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Categorical universal algebra

There are a number of ways of studying universal algebra using category theory:

• Lawvere theories

→ algebras in any category with finite products

• PROPs and operads

→ algebras in any symmetric monoidal category

• Monads

→ algebras in a fixed category
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Changing the base category

Suppose we have two categories, and a monad on the first one:

C DT
G

How can we consider T -algebras in D without leaving the world of monads?

• We’ll need a way to relate C and D, so we may ask for a functor G .

If G and D are nice enough, this is enough to construct a monad on D from T !
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Pushforward monads

Let T be a monad and G be a functor.

C D

C D
T

G

RanG GT
ϵ

G

Definition (Street)

If RanG GT exists, then it is the pushforward of T along G , denoted by G#T .

There a unique way to make G#T a monad on D so that ϵ becomes a lax
morphism of monads.
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Morphisms of monads

Let T be a monad on C and S be a monad on D.

Definition

A lax morphism (F , φ) : (C,T ) → (D, S) is a functor F : C → D and a natural
transformation φ : SF → FT which intertwines the units and multiplications.

Equivalently, a lax morphism (F , φ) amounts to a lift of F to the respective
categories of algebras:

CT DS

C D
UT

Fφ

US

F
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T -algebras in D

In what sense are the G#T -algebras like T-algebras in D?

Theorem (Street)

(G , ϵ) : (C,T ) → (D,G#T ) is the initial lax morphism from (C,T ) to a monad
on D whose functor part is G .

CT DG#T DS

C D D
UT

G ϵ

∀G

U
G#T

∃!

US

G
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First examples

If G : C → D has a left adjoint F , then computing pushforwards along G is easy:

G#T = RanG GT = GTF

Example

Let T be the monad on Ab whose algebras are rings, and G : Ab → Set be the
forgetful functor. Then G#T is the free ring monad on Set.

Example

If F ⊣ G , then G#1 is the monad induced by the adjunction.
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Codensity monads

The pushforward of the identity monad has its own name:

Definition

The codensity monad of G : C → D is G#1.

The universal property of pushforwards says that UG#1 : DG#1 → D is the
monadic reflection of G .

C DG#1 DS

DG

G ϵ

∀G

U
G#1

∃!

US
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Monadic reflection of FinSet

Example

What is the monadic reflection of the inclusion i : FinSet ↪→ Set?

i#1 is the ultrafilter monad β, and Setβ = CHaus

This is remarkable! Through this general categorical machinery, we obtain
CHaus from the concept of finiteness of a set alone.
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More examples of codensity monads

G G#1 DG#1

fdVectk ↪→ Vectk double dualisation linearly compact vector spaces

FinGrp ↪→ Grp profinite completion profinite groups

Field ↪→ Ring product of residue fields Prod(Field)

10



Pushforwards along fully faithful functors

Suppose G : C ↪→ D is fully faithful.

Definition

A monad S on D restricts along G if, for all c ∈ C, there is some S ′c ∈ C such
that SGc ∼= GS ′c .

These choices assemble into a monad G#S on C with
SG ∼= G (G#S), called the restriction of S along G .

Example

• For any G , we have G#1 = 1.

• The identity, powerset, ultrafilter, E +−, and M ×− monads restrict along
FinSet ↪→ Set.
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Pushforwards along fully faithful functors

Let Mnd(D)resG denote the full subcategory of Mnd(D) on those monads which
restrict along G .

Theorem (D)

If G is fully faithful and pushforwards along it exist, then the pushforward
construction gives a reflection

Mnd(C) Mnd(D)resG Mnd(D).

G#

G#

⊣
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Examples in Set

The hypotheses of the theorem apply as soon as G is fully faithful and
representably small, and D is complete.

This includes:

Example

• FinSet ↪→ Set;

• Set≥κ ↪→ Set, where κ is any cardinal and Set≥κ is the category of sets
with cardinality at least κ.
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Monads on nonempty sets

Let i : Set≥1 ↪→ Set. Since monads on Set preserve monos, every monad
restricts along i .

Mnd(Set≥1) Mnd(Set)

G#

G#

⊣

This gives a monad on Mnd(Set). For T ∈ Mnd(Set), we have

• G#G
#T (X ) = TX for all X ∈ Set≥1;

• G#G
#T (∅) is the set of pseudoconstants of T .

G#G
#-algebras are monads all of whose pseudoconstants are actual constants.
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Monads on finite sets

Let i : FinSet ↪→ Set.

• Every monad on FinSet is the restriction of some monad on Set.

• Every monad T on FinSet has at least two extensions to a monad on Set.

i#T = Rani iT , the pushforward of T along i ;
Lani iT the finitary monad determined by T .

Example

The covariant powerset monad on FinSet has at least three extensions: the
powerset monad, the finite powerset monad (the finitary extension), and the filter
monad (the pushforward).
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Compact Hausdorff algebras

Let T be a monad on Set that restricts along i : FinSet ↪→ Set. Using the
reflection theorem, we get two monad maps:

• the unit of the reflection gives
δ : T → i#i

#T ;

• applying i# to the unit of i#T gives
θ : i#1 → i#i

#T .

Seti#i
#T

SetT CHaus

Set

Uδ Uθ

UT Uβ

Every i#i
#T -algebra has a underlying T -algebra structure and an underlying

compact Hausdorff topology. This situation is similar to having a distributive
law between T and β.
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Specific examples

T i#T i#T -algebras

1 β compact Hausdorff spaces

const. at 1 const. at 1 1-element sets

E +− (E +−)β E -pointed compact Hausdorff spaces

M ×− (M ×−)β compact Hausdorff spaces with a discrete M action

22
−

22
−

complete atomic Boolean algebras

P filter monad continuous lattices
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The rank of pushforwards

Every monad T on FinSet has a unique finitary extension to a monad on Set.
It follows that i#T is finitary iff it agrees with this extension.

In fact, the situation is pretty dire:

Theorem (D)

If T is a consistent monad on FinSet, then i#T has no rank.

• A monad has rank iff it is λ-ary for some regular cardinal λ.

• The only two inconsistent monads are the one that is constant at 1, and its
unique submonad which sends ∅ to ∅.
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Summary

Given a monad T on C and a nice functor G : C → D,
one gets a pushforward monad G#T on D which is suitably universal.

If G is fully faithful, there is an reflection Mnd(C) Mnd(D)resG

G#

G#

⊢ .

For i : FinSet → Set, the monad i#T almost never has rank.
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Future directions

• The pushforward construction makes sense in any bicategory:

V-Mat, V-Prof and Span(C) often have all extensions.
Monads in MND(Cat) are distributive laws, so one should be able to push
them forward. Problem: how to compute right extensions in MND(Cat)?

• What properties of monads are preserved by the pushforward process?
E.g. idempotence, strength, commutativity, etc.
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Thank you!
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