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ABSTRACT. We study the space of stability conditions on the total space
of the canonical bundle over the projective plane. We explicitly describe
a chamber of geometric stability conditions, and show that its translates
via autoequivalences cover a whole connected component. We prove
that this connected component is simply-connected. We determine the
group of autoequivalences preserving this connected component.

Finally, we show that there is a submanifold isomorphic to the uni-
versal covering of a moduli space of elliptic curves with level structure,
with the morphism given by solutions of Picard-Fuchs equations. This
result is motivated by the notion of Π-stability and by mirror symmetry.

1. INTRODUCTION

In this paper, we study the space of stability conditions on the derived
category of the local P2. Our approach is based on the chamber decomposi-
tion given by the wall-crossing for stable objects of the class of skyscraper
sheaves of points.

1.1. Motivation. Consider a projective Calabi-Yau threefold Y containing
a projective plane P2 ⊂ Y . Ideally, one would like to study the space
of Bridgeland stability conditions on its derived category Db(Y ). Under-
standing the geometry of this space would give insights on the group of
autoequivalences of Db(Y ) and give a global picture of mirror symmetry.
Understanding wall-crossing for counting invariants of semi-stable objects
would have many implication for Donaldson-Thomas type invariants on Y .

However, no single example of stability condition on a projective Calabi-
Yau threefold has been constructed. Instead, in this article we focus on
the full subcategory Db

P2(Y ) of complexes concentrated on P2. The local
model for this situation is the total spaceX = TotOP2(−3) of the canonical
bundle of P2, called the “local P2”: Db

P2(Y ) is then equivalent to the derived
category D0 := Db

0(X) of coherent sheaves supported on the zero-section.
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Denote by Stab(D0) the space of stability conditions (Z,P) on D0 (see
Appendix B for a quick introduction to stability conditions). It is a three-
dimensional complex manifold coming with a local homeomorphism to
Z : Stab(D0) → Hom(K(D0),C) ∼= C3. The goal of this article is to
study the space Stab(D0) as a test case for the properties we would expect
in the case of Y .

This space was first studied in [Bri06], where it was suggested that the
space is closely related to the Frobenius manifold of the quantum cohomol-
ogy of P2. Further, understanding how Donaldson-Thomas type counting
invariants of semi-stable objects depend on the stability conditions (Z,P) ∈
Stab(D0) (i.e., wall-crossing phenomena) would be highly interesting. For
example, due to the derived equivalence D0

∼= Db([C3/Z3]) of [BKR01] it
would give a new explanation for the relation between the Gromov-Witten
potentials of X and of C3/Z3 (“crepant resolution conjecture”, see [Coa09,
CCIT09]). It could also explain the modularity properties of the Gromov-
Witten potential of X observed in [ABK08].

While these questions remain open, our results give a good description
of a connected component of Stab(D0), explain its relation to autoequiva-
lences of D0, and do give a global mirror symmetry picture.

1.2. Geometric stability conditions. In order to study Stab(D0), we use
one of its chamber decompositions. We consider a chamber U ⊂ Stab(D0)
consisting of “geometric” stability conditions, which have the property that
all skyscraper sheaves k(x), x ∈ P2, are stable of the same phase (see
Definition 2.1 for the precise definition).

Our first result is a complete description of the geometric chamber (see
Theorem 2.5): U is an open, connected, simply-connected, 3-dimensional
subset of Stab(D0). Up to shifts, a stability condition (Z,P) ∈ U is
determined by its central charge Z, and we give explicit inequalities cut-
ting out the set Z(U) ⊂ Hom(K(D0),C) ∼= C3 of central charges Z for
(Z,P) ∈ U . The most interesting part of the boundary of U has a fractal-
like structure; its shape is determined by the set of Chern classes of semi-
stable vector bundles on P2.

Let Stab†(D0) be the connected component of Stab(D0) containing U
and let U be the closure of U in Stab†(D0). We can directly construct every
wall of U , i.e. the components of the boundary ∂U = U \ U of U (see
Theorem 5.1). We use this to prove the following result (see Corollary 5.2):

Theorem 1. The translates of U under the group of autoequivalences gen-
erated by spherical twists at spherical sheaves in D0 cover the whole con-
nected component Stab†(D0).
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The translates of U are disjoint, and each translate is a chamber on which
the moduli space of stable objects of class [k(x)] is constant.

1.3. Topology of Stab†(D0). In [Bri06], Bridgeland described an open
connected subset Staba of Stab†(D0) consisting of “algebraic” stability
conditions that can be described in terms of quivers. We will see that
the subset Staba is not dense (in particular, it does not contain the “large
volume limit” point: see Proposition 6.11). Nevertheless, by combining
Bridgeland’s description of Staba with Theorem 1, we prove the following
result:

Theorem 2. The connected component Stab†(D0) is simply-connected.

1.4. Autoequivalences. In our situation, the local homeomorphism Z :
Stab†(D0) → Hom(K(D0),C) is not a covering of its image. This is a
fundamental difference to the case of Calabi-Yau 2-categories (as studied
in [Bri08, Tho08, Bri05a, IUU06, HMS08]). Further, there is no non-trivial
subgroup of autoequivalences of D0 that acts as a group of deck transfor-
mation of the map Z . But, in any case, using Theorem 1 we can classify
all autoequivalences Aut†(D0) which preserve the connected component
Stab†(D0):

Theorem 3. The group Aut†(D0) is isomorphic to a product Z × Γ1(3) ×
Aut(X).

Recall that Γ1(3) is the group on two generators α and β subject to the
relation (αβ)3 = 1. It is isomorphic to the subgroup generated by the
spherical twist at the structure sheaf OP2 of the zero-section P2 ↪→ X ,
and by the tensor product with OX(1). The group Z is identified with the
subgroup generated by the shift by 1 functor [1] and Aut(X) denotes the
group of automorphisms of X .

1.5. Π-stability and mirror symmetry. Stability conditions on a derived
category were originally introduced by Bridgeland in [Bri07] to give a
mathematical foundation for the notion of Π-stability in string theory, in
particular in Douglas’ work, see e.g. [Dou02, AD02] and references therein.
However, it has been understood that only a subset of Bridgeland stability
conditions is physically meaningful, i.e. there is a submanifold M of the
space of stability conditions Y that parametrizes Π-stability conditions, and
that is isomorphic to the (universal covering) of the complex Kähler moduli
space. In fact, M is (the universal covering of) a slice of the a moduli space
M of SCFTs containing the sigma model associated to Y ; in the physics
literature, it is often referred to as the “Teichmüller space”.

By mirror symmetry, M is also isomorphic to the universal covering of
the moduli space of mirror partners Ŷ of Y . As explained in [Bri09], this
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leads to a purely purely algebro-geometric mirror symmetry statement; we
prove such a result in Section 9:

The mirror partner for the local P2 is the universal family over the moduli
spaceMΓ1(3) of elliptic curves with Γ1(3) level structures. Its fundamental
group is Γ1(3). Let M̃Γ1(3) be the universal cover, with Γ1(3) acting as the
group of deck transformations.

Theorem 4. There is an embedding I : M̃Γ1(3) ↪→ Stab†(D0) which is equi-
variant with respect to the action by Γ1(3) on both sides.

Here the Γ1(3)-action on Stab†(D0) is induced by the subgroup Γ1(3) ⊂
Aut†(D0) identified in Theorem 3.

On the level of central charges, the embedding is given in terms of a
Picard-Fuchs differential equation: for a fixed E ∈ D0, the function (Z ◦
I)(z)(E) : M̃Γ1(3) → C is a solution of the Picard-Fuchs equation. In par-
ticular, while classical enumerative mirror symmetry gives an interpretation
of their formal expansions at special points of M in terms of genus-zero
Gromov-Witten invariants on Y , the space of stability conditions allows us
to interpret solutions of Picard-Fuchs equations globally.

1.6. Relation to existing work. Various examples of stability conditions
in local Calabi-Yau situations have been studied in the literature. In par-
ticular, the local derived category of curves inside surfaces has been stud-
ied in [Tho08, Bri05a, IU05, IUU06, Oka06, MMS09, BT09], and results
similar to Theorem 1, Theorem 2, and Theorem 3 have been obtained.
Some examples of stability conditions on projective spaces were studied
in [Mac07, ABL07, Ohk08]. Other local Calabi-Yau threefold cases were
studied in [Tod08b, Tod09], and, as already mentioned, an open subset of
Stab†(D0) has been described in [Bri06].

However, our approach follows the ideas in [Bri08] more closely than
most of the above mentioned articles, as we describe stability conditions
in terms of stability of sheaves on P2, rather than in terms of exceptional
collections and quivers. Applying this approach in our situation is possible
due to the classical results of Drezet and Le Potier [DLP85]; in particular,
the fractal boundary of Z(U) discussed in Section 1.2 is directly due to
their results. At the same time, Sections 6 and 7 rely heavily on the work in
[GR87] on exceptional collection and mutations.

Stability conditions around the orbifold point can be understood in terms
of stability of quiver representations as studied in [CI04]; in particular our
Theorem 1 could be understood as a derived version of [CI04, Theorem 1.2]
applied to our situation.
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There does not seem to be an equivalent of Theorem 4 in the literature for
a Calabi-Yau 3-category; however, it is motivated by the conjectural picture
described in [Bri09, Section 7].

There are many articles in the mathematical physics literature related to
Π-stability and mirror symmetry for C3/Z3 and the local P2 (as well as other
local del Pezzo surfaces), and our presentation in Section 9 is very much
guided by [Asp05] and [ABK08]. In particular, Theorem 4 is based on the
computations of analytic continuations and monodromy for solutions of the
Picard-Fuchs equation of the mirror of the local P2 in [AGM94, Asp05,
ABK08]; in some sense, we are just lifting their results from the level of
central charges to the level of stability conditions.

In order for this to work, the “central charges predicted by physicists”
had to survive a non-trivial test: they had to satisfy the inequalities of Def-
inition 2.4 (see Observation (a), page 42). The fact that they survived this
test is somewhat reassuring for the case of compact Calabi-Yau threefolds:
identifying similar inequalities (which would be based on inequalities for
Chern classes of stable objects), and checking that the central charges sat-
isfy them, is the major obstacle towards constructing stability conditions on
compact Calabi-Yau threefolds.

1.7. Open questions. Bridgeland’s conjecture [Bri06, Conj. 1.3] remains
open; it would identify Stab†(D0) with an open subset of the extended
Frobenius manifold of the quantum cohomology of P2. Theorems 1 and 2 of
this paper essentially complete the study of Stab(D0) as started in loc. cit.;
and Theorem 4 clarifies the discussion in loc. cit. about the “small quan-
tum cohomology locus”, as this locus corresponds to the image of M̃Γ1(3).
What is missing from a proof of the whole conjecture, as pointed out in loc.
cit., is still a better understanding of the Frobenius manifold side.

It seems natural to conjecture that the full group Aut(D0) of autoequiv-
alences of D0 preserves the connected component Stab†(D0); in fact, this
last one may be the only three-dimensional component of Stab(D0). In this
case, Theorem 3 would give a complete description of Aut(D0).

Maybe the most intriguing question about Stab†(D0) related to our re-
sults is whether there is an intrinsic characterization of the image of the
map I of Theorem 4, a question raised in other contexts in [Bri09]. To
this end, note that the central charge on the image can also be given in
terms of an analytic continuation of the genus zero Gromov-Witten poten-
tial of X (see [ABK08, Iri08]; that this agrees with our description using
the mirror is classical enumerative mirror symmetry). But the genus-zero
Gromov-Witten potential is in turn determined by counting invariants of
one-dimensional torsion sheaves ([PT07, Tod08a]), i.e. counting invariants
of stable objects close to the large-volume limit.
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It would also be interesting to generalize some of the results of this pa-
per to other “local del Pezzo surfaces”. In such a case, the starting point
would be a generalization of the result in [DLP85] on the description of the
Chern classes of stable sheaves. Already for P1 × P1 the situation is more
complicate: see [Rud94, Rud96] for results in this direction.

1.8. Plan of the paper. The paper is organized as follows. In Section 2 we
define geometric stability conditions and state Theorem 2.5, which classifies
them. Sections 3 and 4 are devoted to the proof of Theorem 2.5. In Section 5
we describe the boundary ∂U of the geometric chamber and prove Theorem
1. Algebraic stability conditions are introduced in Section 6 in order to
prove Theorem 2 (whose proof will take Section 7).

In Section 8 we study the group of autoequivalences and prove Theorem
3. Section 9 discusses how the previous results fit into expectations from
mirror symmetry, and includes the proof of Theorem 4. Finally, four appen-
dices complete the paper: In Appendix A, we review the results of Drezet
and Le Potier as we need them in the proof of Theorem 2.5. Appendix B is
a brief introduction to stability conditions and contains an improved crite-
rion for the existence of Harder-Narasimhan filtrations. In Appendix C we
prove a technical result on representability of trivial autoequivalences. In
Appendix D we give a sketch of the proof that the central charges we define
in Section 9 satisfy the inequalities in Definition 2.4.

1.9. Notation. We work over the complex numbers C. We let X denote
the total space of OP2(−3), and i : P2 ↪→ X the inclusion of the zero-
section. We let Coh0 := CohP2(X) ⊆ Coh(X) be the subcategory of co-
herent sheaves on X supported (set-theoretically) on the zero-section. We
write D0 = Db

0(X) for the subcategory of Db(Coh(X)) of complexes with
bounded cohomology, such that all of its cohomology sheaves are in Coh0.
(Note that D0

∼= Db(Coh0) as observed in [IU05], Notation and Conven-
tion.) The space of stability conditions on D0 will be denoted by Stab(D0),
and its two subsets of geometric and algebraic stability conditions by U and
Staba, respectively (see Definitions 2.1 and 6.3).

An object S in D0 is called spherical if Extp(S, S) ∼= C for p = 0, 3 and
is zero otherwise. For a spherical object S we denote by STS the spherical
twist associated with S, defined by the exact triangle

Hom∗(S,M)⊗ S ev−→M −→ STS(M),

for M ∈ D0 (see [ST01]).
By abuse of notation, we will writeOP2(n) ∈ D0 for the spherical objects

given by the push-forwards to X of line bundles on P2. For x ∈ P2 we
denote by k(x) the skyscraper sheaf in X of length one concentrated at x.
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The Grothendieck group of D0 is denoted by K(D0). It is isomorphic to
Z⊕3. For any E ∈ D0, we write r(E), d(E), c(E) for the components of the
Chern character of its push-forward to P2; more precisely, if π : X → P2 is
the projection, then we write

ch(π∗(E)) = r(E) · [P2] + d(E) · [line] + c(E) · [pt].

For a complex number z ∈ C, we write <z (resp. =z) for its real (resp.
imaginary) part.

1.10. Acknowledgements. It is a pleasure to thank Hiroshi Iritani, from
whom we first learned about the possibility of a Γ1(3)-action on D0, and
Aaron Bertram, Tom Bridgeland, Sukhendu Mehrotra, Paolo Stellari, and
Richard Thomas for very interesting and useful discussions.

The authors are also grateful to the Mathematical Sciences Research In-
stitute in Berkeley and the University of Bonn for the warm hospitality dur-
ing the writing of parts of this paper. The first author was partially supported
by the NSF grant DMS-0801356 and the second author (during his visit in
Bonn) by the grant SFB/TR 45.

2. GEOMETRIC STABILITY CONDITIONS

We assume familiarity with the notion of stability conditions on a derived
category; see Appendix B for a short summary, and [Bri07], [KS08, Section
3.4] for a complete reference.

We begin by constructing and classifying “geometric” stability condi-
tions on D0. Loosely speaking, geometric stability conditions are those that
are most closely connected to the geometry of sheaves on X; in the defi-
nition below, we require that the simple objects of Coh0X remain stable,
but it will also turn out that the semi-stable objects are at most two-term
complexes of sheaves in Coh0X .

Definition 2.1. A stability condition σ on D0 is called geometric if the fol-
lowing two conditions are satisfied:

(a) All skyscraper sheaves k(x) of closed points x ∈ P2 are σ-stable
of the same phase.

(b) The connected component of Stab(D0) containing σ has maximal
dimension (equal to 3).

We write U for the set of geometric stability conditions, and refer to it
as the “geometric chamber”; in fact, we will see that it is precisely one
of the chambers with respect to the chamber decomposition given by the
wall-crossing phenomenon for semi-stable objects of class [k(x)].
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Part (b) of the definition is a technical condition to ensure that the wall-
crossing for semi-stable objects behaves nicely; stability conditions satisfy-
ing this condition were called full in [Bri08], and they satisfy the support
property of [KS08, Sect. 3.4].

