Adrián Doña Mateo (www.maths.ed.ac.uk/~adona)

University of Edinburgh

17 October 2025, CATNIP

- Lawvere theories
- PROPs and operads
- Monads

- ullet Lawvere theories o algebras in **any** category with finite products
- PROPs and operads
- Monads

- ullet Lawvere theories o algebras in **any** category with finite products
- ullet PROPs and operads o algebras in **any** symmetric monoidal category
- Monads

- ullet Lawvere theories o algebras in **any** category with finite products
- ullet PROPs and operads o algebras in **any** symmetric monoidal category
- ullet Monads o algebras in a **fixed** category

Changing the base category

Suppose we have two categories, and a monad on the first one:

$$T \subseteq C$$
 T

How can we consider T-algebras in \mathcal{D} without leaving the world of monads?

Changing the base category

Suppose we have two categories, and a monad on the first one:

$$T \subset \mathcal{C} \xrightarrow{G} \mathcal{D}$$

How can we consider T-algebras in \mathcal{D} without leaving the world of monads?

ullet We'll need a way to relate ${\mathcal C}$ and ${\mathcal D}$, so we may ask for a functor ${\mathcal G}$.

Changing the base category

Suppose we have two categories, and a monad on the first one:

$$T \subset \mathcal{C} \stackrel{G}{\longrightarrow} \mathcal{D}$$

How can we consider T-algebras in \mathcal{D} without leaving the world of monads?

ullet We'll need a way to relate ${\mathcal C}$ and ${\mathcal D}$, so we may ask for a functor ${\mathcal G}$.

If G and \mathcal{D} are *nice enough*, this is enough to construct a monad on \mathcal{D} from T!

Let T be a monad and G be a functor.

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow^{T} \downarrow & & \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

Let T be a monad and G be a functor.

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
T \downarrow & \swarrow & \downarrow \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

Definition (Street)

If $Ran_G GT$ exists, then it is the **pushforward of** T **along** G, denoted by $G_\#T$.

Let T be a monad and G be a functor.

$$\begin{array}{ccc}
C & \xrightarrow{G} & \mathcal{D} \\
T \downarrow & & \downarrow \operatorname{Ran}_{G} GT \\
C & \xrightarrow{G} & \mathcal{D}
\end{array}$$

Definition (Street)

If $Ran_G GT$ exists, then it is the **pushforward of** T **along** G, denoted by $G_\#T$.

There a unique way to make $G_{\#}T$ a monad on \mathcal{D} so that ϵ becomes a lax morphism of monads.

Δ

Morphisms of monads

Let T be a monad on C and S be a monad on D.

Definition

A **lax morphism** $(F, \varphi) : (\mathcal{C}, T) \to (\mathcal{D}, S)$ is a functor $F : \mathcal{C} \to \mathcal{D}$ and a natural transformation $\varphi : SF \to FT$ which *intertwines* the units and multiplications.

Morphisms of monads

Let T be a monad on C and S be a monad on D.

Definition

A **lax morphism** $(F, \varphi) : (\mathcal{C}, T) \to (\mathcal{D}, S)$ is a functor $F : \mathcal{C} \to \mathcal{D}$ and a natural transformation $\varphi : SF \to FT$ which *intertwines* the units and multiplications.

Equivalently, a lax morphism (F, φ) amounts to a **lift of** F to the respective categories of algebras:

$$\begin{array}{ccc}
\mathcal{C}^T & \xrightarrow{F^{\varphi}} \mathcal{D}^S \\
\downarrow U^T \downarrow & & \downarrow U^S \\
\mathcal{C} & \xrightarrow{F} \mathcal{D}
\end{array}$$

T-algebras in \mathcal{D}

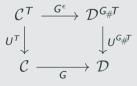
In what sense are the $G_{\#}T$ -algebras like T-algebras in \mathcal{D} ?

T-algebras in $\mathcal{D}^{ extsf{I}}$

In what sense are the $G_{\#}T$ -algebras like T-algebras in \mathcal{D} ?

Theorem (Street)

 $(G, \epsilon): (\mathcal{C}, T) \to (\mathcal{D}, G_{\#}T)$ is the initial lax morphism from (\mathcal{C}, T) to a monad on \mathcal{D} whose functor part is G.

