Pushforward monads

Adrian Dofia Mateo (www.maths.ed.ac.uk/~adona)

27 June 2024, CT2024

University of Edinburgh


www.maths.ed.ac.uk/~adona

Given a functor G: C — D and a monad T on C,
the pushforward of T along G is G, = Rang GT,
which is canonically a monad on D.

Today's main examples:
e The pushforward of P along FinSet — Set gives
the theory of continuous lattices.

e The pushforward of 1 along Field — Set gives
the theory of products of fields.
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Pushing a monad forward along a functor
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Pushing a monad forward along a functor

Let T be a monad on C and G: C — D.
Under what conditions do we get a monad on D?

Well-known answer
If F G, then GTF is a monad on D.

E.g. if T =1, this is the monad induced by the adjunction F 4 G.

When Rang GT exists, then it is canonically a monad on D.



The pushforward of a monad

Definition
The pushforward of T along G is G4 := Rang GT, when the latter exists.
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This comes with a monad structure, which | will now describe.



The monad structure of Gyl

Let G: C — D and T:C — C, and define a category K(G, T):

e The objects are pairs (S, o) fitting into a diagram

QA
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@T@

e A morphism (S,0) — (S’,0’) is a natural transformation a: S = S’
such that 0 = ¢’ 0 aG.



The monad structure of Gyl

If T is a monad, K(G, T) becomes strict monoidal.

The monoidal product of (S,0) and (S’,0”) and the monoidal unit are
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The monad structure of Gyl

If T is a monad, K(G, T) becomes strict monoidal.

The monoidal product of (S,0) and (S’,0”) and the monoidal unit are
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G4T = Rang GT is the terminal object of /IC(G, T), so it has a unique monoid
structure. This gives G4l a canonical monad structure.



Pushforward along a right adjoint

Example
If F 4G, then G4 = GTF.



Pushforward along a right adjoint

Example
If F 4G, then G4 = GTF.

Proof. Recall that
right Kan extending along a right adjoint = precomposing with the left adjoint,

so
Gyl = Rang GT = GTF.



Codensity monads

Definition
Let G: C — D be a functor. Gyl is the codensity monad of G.



Codensity monads

Definition
Let G: C — D be a functor. Gyl is the codensity monad of G.

Examples
e The codensity monad of FinSet — Set is the ultrafilter monad, whose
algebras are compact Hausdorff spaces.
e The codensity monad of Vect'! < Vect, is the double dualisation monad,
whose algebras are linearly compact vector spaces.
e The codensity monad of FinGrp < Grp is the profinite completion monad,
whose algebras are profinite groups.



A universal property of the pushforward

The right Kan extension comparison transformation x gives a functor K:

c—% D cT K pGT
lr Nz lG#TRanG 6T M lur luc#r

Hence, K is an arrow in CAT/D.
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A universal property of the pushforward

The right Kan extension comparison transformation x gives a functor K:

c—% D CT K, pGT
JT f/ J{G#TRanG T "~ J{UT J{Uc#r
c—° 7D c—% D

Hence, K is an arrow in CAT/D.

Let Alg: Mnd(D)°® — CAT/D be the functor S +— D°.
Theorem (Street)

K is a universal arrow from GU to Alg.
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A universal property of the pushforward

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,

cT D>
Mnd(D)(S, G4T') = (CAT/D) ( leur, lus > :
D D
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A universal property of the pushforward

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,
cT D>
Mnd(D)(S, G4T) = (CAT/D)( leut, Jus >
D D

U%#" is the universal monadic replacement of GUT.
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A universal property of the pushforward

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,

cT D>
Mnd(D)(S, G4T') = (CAT/D) ( leur, lus > :
D D

U%#" is the universal monadic replacement of GUT.