We recall that a Bridgeland stability condition can be constructed by giv-
ing the heart of a t-structure A ⊂ D0, and a compatible central charge
Z : K(A) = K(D0) → C that sends objects in A to the semi-closed upper
half plane (see Remark B.1). The t-structures appearing in geometric stabil-
ity conditions are given by the now familiar notion of tilting (see [HRS96]):

For purely 2-dimensional sheaves F ∈ Coh0, the slope function µ(F) =
d(F)
r(F)

gives a notion of slope-stability (as in Definition A.1). By the same ar-
guments as in the case of a projective variety, Harder-Narasimhan filtrations
exist. Thus for any B ∈ R, we can form a torsion pair

(
Coh>B0 ,Coh≤B0

)
in

Coh0, where

• Coh≤B0 is generated by stable objects of slope µ ≤ B (and exten-
sions), and
• Coh>B0 (X) is generated by stable object of slope µ > B and zero-

or one-dimensional torsion sheaves.

Definition 2.2. Let Coh
](B)
0 ⊂ D0 be the tilt of Coh0 at the torsion pair(

Coh>B0 ,Coh≤B0

)
, that is

Coh
](B)
0 =

E ∈ D0 :

• Hi(E) = 0, for all i 6= 0,−1
• H0(E) ∈ Coh>B0

• H−1(E) ∈ Coh≤B0

 .

The structure of central charges compatible with Coh
](B)
0 (and thus, as

we will see, the structure of the whole geometric chamber) depends tightly
on the set of Chern classes for which there exist semistable torsion-free
sheaves. In the case of P2, Drezet and Le Potier have given a complete
description of this set:

It is most naturally described in terms of the discriminant ∆(F), which
is defined as

∆(F) =
d(F)2

2r(F)2
− c(F)

r(F)
.

For an exceptional vector bundle Eα of rank rα and slope α, the discrimi-
nant is given by ∆α = 1

2
− 1

2r2α
. As the slopes of exceptional vector bundles

can be constructed explicitly, it remains to describe the slopes and discrim-
inants of non-exceptional stable torsion-free sheaves.
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Slightly reformulating the results of [DLP85], one can construct a func-
tion δDP∞ : R→ [1

2
, 1] (cf. [LP97]). It is periodic of period 1 and Lipschitz-

continuous with Lipschitz constant 3
2
. We refer to Appendix A for the pre-

cise definition of δDP∞ ; its construction is motivated by the following obser-
vation: If Fβ is a slope-stable sheaf with β < α, then Hom(Eα, Fβ) =
0; if we additionally assume β > α − 3, then, by Serre duality, also
Ext2(Eα, Fβ) = 0 and hence χ(Eα, Fβ) ≤ 0. Using Riemann-Roch this
yields an inequality of the form ∆(Fβ) ≥ pα(β) for α − 3 < β < α, with
pα(x) being a quadratic polynomial. The function δDP∞ is the supremum of
all the quadratic polynomials pα restricted to the ranges where the inequal-
ity is valid.

The main result of [DLP85] is that ∆ ≥ δDP∞ (µ) is not only a necessary,
but also a sufficient condition for the existence of a stable torsion-free sheaf
of slope µ and discriminant ∆. For later use, we paraphrase their result as
follows:

Define S∞ ⊂ R2 to be the closed subset lying above the hyperplane cut
out by the graph of δDP∞ , i.e.

S∞ =
{

(µ,∆) ∈ R2 : ∆ ≥ δDP∞ (µ)
}
.

Theorem 2.3. [DLP85] Let S ⊂ Q2 be the set of pairs (µ(F),∆(F)) where
F is any slope-stable torsion-free sheaf F on P2. Similarly, let SE ⊂ Q2

be the corresponding set for slopes and discriminants of exceptional vector
bundles. Then S is the disjoint union

S = SE ·∪
(
S∞ ∩Q2

)
The set SE has no accumulation points in R2 \ S∞.

We explain this reformulation of Drezet and Le Potier’s result in Appen-
dix A, along with their explicit description of the set SE; see also Figure
1.

Definition 2.4. We define the set G ⊂ C2 as the set of pairs a, b ∈ C
satisfying the following three inequalities (where we set B := −=b=a if a
satisfies the first inequality):

=a > 0,(1)

<b > −B · <a− δDP∞ (B) +
1

2
B2,(2)

and, in case there exists an exceptional vector bundle of slope B and dis-
criminant ∆B,

<b > −B · <a−∆B +
1

2
B2.(3)
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Figure 1: δDP∞ and exceptional objects

Theorem 2.5. For a, b ∈ C, denote byZa,b : K(D0)→ C the central charge
given by

(4) Za,b(E) = −c(E) + ad(e) + br(E)

for E ∈ D0.
Then there exists a geometric stability condition σa,b = (Za,b,Pa,b) with

Za,b as above if and only if (a, b) ∈ G ⊂ C2. Its heart is, up to shifts, given
by Pa,b((0, 1]) = Coh

](B)
0 . The shifts k(x)[n] of skyscraper sheaves are the

only stable objects of class ±[k(x)].
Any geometric stability condition is equivalent to a stability condition

σa,b up to the action of a unique element in C.

The action of C is given in Remark B.4: it is the lift to the space of
stability conditions of the multiplication by exp(z) on Hom(K(D0),C).

The theorem can be rephrased as stating that U/C ∼= G, with a section
given by (a, b) 7→ σa,b. Later, in Remark 7.2, we will see that this slice of
the C-action can be extended to a whole connected component of Stab(D0).
The theorem will be proved in the following two sections.

The best visualization of the set of allowed central charges is given by
the following observation: as long as =a > 0, the central charge can be
thought of as a surjective map K(D0)R ∼= R3 → C ∼= R2. Up to the
action of GL+

2 (R) on R2 (which does not affect the set of stable objects),
this map is determined by its kernel, and by the orientation induced on
K(D0)R/KerZ. As long as =a > 0, the orientation does not change. The
kernel intersects the affine hyperplane r = 1 of K(D0)R in a single point.
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The inequalities are equivalent to requiring that this point lies below the
graph of ∆ = δDP∞ (µ), and not on any of the rays going up vertically from
a point in SE (see Figure 1).

However, for several reasons it is helpful to classify geometric stabil-
ity conditions up to the action of C, rather than the action of GL+

2 (R).
The subgroup C acts on Stab(D0) with closed orbits, it has no stabilizers,
and it has a well-behaved quotient Stab(D0)/C. The stability conditions
σa,b constitute a slice of this action on U ⊂ Stab(D0), and the boundary
of U can be identified, up to the C-action, with the boundary of the set
{σa,b : (a, b) ∈ G}. None of these statements would hold for the GL+

2 (R)-
action, and the picture of the preceding paragraph only gives a partial pic-
ture of the boundary of U : One can see that every ray starting at a point of
SE going up vertically may give two walls in the boundary ∂U of the set
U , but we cannot see that many of these walls intersect at points where the
central charge lies in the real line.

3. CONSTRAINING GEOMETRIC STABILITY CONDITIONS

In this section we will show that geometric stability conditions can only
be of the form given in Theorem 2.5. The general idea is the same as in
[Bri08]: if we assume that the skyscraper sheaves k(x) are stable of phase
1, then Hom-vanishing helps to constrain the form of objects in P((0, 1]),
and we can identify P((0, 1]) with an explicit tilt of the standard t-structure.
By the existence of a well-behaved chamber decomposition for the wall-
crossing for stable objects of class [k(x)], the set of geometric stability con-
ditions is open, and we need to prove inequalities for the central charge only
when it is defined over Q.

The proof will be broken into several lemmata and propositions. The
following observation shows that the bound of Theorem 2.3 translates into
bounds for stable objects in Coh0:

Lemma 3.1. A sheaf F ∈ Coh0(X) is a pure µ-stable sheaf if and only if it
is the push-forward F = i∗F0 of some µ-stable pure sheaf F0 ∈ Coh(P2).

Proof. Since i∗ : Coh P2 ↪→ Coh0(X) is a full subcategory, closed under
subobjects and quotients, and since i∗ preserves the ordering by slopes, it
follows F0 ∈ Coh P2 is stable if and only if i∗F0 is stable.

Now assume that F is stable. Then EndF = C · Id. Let Z be the
scheme-theoretic support of Z. Its global sections act faithfully on F , so
H0(OZ) ∼= C. Hence Z must be contained in the scheme-theoretic inverse
image of the origin under the contraction X � C3/Z3, i.e. Z ⊂ P2. 2

Now assume we are given a geometric stability condition. After a rescal-
ing by C, we may assume that all skyscraper sheaves k(x) of closed points
are stable with phase 1 and Z(k(x)) = −1.
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Lemma 3.2 ([Bri08], Lemma 10.1). Let (Z,P) be a stability condition such
that the skyscraper sheaves k(x) are stable of phase 1, with Z(k(x)) = −1.

(a) For any object E ∈ P((0, 1]), its cohomology sheavesHi(E) van-
ish unless i = 0,−1.

(b) Further, for any suchE ∈ P((0, 1]]) the cohomology sheafH−1(E)
is pure of dimension 2.

(c) If E ∈ P(1) is stable and E 6= k(x) for all x ∈ P2, then there is a
vector bundle F on P2 such that E ∼= i∗F [−1].

Proof. If E ∈ P((0, 1)), then Hom(E, k(x)[i]) = 0 for i < 0, and
Hom(k(x)[i], E) = Hom(E, k(x)[3 + i]) = 0 for i ≥ 0. By [BM02, Prop.
5.4], this implies that E is quasi-isomorphic to a 3-term complex of locally

free sheaves E−2 d−2−→ E−1 → E0. Hence H−2(E) is locally free on X;
since H−2(E) ∈ Coh0(X), it must vanish. This implies the first claim for
such E.

This also shows thatH−1(E) is the cokernel of an injective map between
locally free sheaves, which implies the second claim.

If E is stable of phase 1, then additionally Hom(E, k(x)) = 0 (as they
are both stable objects of the same phase). Hence E is isomorphic to a two-

term complex of vector bundles E−2 d−2−→ E−1. By the same argument as in
the previous case, the map d−2 must be injective, so that E is isomorphic to
the shift of a sheaf: E ∼= F ′[1]. Since E is stable, F ′ can only have scalar
endomorphisms, and thus F ′ is the push-forward of a sheaf F on P2. Using
0 = Hom(i∗F [1], i∗k(x)) = Hom(F [1], k(x) ⊕ k(x)[1]), it follows that F
is a vector bundle.

Since all the assertions of the lemma are properties that are closed under
extensions, this finishes its proof. 2

Proposition 3.3. Let Stab∗ ⊂ Stab(D0) be a connected component of full
dimension, and fix a primitive class α ∈ K(D0). Then there exists a collec-
tion of walls Wα

i , i ∈ I with the following properties:
• Every wall Wα

i is a smooth (but not necessarily closed) submani-
fold of real codimension one.
• The collection Wα

i is locally finite (i.e., every compact subset K ⊂
Stab∗ intersects only a finite number of walls).
• If C ⊂ Stab∗ is a connected component of the complement of⋂

i∈IW
α
i and σ1, σ2 ∈ C, then an object E ∈ D0 with [E] = α

is σ1-stable if and only if it is σ2-stable.

Proof. Every wall Wα
i can be described as the set of stability conditions

where a given object Ei of class α is semistable, and has a given object Fi
as a stable subobject of the same phase. We first show that the set of such
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walls intersecting an open ball B 1
8
(σ) of radius 1

8
around σ = (Z,P) is

finite:
Since the metric ‖ · ‖σ (defined by equation (23)) is finite, and since

K(D0) is a discrete subgroup of K(D0)⊗R ∼= R3, there exist only finitely
many classes β ∈ K(D0) such that there exists a stable object F with [F ] =
β and |Z(F )| < |Z(α)|. If φ is an arbitrary choice with Z(α) ∈ R>0 · eiπφ,
it follows that there exist only finitely many classes β ∈ K(D0) such that
there exists a strict inclusion F ↪→ E in the quasi-abelian category P((φ−
1
4
, φ+ 1

4
)) with F of class β and E of class α. However, any wall Wα

i gives
rise to such a pair Fi ↪→ Ei, and it is completely determined by the class
[Fi].

All other claims follows exactly with the same arguments as given in
[Bri08, Section 9]. 2

Remark 3.4. As can be seen from the proof, the proposition follows from
the fact that stability conditions in Stab∗ satisfy the support property of
[KS08, Sect. 3.4].

Corollary 3.5. The set U of geometric stability conditions is open in the
space of stability conditions Stab(D0). Its boundary ∂U = U \ U is given
by a locally finite union of walls, and each wall is a real submanifold in
Stab(D0) of codimension one.

Proof. From claim (c) of Lemma 3.2 it follows that the set U coincides
with a union of some of the chambers given in Proposition 3.3, applied to
the class α = [k(x)]. 2

We proceed to show that any geometric stability condition is necessarily
of the form given in Theorem 2.5.

By Lemma 3.2, we have P((0, 1]) ⊂ 〈Coh0(X),Coh0(X)[1]〉. This im-
plies that P((0, 1]) is obtained from Coh0(X) by tilting at the torsion pair

T = Coh0(X) ∩ P((0, 1])

F = Coh0(X) ∩ P((−1, 0])

(see e.g. [Pol07, Lemma 1.1.2]).
Since we assume Z(k(x)) = −1, the central charge can be written in

the form of equation (4); in particular =Z(E) = d(E) · =a + r(E)=b. By
mimicking the proof of [Bri08, Prop. 10.3], it follows that =a > 0 and,
after setting B = −=b=a , P((0, 1]) = Coh

](B)
0 .

It remains to prove the inequality on<b. We first assume thatB ∈ Q. For
any semi-stable torsion-free sheaf F on P2 of slope B we have =Z(i∗F) =
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0 and i∗F [1] ∈ Coh
](B)
0 , hence we must have <Z(i∗F) > 0. It follows that:

0 <
<Z(i∗F)

r
= <b+ <aB − c

r

= <b+ <aB + ∆(F)− 1

2
B2

Applying Theorem 2.3, we obtain the inequalities (2) and (3).
Finally, we need to treat the case B 6∈ Q. By Corollary 3.5, there exists

an open neighborhood V ⊂ C2 of (a, b), such that any (a′, b′) ∈ V with
=b′
=a′ ∈ Q satisfy inequality (2). Hence it holds for (a, b), too.

4. CONSTRUCTING GEOMETRIC STABILITY CONDITIONS

We now come to the proof of existence of geometric stability conditions.
The main problem is to prove the existence of Harder-Narasimhan filtrations
for the stability function Za,b on Coh

](B)
0 . We prove this directly in the case

where the image of =Z is discrete, and then use Bridgeland’s deformation
result to extend it to the more general case. In order to make the extension
effective, we have to bound the metric ‖ · ‖σ on Hom(K(D0),C) ∼= C3

defined by equation (23) from above. To do so, we in turn have to control
|Z(E)| for stable objects E from below.

Our arguments in this section build on [Bri08, ABL07].
Given (a, b) ∈ G ⊂ C2, let γa,b : R → C be the infinite path γa,b(t) =

x(t) + iy(t) defined by

x(t) = <b+
1

2
<a2 + δDP∞ (t)− 1

2
(t+ <a)2

y(t) = =at+ =b
(5)

and let Sa,b ⊂ C be the closed subset cut out by γa,b that lies on or to the
right of γa,b, i.e.

Sa,b := {x+ iy : ∃t with y = y(t), x ≥ x(t)} .

Since δDP∞ (t) ∈ [1
2
, 1], the path γa,b is contained between the graphs of

two parabolas with distance 1
2
, see Figure 2.

Lemma 4.1. Let F ∈ Coh(P2) be a torsion-free µ-stable sheaf on P2 of
rank r that is not an exceptional vector bundle. Then Za,b(i∗F)

r
∈ Sa,b.
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Figure 2: The path γ(t) and the central charge of exceptional objects

Proof. We write ch(F)
r

= [P2] +µ[l] + c
r
[pt] and Za,b(i∗F)

r
= x+ iy. Using

Theorem 2.3, we obtain:

y = −=aµ−=b
x = −c

r
−<aµ−<b = ∆(F)− 1

2
µ2 −<aµ−<b

≥ δDP∞ (µ)− 1

2
µ2 −<aµ−<b

Setting t = µ yields the claim. 2

Lemma 4.2. For any (a, b) ∈ G, the central charge Za,b is a stability func-
tion for Coh

](B)
0 : if 0 6= E ∈ Coh

](B)
0 , then Za,b(E) ∈ H.