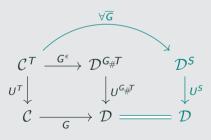


\overline{T} -algebras in $\mathcal D$

In what sense are the $G_{\#}T$ -algebras like T-algebras in \mathcal{D} ?

Theorem (Street)

 $(G, \epsilon): (C, T) \to (D, G_{\#}T)$ is the initial lax morphism from (C, T) to a monad on D whose functor part is G.

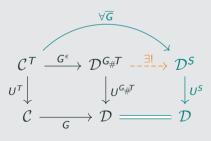


T-algebras in \mathcal{D}

In what sense are the $G_{\#}T$ -algebras like T-algebras in \mathcal{D} ?

Theorem (Street)

 $(G, \epsilon): (\mathcal{C}, T) \to (\mathcal{D}, G_{\#}T)$ is the initial lax morphism from (\mathcal{C}, T) to a monad on \mathcal{D} whose functor part is G.



First examples

If $G: \mathcal{C} \to \mathcal{D}$ has a left adjoint F, then computing pushforwards along G is easy:

$$G_{\#}T = \operatorname{\mathsf{Ran}}_G GT = GTF$$

First examples

If $G: \mathcal{C} \to \mathcal{D}$ has a left adjoint F, then computing pushforwards along G is easy:

$$G_{\#}T = \operatorname{\mathsf{Ran}}_{G} GT = GTF$$

Example

Let T be the monad on \mathbf{Ab} whose algebras are rings, and $G: \mathbf{Ab} \to \mathbf{Set}$ be the forgetful functor. Then $G_\#T$ is the free ring monad on \mathbf{Set} .

First examples

If $G: \mathcal{C} \to \mathcal{D}$ has a left adjoint F, then computing pushforwards along G is easy:

$$G_{\#}T = \operatorname{\mathsf{Ran}}_{G} GT = GTF$$

Example

Let T be the monad on \mathbf{Ab} whose algebras are rings, and $G: \mathbf{Ab} \to \mathbf{Set}$ be the forgetful functor. Then $G_\#T$ is the free ring monad on \mathbf{Set} .

Example

If $F \dashv G$, then $G_{\#}1$ is the monad induced by the adjunction.

The pushforward of the identity monad has its own name:

Definition

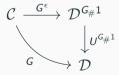
The **codensity monad** of $G: \mathcal{C} \to \mathcal{D}$ is $G_{\#}1$.

The pushforward of the identity monad has its own name:

Definition

The **codensity monad** of $G: \mathcal{C} \to \mathcal{D}$ is $G_{\#}1$.

The universal property of pushforwards says that $U^{G_{\#}1}: \mathcal{D}^{G_{\#}1} \to \mathcal{D}$ is the monadic reflection of G.

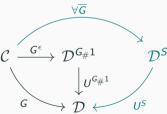


The pushforward of the identity monad has its own name:

Definition

The **codensity monad** of $G: \mathcal{C} \to \mathcal{D}$ is $G_{\#}1$.

The universal property of pushforwards says that $U^{G_{\#}1}: \mathcal{D}^{G_{\#}1} \to \mathcal{D}$ is the monadic reflection of G.

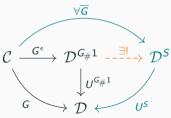


The pushforward of the identity monad has its own name:

Definition

The **codensity monad** of $G: \mathcal{C} \to \mathcal{D}$ is $G_{\#}1$.

The universal property of pushforwards says that $U^{G_{\#}1}: \mathcal{D}^{G_{\#}1} \to \mathcal{D}$ is the monadic reflection of G.



Monadic reflection of FinSet

Example

What is the monadic reflection of the inclusion $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$?

Monadic reflection of FinSet

Example

What is the monadic reflection of the inclusion $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$?

 $i_{\#}1$ is the ultrafilter monad β , and $\mathbf{Set}^{\beta} = \mathbf{CHaus}$

Monadic reflection of FinSet

Example

What is the monadic reflection of the inclusion $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$?

 $i_{\#}1$ is the ultrafilter monad β , and $\mathbf{Set}^{\beta} = \mathbf{CHaus}$

This is remarkable! Through this general categorical machinery, we obtain **CHaus** from the concept of finiteness of a set **alone**.

