F are morphisms of sheaves induced by the maps of the complex P .
Note that E ⊗A F ∈ D(Y × S) because A has finite global dimension.

Proposition 7.3.1. For any v ∈ Knum
c (Y ), let θ ∈ Θv, and consider λ ∈ Λ, ξ ∈ R.

(i) Let F ∈ D(Y ×S) be a flat family of σθ,λ,ξ-(semi)stable objects of class v with respect to
A. If F is proper over S, then q∗(F⊗p∗(E∨)) ∈ D(S) is a flat family of θ-(semi)stable
A-modules of dimension vector v.

(ii) Conversely, let F ∈ D(S) be a flat family of θ-(semi)stable A-modules of dimension
vector v over S. Then E⊗AF ∈ D(Y ×S) is a flat family of σθ,λ,ξ-(semi)stable objects
of class v with respect to A.

Moreover, when the output from (ii) has proper support over S, these operations are mutually
inverse (up to quasi-isomorphism).

Proof. Let s ∈ S be a closed point. Write i : {s} ↪→ S and is : Y ×{s} → Y × S for the closed
immersions, and let qs : Y × {s} → {s} denote the second projection.

For (i), note first that q∗((p
∗E)∨⊗F) = ΨF (E∨), and that the derived pullback to s ∈ S is

i∗q∗(p
∗(E∨)⊗F) = (qs)∗(is)

∗(p∗(E∨)⊗F
)

= (qs)∗(E
∨ ⊗Fs) = HomY (E,Fs). (7.6)

We have that F ∈ D(Y × S) is S-perfect and proper over S. Since E is locally-free, Propo-
sition 2.4.2 implies that ΨF (E∨) ∈ Dperf(S). By (7.6), the derived restriction of ΨF (E∨) to
each closed point of S is concentrated in degree zero, hence so is ΨF (E∨). Thus, we’ve shown
that q∗(F ⊗ p∗(E∨)) is a locally-free sheaf on S whose fibre over each closed point s ∈ S is the
θ-semistable A-module HomY (E,Fs) of dimension vector v.

To complete the proof of (i), it remains to show that the A-module structure on each fibre
comes from a k-algebra homomorphism A → End(q∗(F ⊗ p∗(E∨))). For any open subset
U ⊆ S, the space of sections of q∗(F ⊗ p∗(E∨)) over U is Γ(Y × U, p∗E∨ ⊗ F). Note that
A = End(E∨) acts on the first factor whose restriction to any closed point s ∈ U recovers the
A-module structure on the fibre over s by (7.6).

For (ii), the locally-free sheaf F has a fibrewise left A-module structure, so E ⊗A F ∈
D(Y × S) as above. Since p∗Ei and q∗Fj are S-perfect for 1 6 i, j 6 k, we have that E ⊗A F
is S-perfect by (7.5) and [SGA6, III, Proposition 4.5]. For a closed point s ∈ S, we have that

i∗s(p
∗Ei ⊗OY×S q

∗Fj) = i∗sp
∗Ei ⊗OY i

∗
sq
∗Fj = Ei ⊗OY

(
OY ⊗k (Fj)s

)
= Ei ⊗k (Fj)s

for all 1 6 i, j 6 k, where (Fj)s denotes the fibre of Fj over s ∈ S. The functors commute
with direct sums, so just as in (7.5) above, for each l ∈ Z, the l-th terms of i∗s(E ⊗A F ) and
E⊗AFs coincide, where Fs is the fibre of F over s ∈ S. Since the maps in each complex derive
from those of P , it follows that

i∗s(E ⊗A F ) = E ⊗A Fs.
Since each Fs is a θ-semistable A-module of dimension vector v, Lemma 7.1.5 and Theo-
rem 7.2.1 imply that i∗s(E ⊗A F ) is σθ,λ,ξ-semistable of class v.

The proof that these operations are mutually inverse requires the fact that E ⊗A E∨ ∼= O∆

for the diagonal ∆ ⊂ Y × Y as in King [Kin97]; we leave the details to the reader. �
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Remark 7.3.2. The assumption in Proposition 7.3.1 that F is proper over S is superfluous for
a flat family of σθ,λ,ξ-stable objects by Proposition 6.3.1.

Example 7.3.3. The flat family E ⊗A F of Bridgeland-stable objects was first studied by
King [Kin97] in the case when S = Y and F = E∨; [ibid.] would write our E⊗AF as F�AopE.

7.4. Comparison of line bundles. For any class v ∈ Knum(A) and any integral parameter
θ ∈ Θv, the GIT construction produces an ample line bundle L(θ) on the coarse moduli space
MA(v, θ). Given a family of θ-semistable A-modules of dimension vector v over a scheme S,
the induced morphism f : S →MA(v, θ) produces a semi-ample line bundle f∗L(θ). We now
provide an alternative description of this line bundle using the linearisation map.

Given a flat family E ∈ D(Y × S) of σθ,λ,ξ-semistable objects of class v with respect to A
that is proper over a separated scheme S of finite type, we obtain by Proposition 7.3.1 a flat
family q∗(E ⊗ p∗E∨) of θ-semistable A-modules of dimension vector v over S, and hence a
morphism

f : S →MA(v, θ)

to the coarse moduli space. Recall that the polarising ample line bundle L(θ) on MA(v, θ) =
X//χθG descends from the linearisation of OX by the character χθ ∈ G∨.