Proof. It is sufficient to prove the claim for torsion sheaves, and for (shifts
of) slope-stable torsion-free sheaves. The claim is only non-trivial for ob-
jects F [1], where F is µ-stable of slope µ(F) = B. In such a case, Za,b(F)
is lying on the real line. By Lemma 3.1, F is the push-forward of a µ-stable
sheaf on P2. If F is not an exceptional vector bundle, the previous lemma
shows Za,b(i∗F) ∈ R>0. If it is exceptional, the same computation yields
this statement from inequality (3). 2

In other words, inequality (2) is equivalent to 0 /∈ Sa,b, i.e. the path is
passing through the real line with positive real part; and inequality (3) is
equivalent to Z(E) 6∈ R≤0 for any exceptional vector bundle E on P2. To-
gether, they guarantee that the central charge of a slope-stable sheaf never
lies on the negative real line.
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Due to the above Lemma, as in Remark B.1 we can define a phase func-
tion φ(E) := (1/π) arg(Z(E)) ∈ (0, 1], for all 0 6= E ∈ Coh

](B)
0 .

Lemma 4.3. ([Bri08, Proposition 7.1]) Let a, b ∈ C be such that B =

−=(b)/=(a) ∈ Q and Za,b(Coh
](B)
0 \{0}) ⊆ H. Then Harder-Narasimhan

filtrations exist for (Za,b,Coh
](B)
0 ).

Proof. We use Proposition B.2. Since B ∈ Q, the image of =(Za,b) is
discrete in R.

Let F ∈ Coh
](B)
0 and let

(6) 0 = A0 ⊆ A1 ⊆ . . . ⊆ Aj ⊆ Aj+1 ⊆ . . . ⊆ F,

be a sequence of subobjects, with Aj ∈ P ′a,b(1). As in Proposition B.2,
P ′a,b(1) is the full subcategory of Coh

](B)
0 whose objects have phase 1 with

respect to Za,b. We need to show that (6) stabilizes.
To this end, we first observe that (6) induces a sequence of inclusions

(7) 0 = H−1(A0) ↪→ . . .H−1(Aj) ↪→ . . . ↪→ H−1(F ).

Since Coh0 is Noetherian, (7) must terminate. We can therefore assume
that H−1(Aj) ∼= F−1 for all j and some F−1 ∈ Coh≤B0 . Let F0 denote
the cokernel of the inclusion F−1 ↪→ H−1(F ); then, by the long exact
cohomology sequence, we have F0 ∈ Coh≤B0 as well.

Now, observe that the simple objects of P ′a,b(1) are skyscraper sheaves
k(x) (x ∈ P2) and objects of the form i∗G[1], for G ∈ Coh(P2) a locally-
free µ-stable sheaf on P2 with µ(G) = B. Indeed, this can be proved in
precisely the same way as Lemma 3.2, (c). In particular,H0(Aj) is a torsion
sheaf of dimension zero.

Let Bj be the cokernel in Coh
](B)
0 of Aj ↪→ F ; then we have an exact

sequence

0→ F0 →fj H−1(Bj)→ H0(Aj)→gj H0(F ).

The cokernel cok fj is zero-dimensional; since F0 is fixedH−1(Bj) is pure
of dimension 2, the length of cok fj is bounded. As the length of im gj
is also bounded, we get a bound on the length of H0(Aj). At the same
time, if Dj denotes the cokernel in Coh

](B)
0 of Aj ↪→ Aj+1, we must have

H−1(Dj) = 0, and thus an inclusion H0(Aj) ↪→ H0(Aj+1). Hence, for
j � 0,H0(Aj) ∼= H0(Aj+1) and so (6) stabilizes. 2

Notice that, in the assumptions of Lemma 4.3, the pair (Za,b,Coh
](B)
0 )

defines a locally-finite stability condition on D0. Indeed this follows imme-
diately from [Bri08, Lemma 4.4].

In the rest of this section, we will use Bridgeland’s deformation result
to extend the existence of Harder-Narasimhan filtrations to the case where
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a, b are not rational. In order to make the deformation effective, we need
to bound the metric ‖ · ‖σa,b on Hom(K(D0),C) ∼= C3 defined in equa-
tion (23) relative to an arbitrarily chosen metric, with the bound depending
continuously on a, b ∈ G.

We define the following functions G→ R≥0:

γmin(a, b) := inf {|γa,b(t)| : t ∈ R}

Emin(a, b) := inf

{∣∣∣∣Za,b(E)

r(E)
+ t

∣∣∣∣ : t ∈ R≥0, E exceptional v. bundle
}

Smin(a, b) := min(γmin(a, b), Emin(a, b)).

Lemma 4.4. The function Smin is continuous and satisfies

0 < Smin(a, b) ≤ inf

{∣∣∣∣Za,b(F)

r(F)
+ t

∣∣∣∣ : t ∈ R≥0, F ∈ Coh0 slope-stable

}
for all (a, b) ∈ G.

Proof. The path γa,b(t) depends continuously on a, b, t, does not go
through zero, and satisfies limt→±∞ |γa,b(t)| = +∞. It follows that γmin

is a positive continuous function.
Since Za,b(E) 6∈ R≤0, the term inf

{∣∣∣Za,b(E)

r(E)
+ t
∣∣∣ : t ∈ R≥0

}
is positive

for every exceptional vector bundle E on P2. Further, Theorem 2.3 together
with the computation of Lemma 4.1 shows that every accumulation point of
the set {

Za,b(E)

r(E)
: E exceptional v. bdle

}
is contained in Sa,b. Hence Emin is also a positive continuous function.

It remains to prove Smin(a, b) ≤
∣∣∣Za,b(F)

r(F)
+ t
∣∣∣ for all F , t. It holds by

definition when F is an exceptional vector bundle. Otherwise, the claim
follows as Za,b(F)

r(F)
+ t is contained in Sa,b. 2

Let |·|∞ be the supremums-norm on K(D0)⊗R ∼= R3 in the coordinates
(r, d, c). Let M(a, b) be the matrix

M(a, b) :=

 1 0 0
=b =a 0
<b <a −1

 ,

and let N(a, b) := ‖M(a, b)−1‖∞ be the norm of its inverse, where ‖·‖∞ is
the operator norm with respect to the supremums-norm on R3.

Lemma 4.5. If E ∈ Coh
](B)
0 is Za,b-stable, then

|Za,b(E)|
|E|∞

≥ min (Smin(a, b), 1)

N(a, b)
.
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We first show how to conclude the proof of Theorem 2.5 from the lemma:

Corollary 4.6. There exists a geometric stability condition σa,b for arbitrary
pairs (a, b) ∈ G ⊂ C2.

Proof. Let V ⊂ U be the subset of geometric stability conditions σ =
(Z,P) such that all skyscraper sheaves k(x) are stable of phase 1 with
Z(k(x)) = −1. For any such stability condition, the central charge is of
the form Z = Za,b of equation (4), and thus Z induces a map ZV : V →
C2, σ 7→ (a, b).

By the results of Section 3, the map ZV is injective, so it is a homeomor-
phism onto its image. Using Corollary 3.5 and the deformation property,
we see that the image of ZV is open in C2. By Lemma 4.3, it contains the
dense subset of (a, b) ∈ G such that B = −=b=a ∈ Q is rational. Hence it
suffices to prove that the image is closed in G.

Assume the contrary, and that (a, b) ∈ G are in the boundary of ZV .
From Lemma 4.4, it follows that for all (a′, b′) ∈ G sufficiently close to
(a, b), we have

‖Za,b − Za′,b′‖∞ <
1

8

min (Smin(a′, b′), 1)

N(a′, b′)
.

From Lemma 4.5, it follows that

‖Za,b − Za′,b′‖σa′,b′ <
1

8

for all such (a′, b′) for which a geometric stability condition σa′,b′ exists.
By Bridgeland’s effective deformation result (see Theorem B.3) there ex-

ists a stability condition σa,b = (Za,b,Pa,b) in the neighborhood of σa′,b′ . By
choosing (a′, b′) appropriately, we may assume that σa,b is on one of the
walls in the sense of Corollary 3.5; in particular, k(x) is semistable, and
there is an inclusion E ↪→ k(x) in Pa,b(1) with E being stable. In particu-
lar, 0 = =Za,b(E) = =a·d(E)+=b·r(E). Since k(x) is stable with respect
to σa′,b′ , we have =Za′,b′(E) 6= 0, and thus we have r(E) 6= 0 or d(E) 6= 0.
Since =a > 0, it follows that r(E) 6= 0; but then B = −=b=a = d(E)

r(E)
∈ Q,

and so we already know that there exists a geometric stability condition
σ ∈ V with ZV (σ) = (a, b). 2

Proof. (Lemma 4.5) Writing r = r(E) etc., we have

|E|∞ = max(r, d, c)

=
∣∣M(a, b)−1 · (r,=a · d+ <b · r,−c+ <a · d+ <b · r)∣∣∞

≤ N(a, b) · |(r,<Za,b(E),=Za,b(E))|∞
≤ N(a, b) ·max(|r| , |Za,b(E)|)
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<Z

=Z

Z(E)

Z(F)

Figure 3: Location of Z(F) relative to Z(E)

Thus the claim follows if we can show∣∣Z(E)
∣∣ > Smin(a,b)

whereE ∈ Coh
](B)
0 is anyZa,b-stable objects with non-zero rank, and where

we wrote Z(E) =
Za,b(E)

|r(E)| .
Assume first that H0(E) has non-zero rank. We have

=Za,b(E) ≥ =Za,b(H0(E)),

as E � H0(E) is a quotient in Coh
](B)
0 and Za,b is a stability function, and

we have |r(E)| ≤ r(H0(E)); together, they show

=Z(E) ≥ =Z(H0(E)).

Let H0(E) � F be a semi-stable quotient with µ(E) ≥ µ(F) > B (such
a quotient always exists due to the existence of HN-filtrations for slope
stability). Then

=Z(H0(E)) =
=a · d(H0(E)) + =b · r(E)

r(H0(E))
= =aµ(H0(E))−B

≥ =aµ(F)−B = =Z(F)

(where we used the assumption =a > 0 in the inequality).
On the other hand, as E is Za,b-semistable and F ∈ Coh

](B)
0 , and so the

phase of Za,b(F) is at least as big as the phase of Za,b(E). Hence the line
segment connecting 0 and Z(E) intersects the ray Z(F) + t, t ≥ 0 (see
Figure 3). By Lemma 4.4, this implies the claim.

A dual argument holds in case H−1(E) is non-zero, by considering a
slope-stable sheaf F ↪→ H−1(E) with B ≥ µ(F) ≥ µ(H−1(E)). Finally,
when H−1(E) is zero and H0(E) has rank zero, there is nothing to prove.
2

Remark 4.7. The methods used in the last part of this section also apply
in the situation [ABL07, Section 2]: the stability conditions constructed
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there for rational divisors D,F deform to produce stability condition for
arbitrary R-divisors D,F with F ample.

5. BOUNDARY OF THE GEOMETRIC CHAMBER

In this section we will show that the set of boundary walls of the geomet-
ric chamber U can be described explicitly using exceptional vector bundles
E on P2. For any such E , the push-forward i∗E is a spherical object in
D0. We denote by STE : D0 → D0 the spherical twist at i∗E . If r is the
rank of E and x ∈ P2, we also write Ex for the kernel of the natural map
i∗E⊕r � k(x).

The goal of this section is to prove the following theorem:

Theorem 5.1. For every exceptional vector bundle E there exist two codi-
mension one walls W+

E ,W
−
E ∈ ∂U with the following properties:

(a) Stability conditions in W+
E are characterized by the property that

i∗E and all skyscraper sheaves k(x) are semistable of the same
phase φ, with i∗E being a subobject of k(x) in P(φ); at a general
point of W+

E , the Jordan-Hölder filtration of any skyscraper sheaf
k(x) is given by

(8) i∗E⊕r → k(x)→ Ex[1].

Similarly, we have σ ∈ W−
E if i∗E [2] is semistable of the same

phase φ as k(x), and i∗E [2] is a quotient of k(x) in P(φ). At a
general point inW−

E 1, the Jordan-Hölder filtration of k(x) is given
by

(9) ST−1
E (Ex[1])→ k(x)→ i∗E⊕r[2].

(b) We have W+
E = U ∩ STE

(
U
)
, i.e. W+

E is the wall between U and
STE(U); similarly, W−

E = U ∩ ST−1
E
(
U
)
.

There are no other walls in ∂U .

Corollary 5.2. The translates of U under the group of autoequivalences
generated by STE cover the whole connected component Stab†(D0) of U in
the space of stability conditions.

Proof. Let α : [0, 1] → Stab(D0) be a path of stability conditions with
α(0) ∈ U . By Proposition 3.3, there exists a finite set of walls W [k(x)]

i

intersecting α, such that the set of stable objects of class [k(x)] is constant
in the complement of the intersection points. We may also assume that α
intersects each wall transversely and in a generic point of the wall. Using
the above theorem, it follows by induction that every open interval in the
complement is contained in the translate of U under a sequence of spherical
twists. 2
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Most of the existing proofs of statements similar to the above claims are
in the situation of a Calabi-Yau 2-category. In that situation, Lemma 5.2
of [Bri08] applies, which guarantees, via an Euler characteristic compu-
tation, that every non-trivial Harder-Narasimhan filtration of a skyscraper
sheaf k(x) contains a spherical object. In a Calabi-Yau 3-category, spher-
ical objects cannot be characterized via their Euler characteristic among
stable objects. Instead, our proof is obtained by a direct geometric analysis
of the boundary of U .

Consider a stability condition (Z,P) in the boundary ∂U of U . Since the
skyscraper sheaves k(x) are semi-stable, Z satisfies Z(k(x)) 6= 0 and, up to
the action of C, we can still assume k(x) ∈ P(1) and Z = Za,b for a, b ∈ C
as in equation (4). By Bridgeland’s deformation result and Theorem 2.5,
a, b ∈ C must satisfy one of the following conditions:

Case a: =a = 0
Case E: =a > 0, there exists an exceptional vector bundle of slope
B = −=a=b , and we have δDP∞ (B) > −<b−B · <a+ 1

2
B2 > ∆B.

Case δDP∞ : =a > 0 and −<b−B · <a+ 1
2
B2 = δDP∞ (B).

We begin by showing that “Case δDP∞ ” cannot exist.

Lemma 5.3. Let σt = (Pt, Zt) for t ∈ I ⊂ R be a path in the space of
stability conditions such that =Zt is constant. Then Pt((0, 1]) and Pt(1)
are constant, too.

Proof. Let t1, t2 ∈ I be such that σt1 and σt2 are close with respect to
the metric on Stab(D0); to be specific, we assume d(σt1 , σt2) <

1
8
. Given

φ ∈ (0, 1], the objects E ∈ Pt2(φ) can be characterized as the Zt2-stable
objects in the quasi-abelian categoryPt1((φ− 1

8
, φ+ 1

8
)) (see [Bri07, Section

7]). We want to show E ∈ Pt1((0, 1]).
In case 1

8
≤ φ ≤ 7

8
we are done. If φ ∈ (7

8
, 1], then for any A ∈

Pt1((1, φ + 1
8
)) we have =Zt2(A) = =Zt1(A) < 0, and thus the phase of

A with respect to Zt2 is bigger than one. Hence A cannot be a subobject
of E. By considering the Harder-Narasimhan filtration of E with respect to
Pt1 , this implies that E ∈ Pt1((φ − 1

8
, 1]). A similar argument applies for

0 < φ < 1
8
.

It follows that Pt2((0, 1]) ⊂ Pt1((0, 1]), and thus they must be equal. The
claim about Pt(1) follows easily. 2

Lemma 5.4. There are no stability conditions σ = (Za,b,P) in ∂U such
that =a > 0 and −<b−B · <a+ 1

2
B2 = δDP∞ (B).

Proof. Due to Corollary 3.5, we may assume that B is irrational.
Consider the path σt = (Za(t),b(t),Pt), t ∈ [0, 1] in Stab(D0) starting at

σ induced by deforming Z as Za(t),b(t), with a(t) = a constant, and b(t) =
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b − εt. Due to the shape of the boundary of Z(U) around a, b, the stability
conditions σt for t > 0 are geometric.

By the previous lemma, it follows thatP0((0, 1]) = P1((0, 1]) = Coh
](B)
0 ,

and that P0(1) is generated by the skyscraper sheaves k(x). The sheaves
k(x) have no subobjects in this category, thus they are stable. By Corollary
3.5, this contradicts the assumption that σ is in the boundary of U . 2

The following lemma deals with “case a”:

Lemma 5.5. Let (Za,b,P) ∈ ∂U be a stability condition with=a = 0. Then
=b = 0, i.e. the image of Z is contained in the real line.

Proof. Writing inequality (2) without denominators we get

(=a)2<b > =a · =b · <a− (=a)2δDP∞ (B) +
1

2
(=b)2

By continuity, this implies (=b)2 ≤ 0 on the boundary with =a = 0. 2

In particular, the part of the boundary with =a = 0 is a codimension two
subset; by Corollary 3.5, it must be contained in the closure of the remaining
part of the boundary.