More examples of codensity monads

G	$G_\# 1$	$\mathcal{D}^{G_\# 1}$
$fdVect_k \hookrightarrow Vect_k$	double dualisation	linearly compact vector spaces
$FinGrp \hookrightarrow Grp$	profinite completion	profinite groups
$Field \hookrightarrow Ring$	product of residue fields	Prod(Field)

Suppose $G: \mathcal{C} \hookrightarrow \mathcal{D}$ is fully faithful.

Definition

A monad S on \mathcal{D} restricts along G if, for all $c \in \mathcal{C}$, there is some $S'c \in \mathcal{C}$ such that $SGc \cong GS'c$.

Suppose $G: \mathcal{C} \hookrightarrow \mathcal{D}$ is fully faithful.

Definition

A monad S on \mathcal{D} restricts along G if, for all $c \in \mathcal{C}$, there is some $S'c \in \mathcal{C}$ such that $SGc \cong GS'c$. These choices assemble into a monad $G^\#S$ on \mathcal{C} with $SG \cong G(G^\#S)$, called the restriction of S along G.

Suppose $G: \mathcal{C} \hookrightarrow \mathcal{D}$ is fully faithful.

Definition

A monad S on \mathcal{D} restricts along G if, for all $c \in \mathcal{C}$, there is some $S'c \in \mathcal{C}$ such that $SGc \cong GS'c$. These choices assemble into a monad $G^\#S$ on \mathcal{C} with $SG \cong G(G^\#S)$, called the restriction of S along G.

Example

• For any G, we have $G^{\#}1 = 1$.

Suppose $G: \mathcal{C} \hookrightarrow \mathcal{D}$ is fully faithful.

Definition

A monad S on \mathcal{D} restricts along G if, for all $c \in \mathcal{C}$, there is some $S'c \in \mathcal{C}$ such that $SGc \cong GS'c$. These choices assemble into a monad $G^\#S$ on \mathcal{C} with $SG \cong G(G^\#S)$, called the restriction of S along G.

Example

- For any G, we have $G^{\#}1 = 1$.
- The identity, powerset, ultrafilter, E + -, and $M \times -$ monads restrict along **FinSet** \hookrightarrow **Set**.

Let $\mathbf{Mnd}(\mathcal{D})^{\mathsf{res}\,\mathsf{G}}$ denote the full subcategory of $\mathbf{Mnd}(\mathcal{D})$ on those monads which restrict along G .

Theorem (D)

If G is fully faithful and pushforwards along it exist, then the pushforward construction gives a reflection

$$\mathsf{Mnd}(\mathcal{C}) \overset{\mathcal{G}^\#}{\underset{\mathcal{G}_\#}{\longleftarrow}} \mathsf{Mnd}(\mathcal{D})^{\mathit{resG}} \overset{\longleftarrow}{\longleftarrow} \mathsf{Mnd}(\mathcal{D}).$$

Examples in Set

The hypotheses of the theorem apply as soon as G is fully faithful and representably small, and $\mathcal D$ is complete.

Examples in Set

The hypotheses of the theorem apply as soon as G is fully faithful and representably small, and \mathcal{D} is complete. This includes:

Example

• FinSet \hookrightarrow Set;

Examples in Set

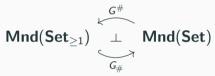
The hypotheses of the theorem apply as soon as G is fully faithful and representably small, and \mathcal{D} is complete. This includes:

Example

- Set $_{\geq \kappa} \hookrightarrow$ Set, where κ is any cardinal and Set $_{\geq \kappa}$ is the category of sets with cardinality at least κ .

Let $i : \mathbf{Set}_{\geq 1} \hookrightarrow \mathbf{Set}$. Since monads on \mathbf{Set} preserve monos, every monad restricts along i.

Let $i : \mathbf{Set}_{\geq 1} \hookrightarrow \mathbf{Set}$. Since monads on \mathbf{Set} preserve monos, every monad restricts along i.



Let $i : \mathbf{Set}_{\geq 1} \hookrightarrow \mathbf{Set}$. Since monads on \mathbf{Set} preserve monos, every monad restricts along i.

$$\mathsf{Mnd}(\mathsf{Set}_{\geq 1}) \overset{\mathcal{G}^\#}{\underset{\mathcal{G}_\#}{\longleftarrow}} \mathsf{Mnd}(\mathsf{Set})$$

This gives a monad on Mnd(Set). For $T \in Mnd(Set)$, we have

- $G_{\#}G^{\#}T(X) = TX$ for all $X \in \mathbf{Set}_{\geq 1}$;
- $G_{\#}G^{\#}T(\varnothing)$ is the set of **pseudoconstants** of T.