Theorem 7.4.1. Suppose that a flat family E ∈ D(Y ×S) of σθ,λ,ξ-semistable objects of class
v has proper support over a separated scheme S of finite type. Then the numerical divisor
class `E(σθ,λ,ξ) on S and the polarising ample line bundle L(θ) on MA(v, θ) satisfy

`E(σθ,λ,ξ) = cλ,ξ · f∗L(θ) ∈ N1(S),

where f : S →MA(v, θ) is the classifying morphism and where cλ,ξ := 1/(ξ2 + 1)λ(v) ∈ R.

Proof. In light of Lemma 7.2.3, it suffices to show that

f∗L(θ) =
⊗

16i6k

det
(
ΨE(E

∨
i )
)⊗θi , (7.7)

where θ =
∑

16i6k θi[Pi]. The GIT construction of MA(v, θ) = X//θG shows that the θ-
semistable locus Xss in X carries a universal family V of framed θ-semistable A-modules of
dimension vector v, equipped with an idempotent decomposition V =

⊕
16i6k Vi, such that

π∗L(θ) =
⊗

16i6k

det(Vi)
θi (7.8)

holds G-equivariantly on Xss, where π : Xss → MA(v, θ) is the quotient map. Proposi-
tion 7.3.1 shows that ΨE(E

∨) is a flat family of θ-semistable A-modules of dimension vector
v on S. Let πS : S → S be the principal G-bundle corresponding to a choice of framing (up
to a common rescaling) of each summand ΨE(E

∨
i ). By the universality of V , it comes with a

G-equivariant map f : S → Xss that induces the map f between the corresponding quotients,
and that satisfies f

∗
Vi ∼= π∗S

(
N⊗ΨE(E

∨
i )
)

for all i and a fixed line bundle N ∈ Pic(S). Pulling

back (7.8) along this map gives the following identity of G-equivariant line bundles on S:

π∗Sf
∗L(θ) = f

∗
π∗L(θ) = f

∗ ⊗
16i6k

det(Vi)
θi

= π∗S

N⊗∑
16i6k θi rk(Vi) ⊗

⊗
16i6k

det
(
ΨE(E

∨
i )
)⊗θi = π∗S

⊗
16i6k

det
(
ΨE(E

∨
i )
)⊗θi ,

where the last identity used
∑

16i6k θi rk(Vi) =
∑

16i6k θivi = 0. This descends to the identity
(7.7) on S, as required. �

When v is indivisible and θ ∈ Θv is generic, let C ⊆ Θv denote the GIT chamber containing
θ, letM :=MA(v, θ) denote the fine moduli space and write T =

⊕
16i6k Ti for its tautological
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bundle. Consider the map LC : Θv → Pic(M)R given by sending η =
∑

16i6k ηi[Pi] to

LC(η) :=
⊗

16i6k

det(Ti)
⊗ηi .

Note that LC(θ) is the polarising ample line bundle onM determined by the GIT construction.

Corollary 7.4.2. For v indivisible, for θ ∈ C ⊂ Θv generic, and for any λ ∈ Λ, ξ ∈ R, let
E ∈ D(Y ×M) denote the universal family of σθ,λ,ξ-stable objects of class v with respect to
A. For cλ,ξ := 1/(ξ2 + 1)λ(v) ∈ R, the following diagram commutes,

Θv
f(−,λ,ξ) //

LC
��

Stab(Dc(Y ))

`E
��

Pic(M)R
cλ,ξ·[−]

// N1(M),

where the top horizontal arrow is determined by (7.2) and where the lower horizontal map
sends a line bundle to cλ,ξ times its numerical divisor class.

Proof. Proposition 7.3.1 (see also Remark 7.3.2) implies that

E = E ⊗A T and T = ΨE(E
∨). (7.9)

Since integral functors commute with direct sum, we have that Ti = ΨE(E
∨
i ) for all 1 6 i 6 k

because each Ti is indecomposable. Thus, for any η =
∑

16i6k ηi[Pi] ∈ Θv, we have

LC(η) =
⊗

16i6k

det
(
ΨE(E

∨
i )
)⊗ηi . (7.10)

The result follows by comparing this with the numerical divisor class `E(ση,λ,ξ) from (7.4). �

Remark 7.4.3. WhenM∼= Y and E = O∆, equation (7.9) gives T = E∨; see Karmazyn [Kar14]
and references therein for many examples where this is known to hold.

Remark 7.4.4. Given their identification in Theorem 7.4.1, it is instructive to compare the
strengths of two constructions of the nef divisor class. The GIT construction produces a
semiample line bundle, and consequently a projective coarse moduli space parameterising S-
equivalence classes of semistable objects. On the other hand, the construction via Theorem
6.1.4 works uniformly across the entire space Stab(Dc(Y )) of stability conditions (not just on
the subset corresponding to one particular heart of a t-structure), and gives a moduli-theoretic
interpretation of the class of this line bundle. In particular, this can give better control of the
behaviour of this line bundle at wall-crossings. For example, if (outside a subset of sufficiently
high codimension) a wall-crossing just induces stable objects E to be replaced by Φ(E) for
some auto-equivalence Φ of Dc(Y ), then the induced action of Φ on Knum

c (Y ) completely
controls the effect of the wall-crossing on the linearisation map.
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[Rou10] Raphaël Rouquier. Derived categories and algebraic geometry. In Triangulated categories, volume

375 of London Math. Soc. Lecture Note Ser., pages 351–370. Cambridge Univ. Press, Cambridge,
2010.
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