We will now consider boundary stability conditions in “Case E”. Let
a, b, B be as in the assumption, and let E be the exceptional vector bundle
on P2 of slope B; then Za,b(i∗E) ∈ (−1, 0) and Za,b(i∗G) ∈ R>0 for any
other slope-stable sheaf G on P2 of slope B. This suggest that i∗E is semi-
stable, of phase φ(i∗E) = ±1 (depending on whether Z(i∗E) approaches
the real line from above or below when we approach Za,b by geometric
stability conditions); and in the case φ(i∗E) = +1 the t-structure P((0, 1])
should be given as in the following proposition.

We will prove this by constructing the stability conditions in the boundary
directly, and prove that they deform to geometric stability conditions.

Proposition 5.6. Let B be the slope of an exceptional vector bundle E on
P2. Then there is a torsion pair (T E ,FE) on Coh0 where

• T E is the extension-closed subcategory of Coh0 generated by tor-
sion sheaves, by slope-semistable sheaves of slope µ > B, and by
E , and
• FE is generated by slope-semistable sheaves G of slope µ ≤ B that

also satisfy Hom(i∗E ,G) = 0.

Proof. From the construction, it is clear that Hom(T E ,FE) = 0.
Now given any G ∈ Coh0, let G>B ↪→ G � G≤B the unique short exact

sequence with G>B ∈ Coh>B0 and G≤B ∈ Coh≤B0 . Let V = Hom(i∗E ,G≤B)
and let F be the cokernel such that the following sequence is exact on the
right:

V ⊗ i∗E f−→ G≤B → F → 0
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We claim that F ∈ FE , and that the kernel T of the composition G �
G≤B � F lies in T E .

The image of the evaluation map f is slope-semistable of slope B; hence
so is the kernel of f . Since i∗E is stable, the kernel is of the form i∗E ⊗ V ′
for some V ′ ⊂ V ; by the definition of V , this forces V ′ = 0, i.e. the above
sequence is exact. This shows that T is an extension of G>B and i∗E .

Since Hom(i∗E , i∗E) = C and Ext1(i∗E , i∗E) = 0, the long exact se-
quence associated to Hom(i∗E , ) shows that Hom(i∗E ,F) = 0, and thus
F ∈ FE as desired. 2

A similar result as Proposition 5.6 is also in [Yos09, Prop. 2.7].
We continue to assume that a, b ∈ C satisfy B = −=a=b and the inequality

of boundary “Case E”. Let CohE0 = 〈T E ,FE [1]〉 be the t-structure given by
tilting at the torsion pair of Proposition 5.6. From the previous discussion,
it follows that Za,b is a stability function for CohE0 .

Proposition 5.7. Harder-Narasimhan filtrations exist for the stability func-
tion Za,b on CohE0 .

Proof. The proof is similar to Lemma 4.3. Indeed, since B = −=b=a is the
slope of E , it is rational; hence the imaginary part of Za,b is discrete, and we
can again apply Proposition B.2. The only difference with the case treated
in Lemma 4.3 is that, for an object A in P ′a,b(1),H0(A) is isomorphic to an
extension of i∗Ea by a torsion sheaf of dimension zero. To deal with this
difference, we replace all arguments using the length of a maximal zero-
dimensional subsheaf by using the function

e : Coh0 → Z, e(·) := dim(Hom(i∗E , ·)).
In many respects, it has the same formal properties needed (e.g. subadditiv-
ity on short exact sequences), and the proof goes through:

Assume that F ∈ CohE0 has an infinite sequence

(10) 0 = A0 ⊆ A1 ⊆ . . . ⊆ Aj ⊆ Aj+1 ⊆ . . . ⊆ F,

of subobjects with Aj ∈ P ′a,b(1). Denote by Bj the cokernel in CohE0 of
Aj ↪→ F .

By arguing as in Lemma 4.3, we can assume H−1(Aj) = F−1 and
H0(Bj) = G1, for some F−1,G1 ∈ Coh0 and for all j. Let F0 be the cok-
ernel in Coh0 of F−1 ↪→ H−1(F ) and let G0 be the kernel of H0(F ) � G1.
Then we have an exact sequence

0→ F0
g→ H−1(Bj)→ H0(Aj)

f→ G0 → 0,

and we letKj = ker f = cok g. By the long exact Hom-sequences, we have

e(H0(Aj)) ≤ e(Kj) + e(G0) ≤ e(H−1(Bj)) + dimExt1(i∗E ,F0) + e(G0).
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By definition ofFE , we have Hom(i∗E ,H−1(Bj)) = 0, and thus e(H0(Aj))
is bounded.

Now consider a filtration step of (10), and let Dj be the cokernel in CohE0
of Aj ↪→ Aj+1. From the exact sequence

0→ H−1(Dj)→ H0(Aj)→ H0(Aj+1)
φ→ H0(Dj)→ 0,

we argue similarly as before:

e(kerφ) = e(H−1(Dj)) + e(kerφ) ≥ e(H0(Aj))

On the other hand, as T E is closed under quotients, we have kerφ ∈ T E ,
and thus kerφ ∈ P ′a,b(1) and Ext1(i∗E , kerφ) = 0. Thus we have

e(H0(Aj+1)) = e(kerφ) + e(H0(Dj)) ≥ e(kerφ) ≥ e(H0(Aj))

with equality only if H0(Dj) = 0. By the boundedness established above,
we do have H0(Dj) = 0 for j � 0; but then H0(Aj) � H0(Aj+1) stabi-
lizes as Coh0 is Noetherian. 2

We denote byW+
E the set of stability conditions constructed in the above

proposition.

Proposition 5.8. For any σ ∈ W+
E , the skyscraper sheaves k(x) are σ-

semistable with Jordan-Hölder filtration given as in Theorem 5.1. Their
images STE(k(x)) under the spherical twist at i∗E are also σ-semistable,
of the same phase as k(x), with Jordan-Hölder filtration given by

(11) Ex[1]→ STE(k(x))→ i∗E⊕r.
Proof. The sheaves Ex are slope-semistable of the same slope as E , and

the long exact Hom-sequence shows Hom(E , Ex) = 0. Hence Ex ∈ FE ,
and Ex[1] ∈ P(1), and we indeed have a short exact sequence as in (8) in
P(1). We claim that Ex[1] is Za,b-stable, i.e. we will show that there are no
non-trivial short exact sequences A ↪→ Ex[1] � B in the abelian category
P(1):

Let C denote the kernel of the the composition k(x) � Ex[1] → B in
P(1). By the long exact cohomology sequence, C is isomorphic to a sheaf
C. As observed in the proof of Proposition 5.7, we have C ∼= Ek ⊕ T ,
where T is a zero-dimensional torsion sheaf. Using the octahedral axiom
(or the 9-lemma, according to the reader’s taste) for the composition Er ↪→
C ↪→ k(x), we obtain an exact sequence Er ↪→ C � A. On the other hand,
by the long exact Hom-sequence applied to A ↪→ Ex[1] � B, we have
Hom(E , A) = 0, and thus Hom(E , C) ∼= Cr. As r divides dim Hom(E , T ),
this is only possible if C ∼= Er, or C ∼= k(x); in either case the short exact
sequence is trivial as claimed.

By using adjunction one sees that RHom(i∗E, k(x)) = Cr ⊕ Cr[−1].
The long exact cohomology sequence shows H0(STE(k(x)) ∼= E⊕r and
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H−1(STE(k(x)) = Ex, and so there is an exact triangle as in (11). This
shows STE(k(x)) ∈ P(1), and that (11) is a Jordan-Hölder filtration. 2

We can deform Z such that Z(k(x)) = −1 remains constant, Z(i∗E)
moves to the upper half-plane, andZ(Ex[1]) moving to the lower-half plane;
then by Lemma 5.9, all k(x) become stable. It follows that the closure W+

E
of the orbit of W+

E under the action of C is a wall of ∂U . The objects
k(x) and STE(k(x)) become stable on opposite sides of the wall, and thus
W+
E ∈ U ∩ STE(U). If we apply ST−1

E toW+
E , we obtain a wall where the

Jordan-Hölder filtration of k(x) is given by the image of (11) under ST−1
E ,

which is indeed the exact triangle (9).
This finishes the proof of Theorem 5.1. Note that the proof also implies

that two such walls can only intersect at points where the image of the cen-
tral charge is contained in a line eiπφ · R ⊂ C. In that case, the heart P(φ)
of the associated t-structure has finite length; in fact, it is one of the “quiv-
ery” stability conditions constructed in [Bri06], and used in the following
section.

Lemma 5.9. Let E ∈ D0 and σ ∈ Stab†(D0) be a stability condition such
that E is σ-semistable, and assume that there is a Jordan-Hölder filtration
Ar ↪→ E � B of E such that A,B are σ-stable, Hom(E,A) = 0, and [E]
and [A] are linearly independent classes in K(D0). Then σ is in the closure
of the set of stability conditions where E is stable.

Proof. Let φ be the phase ofA,E,B with respect to σ = (Z,P). By sim-
ilar arguments as in the proof of Proposition 3.3, we can show that that for
any stability condition σ′ sufficiently close to σ, E can only be destabilized
by subobjects F ↪→ E in P(φ). Now let σ′ = (Z ′,P ′) be such a stability
condition close by with A,B stable and φ′(A) < φ′(E) < φ′(B). Assume
that F ∈ P(φ) is a stable destabilizing subobject of E with respect to Z ′. If
the image of the composition F → B is zero, then F factors via A, hence
φ′(F ) < φ′(A). So F → B must be surjective; its kernel G ∈ P(φ) is a
subobject of Ar, and thus of the form Ak for some k < r. Hence the quo-
tient of F ↪→ E is isomorphic to Ar−k, in contradiction to Hom(E,A) = 0.
2

6. ALGEBRAIC STABILITY CONDITIONS

In this section we study the open subset Staba, introduced by Bridge-
land in [Bri06], consisting of algebraic stability conditions. We first intro-
duce open subsets ΘS, associated to a collection of spherical objects S,
and study their boundary in Stab†(D0). The subset of algebraic stability
conditions will then be the union of all ΘS. Then we study in detail the re-
lation between Staba and U . In particular, we show that Staba contains the
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boundary of U (described in the previous section) and, vice versa, that the
intersection of U with Staba is strictly contained in U . In the next section
we will apply all of this to prove Theorem 2.

Let E = {E0, E1, E2} be an exceptional collection of vector bundles on
P2. Then the subcategory of D0 generated by extensions of i∗E0[2], i∗E1[1],
and i∗E2

AE := 〈i∗E2, i∗E1[1], i∗E0[2]〉
is the heart of a bounded t-structure on D0. By [Bri05b], the category AE

can also be described as the category of nilpotent modules over a certain
algebra.

Definition 6.1. A heart of a bounded t-structure onD0 is called quivery if it
is of the form Φ(AE), for some exceptional collection E of vector bundles on
P2 and for some autoequivalence Φ ofD0 given by composition of spherical
twists associated to exceptional vector bundles.

Notice that a quivery subcategory is of finite length, with simple objects
Φ(i∗E2), Φ(i∗E1[1]), and Φ(i∗E0[2]), which are also spherical inD0. A quiv-
ery subcategory is called ordered if it comes with an ordering of S0, S1, S2

of its simple objects compatible with the requirement that Homk(Sj, Sl) =
0 unless 0 ≤ k ≤ 3 and j− l ≡ k(mod 3). A collection S = {S0, S1, S2} of
spherical objects of D0 is called an ordered quivery collection if it arises as
an ordered collection of simple objects in an ordered quivery subcategory
AS.

By [Bri05b, Thm. 4.11], we can define an action on the set of quivery
ordered subcategories of D0 of the affine braid group B3, i.e., the group
generated by elements τj (j ∈ Z3) and r subject to the relations

rτjr
−1 = τj+1, τjτj+1τj = τj+1τjτj+1, r3 = 1.

Indeed, to define such an action is sufficient to set how the generators of B3

act on the simple objects of a ordered quivery category:

τ1{S0, S1, S2} := {S1[−1], STS1(S0), S2}
r{S0, S1, S2} := {S2, S0, S1}.

By [Bri05b, Prop. 4.10], the image via τj of a quivery category is quivery
as well, and thus the action is well-defined. Notice, in particular, that

τ2{S0, S1, S2} = {S0, S2[−1], STS2(S1)}.
Remark 6.2. Let E = {E0, E1, E2} be an exceptional collection of vector
bundles on P2. Then

τ1{i∗E2, i∗E1[1], i∗E0[2]} = {i∗F2, i∗F1[1], i∗F0[2]},



THE SPACE OF STABILITY CONDITIONS ON THE LOCAL PROJECTIVE PLANE 27

where F = {F0,F1,F2} is another exceptional collection of vector bundles
on P2, called the left mutation of E at E1 (see [GR87, Bon89]). Similarly,
for τ2 we have the left mutation of E at E0, for τ−1

1 we have the right mu-
tation of E at E2, and for τ−1

2 we have the right mutation of E at E1. Since
all exceptional collections of vector bundles on P2 can be obtained by a se-
quence of mutations from E1 := {i∗OP2(−1), i∗ΩP2(1), i∗OP2}, all ordered
quivery subcategories can be obtained from

A1 := AE1 = 〈i∗OP2 , i∗ΩP2(1)[1], i∗OP2(−1)[2]〉
by the action of B3.

Definition 6.3. A stability condition σ on D0 is called algebraic if there
exists M ∈ G̃L2(R) such that the heart of σ · M is quivery. Denote by
Staba the subset of Stab(D0) consisting of algebraic stability conditions.

Using [Bri05b, Prop. 4.10] and [Mac07, Cor. 3.20] it follows that Staba
is an open connected 3-dimensional submanifold of Stab(D0). Moreover,
it is easy to construct stability conditions in Staba in which the skyscraper
sheaves are all stable (for example, a stability condition with heart A1 in
which φ(i∗OP2) < φ(i∗ΩP2(1)[1]) < φ(i∗OP2(−1)[2])). Hence Staba ⊂
Stab†(D0), but the inclusion is strict (this can be deduced from Proposition
6.11 and Remark 6.12). Finally, by its own definition, Staba is invariant
under the subgroup of the autoequivalences of D0 which is generated by
spherical twists STF , with F an exceptional bundle on P2.

Definition 6.4. Let S be an ordered quivery collection. We denote by ΘS

the open subset of Staba consisting of stability conditions whose heart is, up
to the action of G̃L2(R), equivalent to AS. With a slight abuse of notation,
when E is an exceptional collection of vector bundles on P2, we denote by
ΘE the open subset of Staba consisting of stability conditions whose heart
is, up to the action of G̃L2(R), equivalent to AE.

Lemma 6.5. The region ΘS ⊂ Stab(D0) is characterized as the subset
where S0, S1, S2 are stable, and where their phases φj := φ(Sj) satisfy

(12) |φj − φj+1| < 1 for j = 0, 1, 2.

It is homeomorphic to

CS =
{

(m0,m1,m2, φ0, φ1, φ2) ∈ R6 : mj > 0 and (12) holds for all j
}

Proof. Evidently Sj are stable in ΘS, and satisfy equation (12). Con-
versely, if Sj are stable in (Z,P) satisfying equation (12), then for φ :=
minφj we have AS ⊂ P((φ, φ + 1]), thus AS = P((φ, φ + 1]) and
(Z,P) ∈ ΘS. 2
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Notice that, for later use, ST−1
Sj

(Sj+1) is an extension of Sj+1 bym copies
of Sj , where m = dim Hom1(Sj+1, Sj). Hence, its class in K(D0) is given
by

[STSj+1
(Sj)] = m[Sj] + [Sj+1].

Moreover, it belongs toAS and, if φ(Sj+1) > φ(Sj) then it is also σ-stable.
A similar observation holds true for STSj+1

(Sj).
The next proposition generalizes [Bri06, Theorem 1.1].

Proposition 6.6. Let S = {S0, S1, S2} be an ordered quivery collection.
Then the closure ΘS of ΘS in Stab†(D0) is contained in Staba.

Proof. Let σ = (Z,P) ∈ ΘS \ ΘS be the limit of a sequence {σs}s∈N,
with σs ∈ ΘS. Then S0, S1, and S2 are σ-semistable; up to the action of C,
we have the following possibilities for their phases:

(a) The image of Z is a line in the plane.
(b) The image of Z is not a line in the plane and there exists j such that

0 = φ(Sj) = φ(Sj+1)−1 (here and in the sequel all the indices are
taken modulo 3).

(c) The image of Z is not a line in the plane and there exists j such
that 0 = φ(Sj) = φ(Sj−1)− 1.

We begin with case (b). First of all notice that 0 < φ(Sj−1) < 1. More-
over, up to the action of C, we can assume every σs has heart AS.