Let $i : \mathbf{Set}_{\geq 1} \hookrightarrow \mathbf{Set}$. Since monads on \mathbf{Set} preserve monos, every monad restricts along i.

$$\mathsf{Mnd}(\mathsf{Set}_{\geq 1}) \overset{G^\#}{\underset{G_\#}{\longleftarrow}} \mathsf{Mnd}(\mathsf{Set})$$

This gives a monad on Mnd(Set). For $T \in Mnd(Set)$, we have

- $G_{\#}G^{\#}T(X) = TX$ for all $X \in \mathbf{Set}_{\geq 1}$;
- $G_{\#}G^{\#}T(\varnothing)$ is the set of **pseudoconstants** of T.

 $G_{\#}G^{\#}$ -algebras are monads all of whose pseudoconstants are actual constants.

Let $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$.

• Every monad on **FinSet** is the restriction of some monad on **Set**.

Let $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$.

- Every monad on **FinSet** is the restriction of some monad on **Set**.
- Every monad T on **FinSet** has **at least two** extensions to a monad on **Set**.

Let $i : \mathsf{FinSet} \hookrightarrow \mathsf{Set}$.

- Every monad on FinSet is the restriction of some monad on Set.
- Every monad T on **FinSet** has **at least two** extensions to a monad on **Set**.
 - $i_{\#}T = \text{Ran}_i iT$, the pushforward of T along i;

Let $i : \mathsf{FinSet} \hookrightarrow \mathsf{Set}$.

- Every monad on **FinSet** is the restriction of some monad on **Set**.
- Every monad T on **FinSet** has **at least two** extensions to a monad on **Set**.
 - $i_{\#}T = \operatorname{Ran}_{i} iT$, the pushforward of T along i;
 - Lan_i iT the finitary monad determined by T.

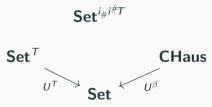
Let $i : \mathbf{FinSet} \hookrightarrow \mathbf{Set}$.

- Every monad on **FinSet** is the restriction of some monad on **Set**.
- Every monad T on **FinSet** has **at least two** extensions to a monad on **Set**.
 - $i_{\#}T = \operatorname{Ran}_{i} iT$, the pushforward of T along i;
 - Lan_i iT the finitary monad determined by T.

Example

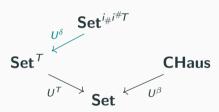
The covariant powerset monad on **FinSet** has at least three extensions: the powerset monad, the finite powerset monad (the finitary extension), and the filter monad (the pushforward).

Let T be a monad on **Set** that restricts along i: **FinSet** \hookrightarrow **Set**. Using the reflection theorem, we get two monad maps:



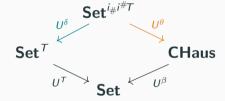
Let T be a monad on **Set** that restricts along i: **FinSet** \hookrightarrow **Set**. Using the reflection theorem, we get two monad maps:

• the unit of the reflection gives $\delta: T \rightarrow i_{\#}i^{\#}T$;



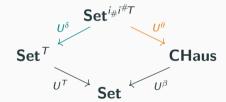
Let T be a monad on **Set** that restricts along i: **FinSet** \hookrightarrow **Set**. Using the reflection theorem, we get two monad maps:

- the unit of the reflection gives $\delta: T \rightarrow i_{\#}i^{\#}T$;
- applying $i_{\#}$ to the unit of $i^{\#}T$ gives $\theta: i_{\#}1 \rightarrow i_{\#}i^{\#}T$.



Let T be a monad on **Set** that restricts along i: **FinSet** \hookrightarrow **Set**. Using the reflection theorem, we get two monad maps:

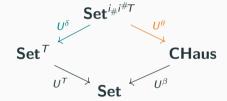
- the unit of the reflection gives $\delta: T \rightarrow i_{\#}i^{\#}T$;
- applying $i_{\#}$ to the unit of $i^{\#}T$ gives $\theta: i_{\#}1 \rightarrow i_{\#}i^{\#}T$.



Every $i_{\#}i^{\#}T$ -algebra has a underlying T-algebra structure and an underlying compact Hausdorff topology.

