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® | awvere theories — algebras in any category with finite products
® PROPs and operads — algebras in any symmetric monoidal category

® Monads — algebras in a fixed category
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Suppose we have two categories, and a monad on the first one:
G
TC/ C — D

How can we consider T-algebras in D without leaving the world of monads?

® We'll need a way to relate C and D, so we may ask for a functor G.

If G and D are nice enough, this is enough to construct a monad on D from T!
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Pushforward monads

Let T be a monad and G be a functor.

cC—S4Dp

7]

CT>D

Definition (Street)
If Rang GT exists, then it is the pushforward of T along G, denoted by G.T.

There a unique way to make G4T a monad on D so that € becomes a /ax
morphism of monads.
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Morphisms of monads

Let T be a monad on C and S be a monad on D.

Definition

A lax morphism (F, ) : (C, T) — (D,S) is a functor F : C — D and a natural
transformation ¢ : SF — FT which intertwines the units and multiplications.

Equivalently, a lax morphism (F,¢) amounts to a to the respective
categories of algebras:
cr D>
UT\L J(Us
C —— D
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First examples

If G :C — D has a left adjoint F, then computing pushforwards along G is easy:

G#T = RanG GT = GTF

Example

Let T be the monad on Ab whose algebras are rings, and G : Ab — Set be the
forgetful functor. Then G4T is the free ring monad on Set.

Example

If £ 4 G, then G41 is the monad induced by the adjunction.
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The pushforward of the identity monad has its own name:
Definition

The codensity monad of G : C — D is Gxl.

The universal property of pushforwards says that U%#! : D¢#1 — D is the

of G.
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Monadic reflection of FinSet

Example

What is the monadic reflection of the inclusion 7 : FinSet — Set?
iyl is the 5, and Set” = CHaus

This is remarkable! Through this general categorical machinery, we obtain
CHaus from the concept of finiteness of a set alone.



More examples of codensity monads

G

fdVect, — Vect,

Gyl

double dualisation

DG#].

linearly compact vector spaces

FinGrp — Grp

profinite completion

profinite groups

Field — Ring

product of residue fields

Prod(Field)
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Pushforwards along fully faithful functors

Suppose G : C < D is fully faithful.
Definition

A monad S on D restricts along G if, for all ¢ € C, there is some S’c € C such
that SGc = GS’c. These choices assemble into a monad G#S on C with
SG = G(G™S), called the restriction of S along G.

Example

® For any G, we have G#1 = 1.

® The identity, powerset, ultrafilter, E + —, and M X — monads restrict along
FinSet — Set.
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Pushforwards along fully faithful functors

Let Mnd(D)™=¢ denote the full subcategory of Mnd(D) on those monads which
restrict along G.

Theorem (D)

If G is fully faithful and pushforwards along it exist, then the pushforward
construction gives a

G#
k>

Mnd(C) L Mnd(D)*¢ —— Mnd(D).

>
Gy
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representably small, and D is complete.
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Examples in Set

The hypotheses of the theorem apply as soon as G is fully faithful and
representably small, and D is complete. This includes:

Example

® FinSet — Set;

® Set., — Set, where x is any cardinal and Set,; is the category of sets
with cardinality at least k.
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Monads on nonempty sets

Let i : Set>; — Set. Since monads on Set preserve monos, every monad

restricts along .
G#
o

Mnd(SetZl) 1 Mnd(Set)
-~

Gy
This gives a monad on Mnd(Set). For T € Mnd(Set), we have
® GuG#T(X)= TX forall X € Set>q;
® G4G#T(2) is the set of pseudoconstants of T.
Gy G*-algebras are monads all of whose pseudoconstants are actual constants.
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® Every monad on FinSet is the restriction of some monad on Set.
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Monads on finite sets

Let / : FinSet — Set.
® Every monad on FinSet is the restriction of some monad on Set.
® Every monad T on FinSet has extensions to a monad on Set.

® jyT = Ran; T, the pushforward of T along i;
® Lan; /T the finitary monad determined by T.
Example

The covariant powerset monad on FinSet has at least three extensions: the
powerset monad, the finite powerset monad (the finitary extension), and the filter
monad (the pushforward).
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Compact Hausdorff algebras

Let T be a monad on Set that restricts along i : FinSet — Set. Using the
reflection theorem, we get two monad maps:

S eti#i#T

Set’ CHaus

S e

Set
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Compact Hausdorff algebras

Let T be a monad on Set that restricts along i : FinSet — Set. Using the
reflection theorem, we get two monad maps:

e the unit of the reflection gives ) Seti#"T
0: T — i#i#T; U/ \U
® applying iy to the unit of /#T gives Set” CHaus

0:inl — iygi™T. UT\ Set /U@

Every iyi#T-algebra has a underlying T-algebra structure and an underlying
compact Hausdorff topology. This situation is similar to having a distributive
law between T and f3.
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Specific examples

I, T-algebras

1 I5; compact Hausdorff spaces
const. at 1 | const. at 1 1-element sets
E+— (E+-)p8 E-pointed compact Hausdorff spaces
M x — (M x —)B | compact Hausdorff spaces with a discrete M action
22" 22" complete atomic Boolean algebras
P filter monad continuous lattices

17



The rank of pushforwards

Every monad T on FinSet has a unique finitary extension to a monad on Set.
It follows that i.T is finitary iff it agrees with this extension.
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The rank of pushforwards

Every monad T on FinSet has a finitary extension to a monad on Set.
It follows that iyT is finitary iff it with this extension.

In fact, the situation is pretty dire:
Theorem (D)

If T is a consistent monad on FinSet, then iyT has

® A monad has rank iff it is A\-ary for some regular cardinal \.

® The only two inconsistent monads are the one that is constant at 1, and its
unique submonad which sends & to &.
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one gets a pushforward monad GxTI" on D which is suitably universal.
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Given a monad T on C and a nice functor G : C — D,
one gets a pushforward monad GxTI" on D which is suitably universal.

G#
If G is fully faithful, there is an reflection Mnd(C) . L . Mnd(D)™¢ .
Gy

For i : FinSet — Set, the monad ixT almost never has rank.
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Future directions

® The pushforward construction makes sense in any bicategory:

= V-Mat, V-Prof and Span(C) often have all extensions.
= Monads in MND(Cat) are distributive laws, so one should be able to push
them forward. Problem: how to compute right extensions in MND(Cat)?

® \What properties of monads are preserved by the pushforward process?
E.g. idempotence, strength, commutativity, etc.

20



Thank you!



References

e A. Doifa Mateo. Pushforward monads. Theory and Applications of Categories,
44(30):927-963, 2025.

R. Garner. The Vietoris Monad and Weak Distributive Laws. Applied Categorical
Structures, 28(2):339-354, 2020.

J. F. Kennison and D. Gildenhuys. Equational completion, model induced triples and
pro-objects. Journal of Pure and Applied Algebra, 1(4):317-346, 1971,

T. Leinster. Codensity and the ultrafilter monad. Theory and Applications of
Categories, 28(13):332-370, July 2013.

R. Street. The formal theory of monads. Journal of Pure and Applied Algebra,
2(2):149-168, 1972.

21