Let Pm be the Kronecker quiver with m = dim Hom1(Sj+1, Sj) > 0 ,
i.e. the quiver with two vertices and m arrows from the first to the second
vertex. Consider the faithful functor I : Db(Pm) → Tr(Sj, Sj+1) ⊆ D0,
which maps the two simple quiver representations of Pm corresponding to
the two vertices respectively to Sj+1 and Sj . Here Tr(Sj, Sj+1) denotes
the triangulated subcategory of D0 generated by Sj and Sj+1. For s �
0, the stability condition σs induces a stability condition on Tr(Sj, Sj+1),
whose heart is the abelian category generated by extensions by Sj and Sj+1.
Now the functor I restricted to mod-Pm is full and faithful. By [MMS09,
Prop. 2.12], σs induces a stability condition I−1σs in Db(Pm). Hence, by
[MMS09, Lemma 2.9], I−1σ ∈ Stab(Pm). By [Mac07, Lemma 4.2], there
exists an integer k ∈ Z such that σ ∈ Θτkj+1S. More explicitly, if τ kj+1S =

{R0, R1, R2}, then what we proved is that Rj are stable with respect to σ,
and that we have Jordan-Hölder filtrations given by Sj−1 = Rj−1 and

R
⊕uj
j → Sj[ε]→ R

⊕vj
j+1

R
⊕uj+1

j → Sj+1[ε− 1]→ R
⊕vj+1

j+1 ,
(13)

where ε = 0, 1 according to k.
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For possibility (c), we have similarly 0 < φ(Sj+1) < 1. Then σ ∈ ΘτjS

and S0, S1, and S2 remain stable in σ.
Finally, if the image of Z lies in a line (case (a)), then we can deform σ

in ΘS in such a way to reduce to the situation of case (b). We can apply the
previous procedure and find g1 ∈ B3 such that σ ∈ Θg1S. If σ ∈ Θg1S we
have finished the proof. Assume not. Then we continue and again deform
σ in Θg1S to reduce again to case (b). We produce a new element g2 ∈ B3

and so on. This procedure must eventually terminate at a step N : indeed at
every step, by (13), we are constructing a filtration of S0, S1, and S2 into
σ-semistable objects of the same phase. But σ is locally-finite. Hence at a
certain point we produce a stable factor and so σ ∈ ΘgNS, as wanted. 2

We can now study the relation of Staba with U .

Lemma 6.7. Let E be an exceptional collection of vector bundles on P2.
Then ΘE ∩ U 6= ∅ and it is connected.

Proof. First of all notice that all skyscraper shaves k(x) for x ∈ P2 belong
toAE. Consider the stability condition σ ∈ ΘE with heartAE, whose simple
objects have phases

φ(i∗E2) = φ(i∗E1[1]) = φ(i∗E0[2]) = 1.

Let Ex2 be the kernel of E⊕r2 � k(x) as in Section 5; then Ex2 ∈ AE, and in
fact it is contained in the abelian category generated by extensions by i∗E1[1]
and i∗E0[2]. We can deform σ slightly to a stability condition σ ∈ ΘE with

• φ(i∗E2) = φ(k(x)) = φ(Ex2 ),
• φ(i∗E1[1]) < φ(i∗E0[2]).

We claim that Ex2 is σ-stable. Indeed, as in the proof of Proposition 6.6,
we can consider the faithful functor I : Db(Pm) → Tr(i∗E0, i∗E1), where
m = dim Hom(i∗E0, i∗E1) > 0. Then Ex2 ∼= I(Ẽx2 ), and to prove that Ex2 is
σ-stable is equivalent to prove that Ẽx2 is I−1σ-stable in Db(Pm). But the
stability of Ẽx2 follows immediately from [Kin94, Prop. 4.4].

Hence k(x) is σ-semistable, and its two Jordan–Hölder factors are Ex2
and i∗E⊕r22 , where r2 is the rank of E2. By Lemma 5.9, σ ∈ ΘE ∩ U , and so
ΘE ∩ U 6= ∅ since ΘE is open.

To prove connectedness, we may first use the action by C to fix the phase
of k(x) to be 1 with Z(k(x)) = −1. Then every class of a subobject of k(x)
gives a linear inequality for the imaginary part of Z, and thus ΘE ∩U is cut
out by a finite number of half-spaces. 2

Corollary 6.8. We have

Stab†(D0) = Staba ∪
⋃

Φ(U),
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where the union is taken over all autoequivalences Φ of D0 which belongs
to the subgroup generated by spherical twists STF (F an exceptional vector
bundle on P2).

Proof. By Corollary 5.2, we know that Stab†(D0) =
⋃

Φ(U). We only
need to show that the boundary ∂U is contained in Staba.

Consider the boundary of type W+
E , for E an exceptional vector bundle

on P2, as in Theorem 5.1. Complete E to an exceptional collection E =
{E0, E1, E2 = E} of vector bundles on P2. By Lemma 6.7, ΘE ∩W+

E 6= 0.
Since ΘE is open, there exists a stability condition σ, whose heart CohE0

is given by Proposition 5.6, which is also in ΘE. This means that, since
i∗E0[1] and i∗E1[1] belong to CohE0 ,

(14) φ(i∗E0[1]) < φ(i∗E1[1]).

But this implies that (14) holds for all stability conditions in W+
E for which

the central charge is not contained in a line. Indeed, if the (14) holds, then
the stability condition is in ΘE. If the two phases are equal, then, since
Ex2 [1] is a quotient of k(x) (x ∈ P2) and at the same time it lies in the
abelian subcategory generated by i∗E0[2] and i∗E1[1], the central charge is
contained in a line.

Hence W+
E ⊆ ΘE and, by Proposition 6.6, W+

E ⊆ Staba. For the case of
the boundary of typeW−

E , simply observe thatW−
E = ST−1

E (W+
E ) ⊆ Staba.

By Theorem 5.1, ∂U ⊆ Staba, as wanted. 2

Notice that, in the proof of Corollary 6.8, we actually showed that

(15) ∂U ⊆
⋃

ΘE,

where the union is taken over all exceptional collections of vector bundles
on P2. It follows that:

Remark 6.9. There is a one-to-one correspondence between quivery sub-
categories and loci in Stab†(D0) of codimension 2 where the image of the
central charge is contained in a line.

Indeed, such a degenerate stability condition must lie, up to translation
by spherical twists, in the boundary ∂U . It has a unique heart (up to shifts),
which must be AE for some exceptional collection E.

Corollary 6.10. Staba ∩U is connected.

Proof. Let E = {E0, E1, E2} be an exceptional collection of vector bun-
dles on P2. By Lemma 6.7, ΘE ∩ U is nonempty and connected. We first
claim that we can connect in Staba ∩U any stability condition in ΘE ∩U to
a stability condition in ΘE1 ∩ U .

We proceed by induction on the length of a mutation from E1 to E. By
Remark 6.2, we need to show that a stability condition in Θτ±1

j E∩U , for j =
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1, 2, can be connected to a stability condition in ΘE ∩ U . Let σ ∈ ΘE ∩ U .
Then there exists a continuous family G(t) ∈ G̃L2(R), t ∈ R, such that
σ · G(t) → σ, for t → +∞, where σ ∈ ΘE is a stability condition having
AE as heart and φ(i∗E2) = φ(i∗E1[1]) = φ(i∗E0[2]) = 1. Hence σ ∈ U .
By Theorem 5.1, there exist two stability conditions σ1 ∈ ΘE ∩ W+

E2 and
σ2 ∈ W−E0 . If φk denotes the phase function in σk (k = 1, 2), we must have

φ1(i∗E0[2]) > φ1(i∗E2) > φ1(i∗E1[1])

and
φ2(i∗E1[1]) > φ2(i∗E0[2]) > φ2(i∗E2).

But then σ1 ∈ ΘE ∩ Θτ±1
2 E ∩ U and σ2 ∈ ΘE ∩ Θτ±1

1 E ∩ U . Since the
subsets Θ are open, this is enough to conclude that ΘE ∩ Θτ±1

j E ∩ U 6= ∅,
for j = 1, 2. This shows the claim.

In general, let σ ∈ ΘS ∩ U , for an ordered quivery collection S =
{S0, S1, S2}. Then, proceeding as above, ΘS ∩ U is connected and we can
find a stability condition σ in the closure of the G̃L2(R)-orbit of σ such that
S0, S1, and S2 are σ-stable of the same phase, that is σ ∈ ΘS∩U . But then,
by (15), σ ∈ ΘE, for some exceptional collection E of vector bundles on
P2. This gives ΘE ∩ ΘS ∩ U 6= ∅ and this intersection is connected, which
completes the proof. 2

We conclude the section by making a comparison between Staba and
Stab†(D0). To this end, we define Stabg as the set of geometric stability
conditions which, up to the action of C, are of the form σa,b with

=(a) > 0

<(b) > −B<(a) +
1

2
B2,

where as in Definition 2.4, B := −=(b)
=(a)

. By Theorem 2.5, all pairs (a, b) ∈
C2 satisfying the above inequalities are actual stability conditions. This
implies that Stabg is an open, connected, and simply-connected subset of
Stab(D0). Moreover, up to the action of G̃L2(R), we can assume the central
charge of a stability condition in Stabg to take the form (see [ABL07])

Zt,m(−) = −
∫

P2

e−(t+im)h ch(−),

for t,m ∈ R, m > 0, and h the class of a line in P2. In such a case, we
denote the corresponding stability condition by σt,m.

Let E = {E0, E1, E2} be an exceptional collection of vector bundles on P2.
Set ch(Ej) = (rj, dj, cj), µj := dj/rj , and ∆j := 1

2

(
1− 1

r2j

)
(j = 1, 2, 3).

Note that µ0 < µ1 < µ2 < µ0 + 3.
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Proposition 6.11. We have σ = σt,m ∈ ΘE ∩ Stabg only if (t,m) is con-
tained in the open semicircle with center (C, 0), where

(16) C :=
1

2
(µ0 + µ2) +

∆0 −∆2

µ2 − µ0

and radius R :=
√
ρ, where

(17) ρ :=

(
∆0 −∆2

µ2 − µ0

)2

+
1

4
(µ2 − µ0)2 − (∆0 + ∆2) > 0.

Proof. First of all, let σ = σt,m ∈ ΘE ∩ Stabg. Then, by Lemma 6.5,

(a) φ(i∗E0) < φ(i∗E1) < φ(i∗E2) and
(b) φ(i∗E0) + 1 = φ(i∗E0[1]) < φ(i∗E2).

As a consequence of (b), (t,m) lies in the region bounded by

=Zt,m(i∗E0)

<Zt,m(i∗E0)
=
=Zt,m(i∗E2)

<Zt,m(i∗E2)
,

Making it explicit, we have

m2 +

(
t− r0c2 − r2c0

d2r0 − d0r2

)2

= −2
d0c2 − d2c0

d2r0 − d0r2

+

(
r0c2 − r2c0

d2r0 − d0r2

)2

.

As observed in Appendix A,

cj
rj

=
1

2r2
− 1

2
+
µ2
j

2
= −∆j +

µ2
j

2
,

for j = 0, 1, 2. Substituting we immediately deduce (16) and (17). The fact
that ρ > 0 is again a straightforward computation, using

0 = χ(E2, E0) = r0r2

(
1− 3

2
(µ2 − µ0) +

1

2
(µ2 − µ0)2 − (∆0 + ∆2)

)
.

2

Using Lemma 6.7 and a deformation argument it can be proved that the
statement of the previous proposition is actually an if and only if.

Remark 6.12. By [GR87, Prop. 5.1], we have

∆0 −∆2

µ2 − µ0

=
3

2
· r2

0 − r2
2

r2
0 + r2

2 + (c2r0 − c0r2)2
∈
[
−3

2
,
3

2

]
.

Hence, if m > 3/
√

2, then σt,m /∈ ΘE.
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7. SIMPLY-CONNECTEDNESS

We can now prove the simply-connectedness of Stab†(D0):

Theorem 7.1. The connected component Stab†(D0) is simply-connected.

The idea of the proof is very simple: by an elementary topological argu-
ment, using what we proved in the previous section, we first reduce The-
orem 7.1 to proving that Staba is simply-connected. To show this last as-
sertion, we associate to every loop in Staba a word in the generators of
the affine braid group B3. Then the simply-connectedness of Staba will be
equivalent to the fact that B3 acts freely on the set of ordered quivery sub-
categories, and that, for every relation in B3, we can find a corresponding
loop that is contractible.

The main reason we involve Bridgeland’s description of the set Staba
is the following: The loci of degenerate stability conditions appearing in
Remark 6.9 are rather implicit in our description of Stab†(D0); however,
they are essential for the simply-connectedness of the space.

Remark 7.2. Following [Bri06], let Stabn ⊂ Stab†(D0) be the subset
of normalized stability conditions with Z(k(x)) = −1. Denote by Stab
the quotient Stab†(D0)/C by the C-action, which must also be simply-
connected. By the results of the previous section, there always exist semi-
stable objects of class [k(x)] in Stab†(D0); hence Z(k(x)) is never zero.
It follows that the subset Stabn already surjects onto Stab. This surjec-
tion is a Galois covering Stab ∼= Stabn /Z, where the action by n ∈ Z is
given as the shift [2n]; by the simply-connectedness of Stab, it follows that
Stabn ∼= Stab× Z.

In particular, there is a connected component of “very normalized” sta-
bility conditions Stabvn ⊂ Stabn containing the geometric stability condi-
tions where the skyscraper sheaves are semistable of phase 1. It is a global
slicing with respect to the C-action, and simply-connected. It is invariant
under spherical twists and tensoring with line bundles (i.e., invariant under
the subgroup Γ1(3) ⊂ AutD0 of Theorem 8.1). Presumably, Bridgeland’s
Conjecture 1.2 in [Bri06] could be modified to use this connected compo-
nent Stabvn rather than its open subset Stab0

n(X) in the notation of [Bri06].

Lemma 7.3. Let X be a topological space such that

X = A ∪
⋃
n∈N

Bn

where
• A and all Bn are open, connected, and simply-connected;
• A ∩Bn is non-empty and connected, for all n ∈ N;
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• Bn ∩Bm = ∅, for n 6= m.
Then X is simply connected.

Proof. This is an easy application of the classical Seifert–Van Kampen
Theorem. Indeed, consider a continuous loop. By compactness, there exists
an integer N such that the loop is fully contained in

XN := A ∪
⋃
n≤N

Bn.

But an easy inductive argument shows that XN is connected and simply-
connected. Hence the loop can be contracted in XN and so in X . 2

To prove Theorem 7.1, we use the previous lemma with A := Staba, and
the countable familyBn as Φ(U), for Φ an autoequivalence ofD0 which be-
longs to the subgroup generated by spherical twists STF (F an exceptional
vector bundle on P2). Clearly U and so all Φ(U) are open, connected, and
simply-connected and U ∩ Φ(U) = ∅ unless U = Φ(U).

By Corollary 6.8 and Corollary 6.10, Theorem 7.1 follows then from the
next proposition.

Proposition 7.4. Staba is simply-connected.

Before proving Proposition 7.4, we need a few Lemmata.

Lemma 7.5. Let S = {S0, S1, S2} and R = {R0, R1, R2} be two ordered
quivery collections. Assume that ΘS ∩ ΘR 6= ∅. Then, either ΘS = ΘR,
or there exists a stability condition σ = (Z,P) ∈ ∂ΘS ∩ ΘR such that the
image of Z is contained in a line.

Proof. By hypothesis, either ΘS = ΘR, or there exists a stability condi-
tion σ ∈ ∂ΘS ∩ ΘR. Now, we proceed as in the proof of Corollary 6.10:
for every stability condition in ΘR there exists a sequence Gk ∈ G̃L2(R)
(k ∈ N) such that σ ·Gk → σ, where σ = (Z,P) is a stability condition in
ΘR such that the image of Z is contained in a line. But then σ ∈ ∂ΘS∩ΘR,
as wanted. 2

Lemma 7.6. Let S = {S0, S1, S2} and R = {R0, R1, R2} be two ordered
quivery collections. If σ = (Z,P) ∈ ∂ΘS ∩ ΘR is such that the image
of Z is contained in a line, then there exists γ = γs · . . . · γ1 ∈ B3, γk ∈
{τ±1

0 , τ±1
1 , τ±1

2 } for all k ∈ {1, . . . , s}, such that R = γS and there exist
real numbers 0 = a0 < a1 < . . . < as < as+1 = 1 and a continuous path
α : [0, 1]→ Staba such that α([ak, ak+1)) ⊆ Θγk...γ1S ∩ΘS and α(1) = σ.