Let T be a monad on **Set** that restricts along i: **FinSet** \hookrightarrow **Set**. Using the reflection theorem, we get two monad maps:

- the unit of the reflection gives $\delta: T \rightarrow i_{\#}i^{\#}T$;
- applying $i_{\#}$ to the unit of $i^{\#}T$ gives $\theta: i_{\#}1 \rightarrow i_{\#}i^{\#}T$.



Every $i_{\#}i^{\#}T$ -algebra has a underlying T-algebra structure and an underlying compact Hausdorff topology. This situation is similar to having a **distributive** law between T and β .

Specific examples

T	$i_\# T$	$i_\# T$ -algebras
1	β	compact Hausdorff spaces
const. at 1	const. at 1	1-element sets
E+-	$(E+-)\beta$	E-pointed compact Hausdorff spaces
$M \times -$	$(M \times -)\beta$	compact Hausdorff spaces with a discrete M action
22-	22-	complete atomic Boolean algebras
\mathcal{P}	filter monad	continuous lattices

The rank of pushforwards

Every monad T on **FinSet** has a **unique** finitary extension to a monad on **Set**. It follows that $i_{\#}T$ is finitary iff it **agrees** with this extension.

The rank of pushforwards

Every monad T on **FinSet** has a **unique** finitary extension to a monad on **Set**. It follows that $i_{\#}T$ is finitary iff it **agrees** with this extension.

In fact, the situation is pretty dire:

Theorem (D)

If T is a consistent monad on **FinSet**, then $i_{\#}T$ has no rank.

- A monad has rank iff it is λ -ary for some regular cardinal λ .
- The only two inconsistent monads are the one that is constant at 1, and its unique submonad which sends \varnothing to \varnothing .

Summary

Given a monad T on $\mathcal C$ and a *nice* functor $G:\mathcal C\to\mathcal D$, one gets a **pushforward monad** $G_\#T$ on $\mathcal D$ which is suitably universal.

Summary

Given a monad T on C and a *nice* functor $G: C \to D$, one gets a **pushforward monad** $G_\#T$ on D which is suitably universal.

If G is fully faithful, there is an **reflection** $\mathbf{Mnd}(\mathcal{C}) \overset{G^\#}{\underset{G_\#}{\longleftarrow}} \mathbf{Mnd}(\mathcal{D})^{\mathsf{res}\,G}$.

19

Summary

Given a monad T on C and a *nice* functor $G: C \to D$, one gets a **pushforward monad** $G_\#T$ on D which is suitably universal.

If G is fully faithful, there is an **reflection** $\mathbf{Mnd}(\mathcal{C}) \overset{G^\#}{\underset{G_\#}{\longleftarrow}} \mathbf{Mnd}(\mathcal{D})^{\mathsf{res}\,G}$.

For $i : FinSet \rightarrow Set$, the monad $i_{\#}T$ almost never has rank.

19

• The pushforward construction makes sense in any bicategory:

- The pushforward construction makes sense in any bicategory:
 - V-Mat, V-Prof and Span(C) often have all extensions.

- The pushforward construction makes sense in any bicategory:
 - V-Mat, V-Prof and Span(C) often have all extensions.
 - Monads in MND(Cat) are distributive laws, so one should be able to push them forward. Problem: how to compute right extensions in MND(Cat)?

- The pushforward construction makes sense in any bicategory:
 - V-Mat, V-Prof and Span(C) often have all extensions.
 - Monads in MND(Cat) are distributive laws, so one should be able to push them forward. Problem: how to compute right extensions in MND(Cat)?
- What properties of monads are preserved by the pushforward process? E.g. idempotence, strength, commutativity, etc.

Thank you!

References

- A. Doña Mateo. Pushforward monads. *Theory and Applications of Categories*, 44(30):927–963, 2025.
- R. Garner. The Vietoris Monad and Weak Distributive Laws. *Applied Categorical Structures*, 28(2):339–354, 2020.
- J. F. Kennison and D. Gildenhuys. Equational completion, model induced triples and pro-objects. *Journal of Pure and Applied Algebra*, 1(4):317–346, 1971.
- T. Leinster. Codensity and the ultrafilter monad. *Theory and Applications of Categories*, 28(13):332–370, July 2013.
- R. Street. The formal theory of monads. *Journal of Pure and Applied Algebra*, 2(2):149–168, 1972.