Proof. It follows immediately from the proof of Proposition 6.6. 2

Lemma 7.7. Let S be an ordered quivery collection. Then, for all γ ∈
{τ±1

0 , τ±1
1 , τ±1

2 }, ΘS ∪ΘγS is simply-connected.
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Proof. For simplicity, we assume γ = τ1. By Lemma 6.5 and the Seifert-
Van Kampen Theorem, we only need to show that ΘS ∩Θτ1S is connected.
But, using Lemma 6.5 again, as well as the remark following it, we have

ΘS ∩Θτ1S = CS ∩
{

(m0,m1,m2, φ0, φ1, φ2) ∈ R6 : φ1 > φ0, φ1 > φ2

}
,

which is clearly connected. 2

Proof. (Proposition 7.4) Take a continuous loop α : [0, 1] → Staba.
Then, by Lemma 7.6, there exist real numbers 0 = a0 < a1 < . . . <
am = 1, m ∈ N, and ordered spherical collections

{Mk = {Mk
0 ,M

k
1 ,M

k
2 }}k∈{1,...,m}

with Mk+1 obtained from Mk by an element γk+1 ∈ {τ±1
0 , τ±1

1 , τ±1
2 }, such

that α([ak−1, ak)) ⊆ Θk := ΘMk
for k ∈ {1, . . . ,m} and α(0) ∈ Θm ∩Θ1.

Thus we can assign a word W (α) = γm . . . γ1 in the generators of B3 to
every loop α. Using Lemma 7.7 we deduce that the homotopy class [α] of
α is determined by W (α), and that [α] is in fact determined by element in
the free group L generated by r, τ0, τ1, τ2 associated to W (α).

Now assume more specifically that the stability conditions (Z,P) =
α(0) = α(1) is given by P((0, 1] = AE1 , Z(i∗OP2) = Z(i∗ΩP2(1)[1]) =
Z(i∗OP2(−1)[2]) = −1

3
. Then any heart P((φ, φ+ 1]) is a shift of AE1 . As

an ordered quivery collection is determined, up to reordering, by its heart,
we have

rjW (α)(M1) = M1,

for some j. Since the braid group B3 acts freely on the set of ordered
quivery subcategories (by [Bri05b, Thm. 5.6]), we have rjW (α) = idB3

in B3. Due to the description of B3 in terms of generators and relations, it
follows that we have an identity in L of the form

W (α) = r−j(h1R
±1
1 h−1

1 ) · · · (hsR±1
s h−1

s ),

with R1, . . . , Rs ∈ {rτir−1τ−1
i+1, τiτi+1τiτ

−1
i+1τ

−1
i τ−1

i+1, r
3} and h1, . . . , hs ∈

L arbitrary elements.
By Lemma 7.8, loops with associated words τiτi+1τiτ

−1
i+1τ

−1
i τ−1

i+1 (or its
inverse) can be contracted in Staba. This implies that α can be contracted
in general, and so Staba is simply-connected. 2

Lemma 7.8. Let α be a loop with word W (α) = τiτi+1τiτ
−1
i+1τ

−1
i τ−1

i+1. Then
α is contractible.

Proof. We may assume i = 1. We will say that a loop α “runs through
the regions U1, . . . , Um” for open subsets Ui ⊂ Staba if there are 0 = a0 <
a1 < . . . < am < 1 with α([ak−1, ak)) ⊂ Uk and α([am, 1]) ⊂ U1.
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By assumption, the loop α runs through the regions Θ1, . . . ,Θ6 given by
Θk = ΘMk

and

M1 = {S0, S1, S2} M4 = {Γ, ST−1
S0
S1[1], S0[2]}

M2 = {S0, ST−1
S1
S2, S1[1]} M5 = {ST−1

S0
S1, ST−1

S0
S2, S0[2]}

M3 = {Γ, S0[1], S1[1]} M6 = {ST−1
S0
S1, S0[1], S2}

for some ordered quivery collection S0, S1, S2, where Γ = ST−1
S0

ST−1
S1
S2.

First of all observe that, by Lemma 6.5,

Θ1 ∩Θ2 ∩Θ3 6= ∅
and it is homeomorphic to the locus in Θ1 given by those stability conditions
having phases such that φ(S1) < φ(S0) < φ(S2) and φ(S0) < φ(ST−1

S1
S2).

This implies that we can replace α by a loop, which we will denote again α,
such that α runs though the regions Θ1,Θ3,Θ4,Θ5,Θ6. Repeating the same
argument on Θ4 ∩ Θ5 ∩ Θ6, we can replace it by a loop that runs through
Θ1,Θ3,Θ4,Θ6.

Let t1 ∈ (0, 1) be such that α([0, t1)) ⊂ Θ1 and α(t1) = (Z1,P1) ∈
Θ3 ∩ ∂Θ1. By Lemma 7.5, we can assume the image of Z1 to be contained
in the real line. In such a case, we have φ1(S0) = φ1(S1) = 0 and φ1(S2) =
1. At the same time, ST−1

S0
S1 is semistable as well of phase 0. Hence,

α(t1) ∈ ∂Θ6 and, in particular, Θ3 ∩Θ6 6= ∅.
Let t3 ∈ (t1, 1) be such that α(t3) ∈ Θ1 ∩ ∂Θ6 and α((t3, 1]) ⊂ Θ1.

The intersection Θ1 ∩ ∂Θ6 can be easily described using Lemma 7.7: in
particular, it is connected and simply-connected, being homeomorphic to
the region

CM1 ∩
{

(m0,m1,m2, φ0, φ1, φ2) ∈ R6 : φ1 = φ0, φ0 ≤ φ2 ≤ φ0 + 1
}
.

Hence, we can replace α by a homotopic path for which α(t1) = α(t3).
What we proved so far is that our original loop α is homotopic to a loop

which can be decomposed as a loop α′ contained in Θ1∪Θ3 (which is noth-
ing but α([0, t1]) composed with α([t5, 1]), since α(t1) = α(t5)) and another
loop α′′ which runs through Θ3,Θ4,Θ6 (which is nothing but α([t1, t5])).

Now, let t2 ∈ (t1, t5) be such that α(t2) ∈ Θ4 ∩ ∂Θ3. Consider the loop
β which is the same as the loop α′′ but with base point α(t2). Arguing as
before, we can assume that β can be decomposed as a loop α′′′ contained in
Θ4 ∪Θ6 and another loop α′′′′ contained in Θ3 ∪Θ6.

Summing up, to prove that α is contractible, we only need to prove that
all regions Θ1∪Θ3, Θ4∪Θ6, and Θ3∪Θ6 are simply-connected. Again, by
Lemma 6.5 and the Seifert–Van Kampen Theorem, it is sufficient to show
that the intersections Θ1 ∩ Θ3, Θ4 ∩ Θ6, and Θ3 ∩ Θ6 are connected. For
Θ1∩Θ3, observe that it corresponds to the locus in CM1 in which Γ is stable
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and φ(S0), φ(S1) < φ(Γ). This can be easily proved to be connected by
proceeding in a similar way as in the last part of the proof of Lemma 6.7: in
this situation we use the G̃L2(R) to fix the values of Z(Γ) and Z(S1). The
region Θ1 ∩ Θ3 is then, up to the action of G̃L2(R), cut out by half-planes,
and so it is connected. The intersection Θ4 ∩ Θ6 is analogous. Finally,
Θ3 ∩ Θ6 corresponds to the locus in CM3 in which S2 is stable, φ(S0[1]) <
φ(S1[1]), and φ(S2) < φ(ST−1

S0
S1), which is again connected by a similar

argument. This completes the proof of the lemma. 2

8. GROUP OF AUTOEQUIVALENCES

Let AutD0 be the group of autoequivalences of D0 up to isomorphism
of functors, and let Aut†D0 be the subgroup of AutD0 preserving the con-
nected component Stab†(D0).

The numericalK-group ofD0 isK(D0)/K⊥ = K(D0)/Z·[k(x)] ∼= Z⊕2.
Since the Euler form is skew-symmetric, there is a natural map

(18) AutD0 → SL(2,Z)

given by sending an autoequivalence to its induced action on the numerical
K-group. Crucial for us will be the congruence subgroup Γ1(3) ⊂ SL(2,Z)
of matrices (

a b
c d

)
≡
(

1 b
0 1

)
(mod 3)

It has generators T =

(
1 1
0 1

)
and S =

(
1 0
−3 1

)
with a single relation

given by (ST )3 = 1.

Theorem 8.1.
Aut†D0

∼= Z× Γ1(3)× Aut(X).

We start by identifying the subgroup Γ1(3) ⊂ Aut†(D0): As observed in
[Asp05, Section 7.3.6], there is a relation

(19)
(
STOP2 ◦ ( ⊗ π∗O(1))

)3 ∼= Id .

Due to the description of Γ1(3) by generators and relations, this induces a
map Γ1(3)→ Aut†D0; as the induced action on K/K⊥ is faithful, the map
is injective, and we obtain:

Proposition 8.2. The subgroup of Aut†D0 generated by STOP2 and ⊗
π∗O(1) is isomorphic to Γ1(3).

Alternatively, one can prove that the above composition is isomorphic
to the generator of the natural Z3-action on Db

0([C3/Z3]) via the derived
McKay correspondence of [BKR01].
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Lemma 8.3. For any exceptional vector bundle E on P2, its associated
spherical twist STE is contained in the subgroup Γ1(3) generated by STOP2

and ⊗ π∗O(1).

Proof. It is sufficient to show that there exists g ∈ Γ1(3) with E ∼=
g (OP2). By [GR87], E is contained in a mutation of the exceptional collec-
tion {i∗OP2(−1), i∗ΩP2(1), i∗OP2} on P2. Remark 6.2 completes the proof.
2

Restricting to the subgroup Aut†D0 makes it possible to control autoe-
quivalences via the following proposition:

Proposition 8.4. Let Φ ∈ AutD0 be an autoequivalence such that there
exist two geometric stability conditions σ, σ′ with Φ(σ) = σ′. Then Φ is
isomorphic to the composition of an automorphism ofX with ⊗O(n)[k].

Proof. From the description of geometric stability conditions it follows
that Φ sends skyscraper sheaves k(x), x ∈ P2, to shifts of skyscraper
sheaves. More precisely, after replacing Φ by Φ ◦ [k] for some k ∈ Z, we
may assume that for every x ∈ P2 there is x′ ∈ P2 with Φ(k(x)) ∼= k(x′).

Now, the push-forwards OP2(n) of line bundles on P2 are characterized
as the only simple objects satisfying RHom(E, k(x)) ∼= C⊕ C[−1] for all
x ∈ P2. They are naturally ordered by the existence of morphisms. Hence,
after composing Φ with the tensorization by a line bundle, we may assume
Φ(OP2(n)) ∼= OP2(n) for all n ∈ Z.

Then Φ induces an automorphism of Hom(OP2 ,OP2(1)) ∼= C3, which
is given by an element of GL(3). After composing Φ with an element of
Aut P2 ∼= PGL(3), we may assume that the induced automorphism on
Hom(OP2 ,OP2(1)) is given by a scalar multiplication. Due to the compati-
bility of Φ with the composition

Hom(OP2 ,OP2(1))⊗ Hom(OP2(1), k(x))→ Hom(OP2 , k(x))

it follows that Φ(k(x)) ∼= k(x) for all x ∈ P2.
The claim now follows from Proposition C.3. 2

Now Theorem 8.1 follows easily: Given Φ ∈ Aut†D0, pick an arbitrary
geometric stability condition σ ∈ U . By Corollary 5.2, there exists a sta-
bility condition σ′ ∈ U and a composition Ψ of spherical twists associated
to exceptional vector bundles with Ψ ◦ Φ(σ) = σ′. The stability condition
Ψ ◦ Φ(σ) has no semistable objects of class [k(x)]; thus actually σ′ ∈ U .
By Proposition 8.4 and Lemma 8.3, Φ is contained in the group generated
by Γ1(3), shifts, and Aut(X).

As the actions by Z, by Γ1(3), and by Aut(X) commute, we get a sur-
jective map

Z× Γ1(3)× Aut(X)→ Aut†D0.
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Since Z × Aut(X) acts by ±1 on K/K⊥, its intersection with Γ1(3) is
trivial, and the above map is an isomorphism.

9. Π-STABILITY AND GLOBAL MIRROR SYMMETRY

In this section, we outline how our results fit into expectations coming
from mirror symmetry for the local P2. Mirror symmetry for the local P2

has been discussed in many places of the mathematical physics literature,
see e.g. [AGM94, DG00]; our presentation follows [ABK08] and [Asp05]
most closely.

9.1. Monodromy and autoequivalences. The family of mirror partners
to the local P2 can be constructed explicitly from the following family of
genus one curves: The equation

X3
0 +X3

1 +X3
2 − 3ψX0X1X2 = 0

cuts out a surface S ⊂ P2 × C. At ψ3 = 1 and ψ = ∞, the fibers are
singular; all other fibers of S over C are smooth genus one curves. There
is a µ3-action on S given by X0 7→ ω−1X0 and ψ 7→ ωψ, and leaving the
other variables invariant, where ω = exp(2πi/3). Let Y be the quotient(

S \ {ψ3 = 1})/µ3

of the union of the smooth fibers by the group action; then Y is a family of
smooth elliptic curves over (C− µ3)/µ3.

In fact, the base is the moduli spaceMΓ1(3)
∼= (C − µ3)/µ3 of elliptic

curves with Γ1(3)-level structure. We can also think ofMΓ1(3) as P1 with
the points z = − 1

27
and z = 0 removed, and a stacky Z3 point at z = ∞

(where we set z = − 1
(3ψ)3

). The fundamental group ofMΓ1(3) is Γ1(3). It
is generated by the loops γ− 1

27
, γ0 around − 1

27
and 0; as their composition

is a loop around z =∞, they satisfy
(
γ− 1

27
γ0

)3
= 1.

Given any z ∈ MΓ1(3), one can determine a basis of first homology
H1(Yz) of the fibers by choosing a path from z to− 1

27
and from z to∞; the

basis is then given by the two corresponding vanishing cycles Āz and B̄z.
This basis yields an identification of π1(MΓ1(3)) as a subgroup of SL2(Z)
by its monodromy action on the first homology H1 of the fibers of Y . Ex-
plicitly, we get

γ− 1
27
≡
(

1 0
−3 1

)
, γ0 ≡

(
1 1
0 1

)
.

A well-known principle of mirror symmetry states that monodromies in
the mirror family Y lift to autoequivalences in the derived category D0:
it is implied by homological mirror symmetry and has been applied and
verified e.g. in [ST01, Hor05]. Theorem 8.1 gives another incarnation of
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this principle, as the action of Γ1(3) ⊂ AutD0 on K(D0)/K⊥ ∼= Z⊕2

matches the action of Γ1(3) ∼= π1(MΓ1(3)) if we identify STO with γ− 1
27

and ⊗O(1) with γ0.

9.2. Period integrals and Stab†(D0). However, in the spirit of [Bri09],
there is also more geometric connection between the mirror moduli space
MΓ1(3) and the space of stability conditions. The periods in this mirror
construction are given by integrals over the meromorphic differential form
λ = ln X2

X3

dX1

X1
. More precisely, let Y0 ⊂ Y be the complement of the set of

poles of λ, and Ỹ0 be the cover on which ln X2

X3
is well-defined. Following

[ABK08], one can choose a family of cycles Az, Bz ∈ H1(Ỹ0
z ) that project

to Āz, B̄z ∈ H1(Yz), and a third family of cycles Cz ∈ H1(Ỹ0
z ) and define

the period integrals as:

Π(z) =

∫B λ∫
A
λ∫

C
λ


The authors show that ifA,B,C are chosen appropriately, then the action

of π1(MΓ1(3)) ∼= Γ1(3) on these 3 periods matches the action of Γ1(3) ⊂
AutD0 on K(D0) ∼= Z⊕3.

We will now ignore the construction of period integrals and instead just
consider their Picard-Fuchs equation; with θz := z d

dz
it is given by

(20)
(
θ3
z + 3zθz(3θz + 1)(3θz + 2)

)
Π = 0,

and has singularities at z = 0, z = − 1
27

and z =∞.
Using an Ansatz and solving for the coefficients of the power series, one

can find expansions of three linearly independent solutions around z = 0
and ψ = 0, respectively (see also [ABK08, Section 6] and [Asp05, Section
7.3]).

Around z = 0, we make the standard branch choice of ln z for z ∈
C \ R≤0, and get as expansions (compare with [ABK08, p. 37])

ω0(z) = 1

ω1(z) =
1

2πi

(
ln z + 3

∞∑
n=1

(3n− 1)!

n!3
(−z)n

)

ω2(z) =
1

(2πi)2

(
(ln z)2 + 6 ln z ·

∞∑
n=1

(3n− 1)!

n!3
(−z)n +

∞∑
n=1

lnz
n

)
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where the differential equation defines the ln recursively:

ln = − 1

n3

(
(3n− 1)(3n− 2)(3n− 3)ln−1 + 18 · (−1)n

(3n− 1)!

n!3
· n2

−18 · (−1)n
(3n− 4)!

(n− 1)!3
(
27n2 − 36n+ 11

))
Similarly, the power series expansion of a basis of solutions nearby z =∞
are given by $0(ψ) = 1 and:

$1(ψ) =
1

2πi

∞∑
n=1
3-n

Γ
(
n
3

)
Γ(n+ 1)Γ

(
1− n

3

)2 (3ψ)n

$2(ψ) =
1

2πi

∞∑
n=1
3-n

Γ
(
n
3

)
Γ(n+ 1)Γ

(
1− n

3

)2 (3e
2πi
3 ψ)n

Here we use ψ = − 1
3 3√z with the branch choice 2π

3
< argψ < 4π

3
for

|arg z| < π.
Following Aspinwall, we define the solutions a(z), b(z) of (20) for z ∈

C∗ \ R<0 by setting

(21) a(z) = ω1(z)− 1

2
, b(z) = −1

2
ω2(z) +

1

2
ω1(z)− 1

4

for |z| < 1
27

and analytic continuation. This analytic continuation is com-
puted explicitly in [Asp05, Eqn. (286)] and [ABK08, Eqn. (6.22)], and
gives the following expansion of a(z) and b(z) around z =∞:

(22) a(z) = $1(z)− 1

2
, b(z) =

1

3
($1(z)−$2(z)− 1)

Theorem 9.3. Fix a universal cover M̃Γ1(3) → MΓ1(3) together with its
Γ1(3)-action of deck transformations and choose a fundamental domain
D ⊂ M̃Γ1(3) that projects isomorphically onto C∗ \ R<0. Then there is an
embedding I : M̃Γ1(3) → Stab†(D0) defined by the following properties:

(a) For (Z(z),P(z)) = I(z), the central charge is given by

Z(E)(z) = −c(E) + a(z) · d(E) + b(z) · r(E),

for allE ∈ K(D0) (where we identify a(z), b(z) with their analytic
continuations from D to M̃Γ1(3)).

(b) For z ∈ D, the stability condition I(z) is geometric with k(x)
having phase 1.
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On the boundary of I(D) we have several interesting special points: The
point z = 0 corresponds to the large volume limit point, where=(a)→ +∞
and the central charge is approximately given by Z(E) = − ∫P2 ch(E)e−ah,
where h is the class of a line in P2; the limit stability condition as z →
0 can be described as a polynomial stability condition of [Bay09]. The
point z = ∞ is the orbifold point: the heart of the bounded t-structure
is A1

∼= Coh0[C3/Z3] and the three simple objects of A1 have the same
central charge equal to −1/3; this point is fixed under the Z3-action on
D0 given by relation (19) (i.e., by tensor product in Coh0[C3/Z3] with a
non-trivial one-dimensional Z3-representation). Finally, when ψ = ω (resp.
ψ = ω2) and so z = − 1

27
(these are called conifold points), we have a

singularity: indeed, Z(OP2) = 0, resp. Z(OP2(−1)) = 0, depending on
whether we approach − 1

27
from above or below.

The proof of the theorem is based on the following two observations:

(a) For all z ∈ C \ R≤0, the complex numbers a(z), b(z) satisfy the
inequalities of Definition 2.4.

(b) The monodromy action of Γ1(3) on the solutions a(z), b(z) (com-
puted, for example, in [Asp05]) is compatible with the Γ1(3)-action
on Stab†.

We first verified Observation (a) by explicit computations using the com-
puter algebra package SAGE [S+09].1 A complete argument is sketched in
Appendix D. To prove Theorem 9.3 we only need to show Observation (b):

Proof. (Theorem 9.3) By Observation (a) and Theorem 2.5, we obtain an
embedding I : D ↪→ U ⊂ Stab†(D0). By Bridgeland’s deformation result,
the extension of I to M̃Γ1(3) is unique, if it exists.

Now, we can extend I to the Γ1(3)-translates of D uniquely by requiring
it to be Γ1(3)-equivariant. Hence, it remains to check that this extension of
I glues along the translates of ∂D ⊂ M̃Γ1(3), and is compatible with the
requirement that a(z), b(z) are solutions to the Picard-Fuchs equation.

Let γ0 ∈ Γ1(3) be the loop going in positive direction around the origin
z = 0, and γ∞ the loop around z = ∞ acting on ψ by ψ 7→ e

2πi
3 ψ. Then,

by the Γ1(3)-equivariance, it is in fact enough to check the glueing along
D∩γ0(D) lying above (− 1

27
, 0) ⊂ C in the z-plane, and along D∩γ∞(D),

lying above the line segments (0, 1) · e 2
3
πi and (0, 1) · e 4

3
πi in the ψ-plane.

The action of γ0 on the solutions is given by

ω1(z) 7→ ω1(z) + 1, ω2(z) 7→ ω2(z) + 2ω1(z) + 1.

1The program used to test the inequalities is available for download from the authors’
homepages. It implements the power series expansion around z = 0 and ψ = 0 and tests
the inequalities for random complex numbers in their respective convergence domains.
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The action of ⊗O(1) on the set of geometric stability conditions σa,b of
Theorem 2.5 is given by a 7→ a+1 and b 7→ b−a− 1

2
. Using the expansions

in equation (21), we see that the induced action of γ0 on a(z) and b(z)
matches exactly; hence the definition of a(z), b(z) on γ0(D) by analytic
continuation agrees with the implicit definition given by the requirement
that I is γ0-equivariant; on the other hand, when arg(z) = π we haveB = 0
and b(− 1

27
) = 0 (see app. D), and it follows that a(z), b(z) still satisfy the

inequalities of Definition 2.4 for z ∈ D ∩ γ0(D), i.e. for z = (− 1
27
, 0) with

arg(z) = π. Then Theorem 2.5 implies that I glues along this boundary
component of D within the geometric chamber.

Similarly, the action of γ∞ on the space of solutions is computed in terms
of the expansions around z =∞ as

$1(z) 7→ $2(z), $2(z) 7→ −$1(z)−$2(z).

The central charges of the three simple objects in the quiver category A1

are given by

Z(OP2)(z) = b(z) = 1
3
$1(z)− 1

3
$2(z)− 1

3

Z(ΩP2(1)[1])(z) = −2b(z) + a(z)− 1
2

= 1
3
$1(z) + 2

3
$2(z)− 1

3

Z(OP2(−1)[2])(z) = b(z)− a(z)− 1
2

= −2
3
$1(z)− 1

3
$2(z)− 1

3

The autoequivalence
(
STOP2 ◦ ( ⊗ π∗O(1))

)−1 permutes these 3 objects
and preserves the heart of the t-structure A1; hence it is easy to see that its
action on the central charge matches the monodromy γ∞. 2

APPENDIX A. BOUNDS ON STABLE CHERN CLASSES AFTER
DREZET-LE POTIER

We give a brief review and a reformulation of the main result of [DLP85].
We recall that for a torsion-free sheaf F on P2, its slope is defined by
µ(F) = d(F)

r(F)
, giving the following notion of stability:

Definition A.1. A torsion-free sheaf F on P2 is called slope-stable if the
inequality µ(F ′) < µ(F) holds for all saturated subsheaves F ′ ⊂ F .

A vector bundle E on P2 is exceptional if it is simple and rigid. Let A be
the set of all α ∈ Q such that there exists an exceptional vector bundle on P2

with slope α. For any α ∈ A, we call its rank rα be the smallest integer r >
0 such that rα ∈ Z. We call ∆α := 1

2

(
1− 1

r2α

)
its discriminant. It follows

from Riemann-Roch that the rank and discriminant of an exceptional vector
bundle with slope α (if it exists) are given by these formulas; similarly, any
non-exceptional vector bundle satisfies ∆ ≥ 1

2
.
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For two rational numbers with 3+α+β 6= 0, Drezet and Le Potier define
the operation

α.β :=
α + β

2
+

∆β −∆α

3 + α− β
Let D be the set of rational numbers of the form p

2q
for p ∈ Z, q ∈ Z≥0.

One defines a function ε : D→ Q inductively by ε(n) := n for n ∈ Z and

ε

(
2p+ 1

2q+1

)
:= ε

( p
2q

)
.ε

(
p+ 1

2q

)
Theorem A.2. [DLP85, Théorème A and chapitre 5] The set A of excep-
tional slopes is equal to the image ε(D).

Now define

P (X) := 1 +
3

2
X +

1

2
X2

p(x) :=

{
P (− |x|) |x| < 3

0 otherwise

and, for any α ∈ A,

pα(x) := p(x− α)−∆α

If α, β are of the form given in Theorem A.2, then pα and pβ are mono-
tone decreasing and increasing, respectively; they intersect in the point
(α.β,∆α.β).

Theorem A.3. [DLP85] Given an integer r > 0 and rationals µ,∆ ∈
Q, there exists a stable vector bundle E on P2 with rank r, slope µ, and
discriminant ∆ if and only if

(a) rµ ∈ Z and r(P (µ)−∆) ∈ Z, and
(b) For every α ∈ A with rα < r and |α− µ| < 3, we have ∆ ≥ pα(µ).

A proof of the previous theorem can be found in [LP97, Thm. 16.2.1].
This leads us to define (cf. [LP97, Sect. 16.4]) δDP∞ : R→ [1/2, 1] as

δDP∞ := sup {pα : α ∈ A} .
The necessary and sufficient condition for the existence of non-exceptional
stable sheaves can then be written as

∆ ≥ δDP∞ (µ).

The first part of Theorem 2.3 now follows immediately. For the last as-
sertion, let (µn,∆n) be a sequence of distinct points in SE that converges
in R2 to (µ,∆). For every α ∈ A, we have ∆n ≥ pα(µn) for all n � 0
(in fact, this holds whenever α 6= µn). By continuity, ∆ ≥ pα(µ), and thus
∆ ≥ δDP∞ (µ), i.e. the accumulation point (µ,∆) is contained in S∞.
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APPENDIX B. BRIDGELAND’S STABILITY CONDITIONS

In this section we give a brief review of stability conditions on derived
categories, following [Bri07].

Let T be a triangulated category with good properties, e.g. the bounded
derived category of coherent sheaves on a smooth and projective variety
or D0. A stability condition σ on T consists in a pair (Z,P), where Z :
K(T ) → C (central charge) is an additive map and P(φ) ⊆ T are full,
additive subcategories (φ ∈ R) satisfying:

(a) for any 0 6= E ∈ P(φ) we have Z(E) 6= 0 and Z(E)/|Z(E)| =
exp(iπφ);

(b) ∀φ ∈ R, P(φ+ 1) = P(φ)[1];
(c) if φ1 > φ2 and Aj ∈ P(φj), j = 1, 2, then Hom(A1, A2) = 0;
(d) for any E ∈ T there is a sequence of real numbers φ1 > · · · > φn

and a collection of triangles Ej−1 → Ej → Aj with E0 = 0,
En = E and Aj ∈ P(φj) for all j.

The collection of exact triangles in (d) is called the Harder-Narasimhan
filtration of E. Each subcategory P(φ) is extension-closed and abelian. Its
nonzero objects are said to be semistable of phase φ in σ, and the simple
objects (i.e., objects without proper subobjects or quotients) are said to be
stable.

For any interval I ⊆ R, P(I) is defined to be the extension-closed sub-
category of T generated by the subcategories P(φ), for φ ∈ I . Bridgeland
proved that, for all φ ∈ R, P((φ, φ+1]) is the heart of a bounded t-structure
on T . The category P((0, 1]) is called the heart of σ.

Remark B.1. Let H := {z ∈ C : z = |z| exp(iπφ), 0 < φ ≤ 1}. If
A ⊆ T is the heart of a bounded t-structure, then a group homomorphism
Z : K(T )→ C gives rise to a unique stability condition when the following
two conditions are satisfied ([Bri07, Prop. 5.3]): (i) Z(A \ 0) ⊆ H (Z is a
stability function onA); (ii) Harder-Narasimhan filtrations exist for objects
in A with respect to Z.

Condition (i) means that, for all 0 6= A ∈ A, the requirement Z(A) ∈ H
gives a well-defined phase φ(A) := (1/π) arg(Z(A)) ∈ (0, 1]. This defines
a notion of phase-stability for objects in A, and so of (semi)stable objects
of A. Then condition (ii) asks for the existence of finite filtrations for every
object in A in semistable ones with decreasing phases.

In particular, if A is an abelian category of finite length (i.e., Artinian
and Noetherian) with a finite number of simple objects {S0, . . . , Sm}, then
any group homomorphism Z : K(T )→ C with Z(Si) ∈ H for all i extends
to a unique stability condition on T .
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We give an improved criterion for the existence of Harder-Narasimhan
filtrations:

Proposition B.2. Let A ⊆ T be the heart of a bounded t-structure on T
and let Z : K(T ) → C be a stability function on A. Write P ′(1) ⊂ A for
the full subcategory of objects with phase 1 with respect to Z, and assume
that:

• The image of =(Z) is a discrete subgroup of R.
• For all E ∈ A, any sequence of subobjects

0 = A0 ⊆ A1 ⊆ . . . ⊆ Aj ⊆ Aj+1 ⊆ . . . ⊆ E,

with Aj ∈ P ′(1), stabilizes.
Then Harder-Narasimhan filtrations exist for objects in A with respect to
Z.

Proof. We use the same ideas as in [Bri08, Prop. 7.1], and want to apply
[Bri07, Prop. 2.4].

First of all notice that, if

0→ A→ E → B → 0

is an exact sequence in A, then

0 ≤ =Z(A) ≤ =Z(E) and 0 ≤ =Z(B) ≤ =Z(E).

Let
. . . ⊆ Ej+1 ⊆ Ej ⊆ . . . ⊆ E1 ⊆ E0 = E

be an infinite sequence of subobjects of an object E in A with φ(Ej+1) >
φ(Ej), for all j. Since =Z is discrete, there exists N ∈ N such that

0 ≤ =Z(En) = =Z(En+1),

for all n ≥ N . Consider the exact sequence in A
0→ En+1 → En → Fn+1 → 0.

Then, by additivity of =Z, we have =Z(Fn+1) = 0, for all n ≥ N . But this
yields φ(Fn+1) = 1, for all n ≥ N and so φ(En+1) ≤ φ(En), a contradic-
tion. In this way, property (a) of [Bri07, Prop. 2.4] is satisfied.

Let
E = E0 � E1 � . . . � Ej � Ej+1 � . . .

be an infinite sequence of quotients of E in A with φ(Ej) > φ(Ej+1), for
all j. As before, =Z(En) = =Z(En+1), for all n ≥ N . Consider the exact
sequence in A

0→ Fn → EN → En → 0,
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for n ≥ N . Then =Z(Fn) = 0, i.e. Fn ∈ P ′(1). Hence we have an infinite
sequence of subobjects of EN belonging to P ′(1), a contradiction. Property
(b) of [Bri07, Prop. 2.4] is then verified and the proposition is proved. 2

A stability condition is called locally-finite (see [Bri07, Sect. 5]) if there
exists some ε > 0 such that, for all φ ∈ R, each quasi-abelian subcategory
P((φ − ε, φ + ε)) is of finite length. In this way P(φ) has finite length so
that every object in P(φ) has a finite Jordan–Hölder filtration into stable
factors of the same phase. The set of stability conditions which are locally-
finite will be denoted by Stab(T ). The stability conditions we consider also
satisfy the additional conditions in the definition given in [KS08, Sect. 3.4]
(in particular the support property). The local-finiteness condition will then
be automatic.

The main result in [Bri07] endows Stab(T ) with a topology, induced
by a metric d(−,−) (see [Bri07, Prop. 8.1] for the explicit form of d), in
such a way it becomes a complex manifold whose connected components
are locally modeled on linear subspaces of Hom(K(T ),C) via the map Z
sending a stability condition (Z,P) to its central charge Z.

We recall the statement of Bridgeland’s deformation result in the situation
where σ = (P , Z) is contained in a connected component Stab∗(T ) of
maximal dimension, i.e. modeled on the whole Hom(K(T ),C). In such a
case, the metric

(23) ‖W‖σ := sup

{ |W (E)|
|Z(E)| : E is σ-stable

}
is finite, and thus defines a topology on Hom(K(T ),C).

Theorem B.3. [Bri07, Theorem 7.1][Bri08, Lemma 4.5] In the situation of
the previous paragraph, let 0 < ε < 1/8. Then, for any group homomor-
phism W : K(T )→ C with

‖W − Z‖σ < sin(πε),

there exists a unique (locally-finite) stability condition τ = (W,Q) ∈
Stab∗(T ) with d(σ, τ) < ε.

In particular this shows that the map Z : Stab∗(T ) → Hom(K(T ),C)
is a local homeomorphism.

Remark B.4. By [Bri07, Lemma 8.2], we have a left action on Stab(T ) by
the autoequivalence group Aut(T ), and a right action by G̃L2(R), the uni-
versal cover of the matrices in GL2(R) with positive determinant. The first
action is defined, for Φ ∈ Aut(T ), by Φ(Z,P) = (Z ◦ φ−1

∗ ,Φ(P)), where
φ∗ is the automorphism induced by Φ at the level of Grothendieck groups.
The second one is the lift of the action of GL2(R) on Hom(K(T ),C) (by
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identifying C ∼= R2). Notice, in particular, that the additive group C acts
on Stab(T ), via the embedding C ↪→ G̃L2(R).

APPENDIX C. WEAK AMPLE SEQUENCES AND TRIVIAL
EQUIVALENCES

The notion of ample sequences in an abelian category A was introduced
by Bondal and Orlov in [BO01], and generalized to the notion of weak
ample sequences in [IUU06, Appendix A]. We repeat their definition here:

Definition C.1. A collection of objects Pi ∈ A, i ∈ Z is called a weak
ample sequence if for any pair of objects F,G ∈ A, the following three
conditions are satisfied for i� 0:

(a) The evaluation morphism HomA(Pi, F )⊗ Pi → F is surjective.
(b) There exist l and a surjective morphism φ : P⊕li → G such that the

induced map ExtjA(G,F )→ ExtjA(P⊕li , F ) is the zero-map for all
j 6= 0.

(c) HomA(F, Pi) = 0.

Lemma C.2. The collection Pi := O|i|P2(4i) is a weak ample sequence in
Coh0.

Proof. The properties (a) and (c) are proven exactly as in [IUU06, Lemma
45].

To prove property (b), first note that there is an exact sequence

0→ π∗O(3i)→ π∗O(4i)→ Pi → 0.

If we choose N � 0 such that Hk(X,F (j)) = 0 for j < 3N and k 6= 0,
it follows by the long exact Ext-sequence that Extk(Pi, F ) = 0 for i < N
and k > 1.

The remaining case, k = 1, follows as in [IUU06, Lemma 45]. 2

(Weak) ample sequences are a very useful tool for extending isomor-
phisms of functors (see [Orl97]): indeed, as observed in [IUU06, Proposi-
tion 44], an isomorphism between two functors restricted to a weak ample
sequence in an abelian category A extends to an isomorphism to the whole
derived category Db(A). Here we will use them to prove the following
result:

Proposition C.3. Assume that Φ: D0 → D0 is an autoequivalence with
Φ(OP2) ∼= OP2 and Φ(k(x)) ∼= k(x) for all x ∈ P2. Then Φ is isomorphic
to the pull-back by a scalar u ∈ C∗ ⊂ AutX .

The strategy of the proof is quite standard (see [Orl97, Kaw04, CS07]):
given such an autoequivalence Φ, we will produce a sheaf E ∈ Coh(X×X)
and an isomorphism of functors on a weak ample sequence between Φ and
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the Fourier–Mukai functor ΦE( ) := (p1)∗ (E ⊗ p∗2( )) (here and in the
sequel all functors are supposed to be derived and p1, p2 will always denote
the two projections). As observed above, this isomorphism will extend to
an isomorphism on the whole D0. But then, the assumptions in Proposition
C.3 will guarantee that E is isomorphic, up to an automorphism of X , to
the structure sheaf of the diagonal O∆X

, and this will conclude the proof.
Unfortunately, to work with the whole X may be slightly inconvenient:
hence we will pass to the formal neighborhood of P2 inside X and work
therein.

Notice that a proof could probably also be given in a more direct way,
along the lines of [IUU06, Appendix A] and [IU05, Claim 3.8].

Let X̂ be the formal completion of X along P2, and denote again by
π : X̂ → P2 the projection. For n ∈ N, denote by Xn the n-th infinitesimal
neighborhood of P2 inside X and jn : Xn → X̂ , jmn : Xn → Xm (n < m)
the natural inclusions (X0 = P2). Then D0 can be embedded as full trian-
gulated subcategory of Db(X̂), the bounded derived category of coherent
sheaves on X̂ .

Consider the diagonal embedding ∆: X̂ → X̂ × X̂ and set O∆ bX :=
∆∗O bX .

Step 1. By a local computation, we have

(jn × id bX)∗O∆ bX ∼= (idXn ×jn)∗O∆Xn
∈ Coh(Xn × X̂),

(id bX ×jn)∗O∆ bX ∼= (jn × idXn)∗O∆Xn
∈ Coh(X̂ ×Xn).

Since X̂ is quasi-projective, we can find a (possibly infinite) resolution of
O∆ bX by a complex

C :=
{
C−l

}
l∈N :=

{
L⊕all �M⊕bl

l

}
l∈N

withLl,Ml isomorphic to line bundlesO bX(kl) = π∗(OP2)(kl). By applying
(jn × id)∗ to C we have a new complex

Cn :=
{
j∗n(Ll)

⊕al �M⊕bl
l

}
l∈N
∼= (jn × id)∗O∆ bX .

Similarly, we can find a resolution of O∆Xn
by a complex

Dn :=
{
D−ln

}
l∈N :=

{
L
⊕anl
n,l �M

⊕bnl
n,l

}
l∈N

with Ln,l,Mn,l line bundles onXn isomorphic toOXn(kn,l), for some kn,l ∈
Z. We have Cn ∼= (idXn ×jn)∗(Dn).
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Step 2. Let Φ: D0 → D0 be an autoequivalence as in Proposition C.3.
Then a standard computation shows that Φ maps Coh0 to itself. More-
over, it maps Coh(Xn) into itself, i.e. there exist induced equivalences
Φ̃n : Coh(Xn)→ Coh(Xn) such that Φ ◦ jn ∼= jn ◦ Φ̃n.

For all n ∈ N, apply Φ̃n � id to Dn to get a complex

Ẽn :=
{

Φ̃n(Ln,l)
⊕an,l �M

⊕bn,l
n,l

}
l∈N
∈ D−(Xn ×Xn).

Consider the functor ΦeEn : Coh(Xn)→ D−(Xn),

ΦeEn( ) := (p1)∗

(
Ẽn ⊗ p∗2( )

)
.

Lemma C.4. We have (jn)∗ΦeEn(k(x)) ∼= Φ(k(x)), for all x ∈ P2.

Proof. First of all, notice that Hp(Xn,Mn,l ⊗ k(x)) = 0, for all p 6= 0.
Hence, we have

ΦeEn(k(x)) ∼=
{

(p1)∗

(
Φ̃n(Ln,l))

⊕an,l � (M
⊕bn,l
n,l ⊗ k(x))

)}
∼=
{

Φ̃n(Ln,l)
⊕an,l ⊗H0(Xn,Mn,l ⊗ k(x))⊕bn,l

}
.

(24)

At the same time,

k(x) ∼=
{
L
⊕an,l
n,l �H0(Xn,Mn,l ⊗ k(x))⊕bn,l

}
and so, by applying Φ̃n,

(25) Φ̃n(k(x)) ∼=
{

Φ̃n(Ln,l)
⊕an,l ⊗H0(Xn,Mn,l ⊗ k(x))⊕bn,l

}
.

An easy check shows that the differentials of the complexes (24) and (25)
are compatible. Hence we have the isomorphism ΦeEn(k(x)) ∼= Φ̃n(k(x)),
and so (jn)∗ΦEn(k(x)) ∼= Φ(k(x)), as wanted. 2

By Lemma C.4, we deduce immediately (using [Bri99, Lemma 4.3]) that
Ẽn is a sheaf on Xn ×Xn, flat over Xn (with respect to p2). Moreover, ΦeEn
maps Coh(Xn) into Coh(Xn).

Step 3. Set En := (jn× idXn)∗Ẽn ∈ Coh(X̂ ×Xn). Then ΦEn
∼= (jn)∗ΦeEn .

Lemma C.5. There exist natural maps ηmn : Em → En in Coh(X̂×Xn), for
n < m.

Proof. Consider the sheaf Fk := (idXn ×jn)∗Ẽn ∈ Coh(Xn × X̂). Then
Fk ∼= (Φ̃ � id bX)(Ck).

For n < m, the morphisms Φ̃(j∗m(Ll)) → Φ̃(j∗n(Ll)) (induced by pro-
jections j∗m(Ll) � j∗n(Ll)) induce morphisms Fm � Fn. These last ones,
induce morphisms Ẽm � Ẽn and so ηmn : Em → En 2
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Set E := lim En ∈ Coh(X̂ × X̂).

Lemma C.6. There exists an isomorphism of functors

φ : ΦE |W → Φ|W .
Proof. Define a subcategory Wm of Coh(Xm) consisting of all sheaves
OXn(h) := (jmn )∗j

∗
n(O bX)(h) for n < m. We have to show that, for all

k ∈ N, there exist isomorphisms of functors

φk : ΦEk |Wk
→ (Φ ◦ (jn)∗)|Wn

such that, for n < m, we have

φm(OXn(h)) = φn(OXn(h)) ◦ ηmn (OXn(h)),

for all h ∈ Z, where we denoted, by abuse of notation, ηmn the natural
transformation

ΦEm|Wn → ΦEn|Wn

induced by Lemma C.5.
This follows directly from, e.g., [CS07, Sections 4.2,4.5]. Indeed, we can

truncate the complex Dk to have (jk × idXk)∗O∆Xk
as a direct summand of

a certain truncation of (jk × idXk)∗Dk. Hence, even if we have an infinite
resolution, we can limit ourself to consider only a finite number of objects
Lk,l, Mk,l, for 0 ≤ l ≤ n0, n0 � 0 independent of k.

Then, we define φk on the objects P ∈ Wk such thatHp(Xk,Mk,i⊗P ) =
0, for all p 6= 0 and all 0 ≤ l ≤ n0. To extend to all Wk we use Beilinson’s
resolutions in P2 (pulled-back to Xk) and [Kaw04, Lemma 6.4].

Finally, the compatibilities follow easily from the definition of Ek. 2

Step 4. Consider the functor ΦE . A standard computation (see [Huy06,
Corollary 5.23]) shows that, since ΦE(k(x)) ∼= k(x) and ΦE(OP2) ∼= OP2 ,
there exists a family of automorphisms uk : Xk → Xk such that u0 = id. It
is not difficult to check that these are all compatible and so they induce an
automorphism u : X̂ → X̂ (which corresponds to the multiplication by an
element of C∗ on the fibers of π). By composing ΦE with u, we can assume
E ∼= O∆ bX . Hence we have an isomorphism of functors id |W → Φ|W . By
[IUU06, Proposition 44], this induces an isomorphism of functors id→ Φ,
and Proposition C.3 is proved.

APPENDIX D. PROOF OF THE INEQUALITY FOR CENTRAL CHARGES

This appendix is a brief sketch of a complete proof of Observation (a)
on page 42: On the fundamental domain C \ R≤0, the functions a(z), b(z)
defined by equations (21) and (22) satisfy the inequalities of Definition 2.4.
The general idea is to deduce the inequalities from inequalities for real or
imaginary parts of holomorphic functions, which only need to be tested on
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the boundary of the fundamental domain. Note that the boundary, expressed
in z and ψ according to the convergence domains |z| ≤ 1

27
and |ψ| < 1 of

our power series expansions, consists of two copies of z ∈ [−1/27, 0],
with the two natural branch choices of ln z, and of the two ray segments
ψ ∈ [0, 1] · e2πi/3 and ψ ∈ [0, 1] · e4πi/3. (We will refer to the boundary
segments by arg(z) = ±π etc.)

Step 1. We first show that =(a) > 0. For example by using the integral
criteria, it can be shown easily that the series

∑∞
n=1

(3n−1)!
n!3

1
27n

converges to a
real number less than 1

π
√

3
(the exact value is 0.129...). Thus, for |z| < 1/27,

z 6= 0, |arg(z)| < π, we have

=(a(z)) ≥ − 1

2π

(
ln

1

27
+ 3

∞∑
n=1

(3n− 1)!

n!3
1

27n

)
> 0.

Passing to the ψ-coordinate, the inequality follows trivially on the two
boundary rays from (22) and the definition of $1(ψ).

Step 2. For B = −=(b(z))/=(a(z)) we have −1 < B < 0. More pre-
cisely, we will use−1/2 ≤ B < 0 for =(z) ≥ 0 (i.e., for 2π/3 < arg(ψ) ≤
π or 0 ≤ arg(z) < π), and −1 < B ≤ −1/2 for =(z) ≤ 0 (i.e., for
π ≤ arg(ψ) < 4π/3 or −π < arg(z) ≤ 0).

To show this, first notice that =(Z(OP2)(z)) = =(b(z)) > 0: indeed,
for arg(z) = π or arg(ψ) = 2π

3
, it is trivial to check that =(b(z)) = 0.

Similarly, the inequality holds strictly for arg(z) = −π or arg(ψ) = 4π
3

,
and it also holds around z = 0. Thus the strict inequality holds on the
interior of the fundamental domain, and thus B < 0.

Similarly we can show =(Z(OP2(−1)[2])(z)) = =(b(z)−a(z)) < 0 and
thus −1 < B. For the more precise statement, it is sufficient to look at the
sign of =(Z(ΩP2(1)[1])(z)) = =(b(z) − 1

2
a(z)): once again the maximum

principle shows that =(Z(ΩP2(1)[1])(z)) ≤ 0, for 2π/3 < arg(ψ) ≤ π and
0 ≤ arg(z) < π. This implies to−1

2
≤ B. The case =(z) ≤ 0 is analogous.

Step 3. Finally, to check that the other two inequalities of Definition 2.4
are satisfied, we show the following stronger statement:

(26) −<(b(z))−B<(a(z)) +
B2

2
<

3

8
= ∆−1/2,

for all−1/2 ≤ B ≤ 0, in the region =(z) ≥ 0 (and an analogous statement,
which we will skip, for =(z) ≤ 0). By the claims of the previous step, this
will imply Observation (a), as δDP∞ (µ) ≥ 1

2
, and as ∆B ≥ 3

8
for B 6∈ Z.

Also note that we only have to prove the inequality above for B = 0, and
for B = −1

2
.
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First we note that b(−1/27) = 0 (with the choice of arg(−1/27) = π);
this can be deduced from the monodromy. From this, it follows that the se-
ries

∑∞
n=1 |ln| 1

27n
(from the definition, it is easy to see that ln = (−1)n |ln|)

converges to a real number less than 3 (the exact value is 1.558...). From
this we can deduce (26) for the cases arg(z) = 0 and arg(z) = π: Setting
B = −1

2
and B = 0 yields

1
2
<(ω2(z)) + 1

8
< 3

8
, and 1

2
<(ω2(z))− 1

2
<(ω1(z)) + 1

4
< 3

8
.

As <(ω1(z)) = 1
2π
=(ln(z)), this would follow from

1
2
<(ω2(z)) + 1

8
< 3

8
if z < 0, and 1

2
<(ω2(z)) + 1

4
< 3

8
if z > 0.

Finally using the definition of ω2(z), both inequalities become

− 1

8π2

(
(ln |z|)2 + 6 ln |z| ·

∞∑
n=1

(3n− 1)!

n!3
(−z)n +

∞∑
n=1

|ln| (−z)n

)
<

1

8
.

But the quantity on the left is at most

− 1

8π2

((
ln

1

27

)2

+ 6 ln
1

27
·
∞∑
n=1

(3n− 1)!

n!3
1

27n
−
∞∑
n=1

|ln| 1

27n

)
,

which is smaller than 1
8

by the estimate of the last term mentioned earlier.
For the cases arg(ψ) = π and arg(ψ) = 2π

3
, we first observe that, for

0 < ρ ≤ 1 and for any function u : Z>0 → {0, 1} with u(1) = 1, we have

1

2π

∞∑
n=1
3-n

Γ
(
n
3

)
Γ(n+ 1)Γ

(
1− n

3

)2 (3ρ)n(−1)u(n)

≤ ρ

− 3

2π

Γ
(

1
3

)
Γ
(

2
3

)2 +
1

2π

∞∑
n=2
3-n

Γ
(
n
3

)
Γ(n+ 1)Γ

(
1− n

3

)2 3n

 < 0.

(27)

Setting B = 0 and B = −1
2
, and using the definition of $1(ψ), the needed

inequalities are
3

8
>

1

3
<($2(−ρ)) +

1

3
,

for ψ = −ρ, and

3

8
>

{
1
6
<($2(ρe2πi/3)) + 5

24
2
3
<($2(ρe2πi/3)) + 1

3

,

for ψ = ρe2πi/3, 0 < ρ ≤ 1. But, by (27),

<($2(ρe2πi/3)),<($2(−ρ)) < 0.
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Hence, (26) holds also for arg(ψ) = π and arg(ψ) = 2π
3

, and the proof of
Observation (a) is complete.
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