Corollary
Gy4T = (GUT)41, i.e. G4T is the codensity monad of GUT.
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Pushing forward along
FinSet — Set




Some monads on Set and FinSet

Let /: FinSet — Set be the inclusion.
What happens when we push a monad forward along /7
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Some monads on Set and FinSet

Let /: FinSet — Set be the inclusion.

What happens when we push a monad forward along /7

Any monad on FinSet is the restriction of a monad on Set (just take the

pushforward), so we pick monads that restrict to FinSet.

Monad on Set Algebras

On FinSet

Pg := (=) + E for a finite set E E-pointed sets PE
Ay = M x (=) for a finite monoid M | left M-sets Al
The powerset monad P suplattices Pf




Pushing forward along FinSet — Set

Question

What is iyl " for each of these monads?
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Pushing forward along FinSet — Set

Question

What is iyl " for each of these monads?

Two hints:
e The unit 1 — TF gives a map of monads iyl — i,T".
Recall that U = ixl is the ultrafilter monad.
e Because T is the restriction of T, we also get a map of monads T — i#Tf.

This gives forgetful functors Set*” — Set and Set*” — Set”.
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Pushing forward along FinSet — Set

Question

What is iyl " for each of these monads?

Two hints:
e The unit 1 — TF gives a map of monads iyl — i,T".
Recall that U = ixl is the ultrafilter monad.
e Because T is the restriction of T, we also get a map of monads T — i#Tf.

This gives forgetful functors Set*” — Set and Set*” — Set”.

i,T-algebras have an underlying T-algebra structure and compact Hausdorff

topology, compatible in some way.
13



The case of PL and Af,

Proposition (D)

There are distributive laws (which are isomorphisms)

UPE§PEU and UAMgAMU
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The case of P and Af,

Proposition (D)

There are distributive laws (which are isomorphisms)

UPE§PEU and UAMgAMU

This makes UPg and UA), monads on Set.
Theorem (D)

iyPE = UPe and iyAl, = UAw.
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The case of Pf

The filter monad F restricts to P’ on FinSet. This gives a map F — i,/P".
Theorem (D)

This map is an isomorphism of monads F 2 i,P".
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The case of Pf

The filter monad F restricts to P’ on FinSet. This gives a map F — i,/P".
Theorem (D)

This map is an isomorphism of monads F 2 i,P".

Proof sketch. Take
. f o .
p € ixP'(X) = )I(annPn.

For AC X, let xa: X — {L, T} be the characteristic function.
Get a filter F on X by setting

AcF <= m,(p) CT{T}.
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The case of Pf

Theorem (D)

This map is an isomorphism of monads F 2 i, P".
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The case of Pf

Theorem (D)

This map is an isomorphism of monads F 2 i, P".

The F-algebras are continuous lattices, i.e. a certain kind of complete lattices
with a compatible compact Hausdorff topology.

The definition of a continuous lattice is complicated.
We get it naturally from P and FinSet — Set.
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The codensity monad of
Field — Ring




The monad K

Let /: Field — Ring be the inclusion, and let K := /41 be its codensity monad.
Recall that 7 is famously not monadic (Field doesn’t have products).
UX is its monadic replacement.
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The monad K

Let /: Field — Ring be the inclusion, and let K := /41 be its codensity monad.
Recall that 7 is famously not monadic (Field doesn’t have products).
UX is its monadic replacement.

For R € Ring, we have
KR = lim k.
R—k
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The monad K

Let /: Field — Ring be the inclusion, and let K := /41 be its codensity monad.
Recall that 7 is famously not monadic (Field doesn’t have products).
UX is its monadic replacement.

For R € Ring, we have
KR = lim k.
R—k

A map from a ring to a field factors through the fraction field Frac(R/p) for a
unique prime ideal p. Hence,

KR= ] Frac(R/p).

peSpec R

17



The monad K

KR= [ Frac(R/p).

peSpec R
The unit nf embodies the philosophy of algebraic geometry: it realises an
element r € R as a (dependent) function on SpecR.
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The monad K

KR= [ Frac(R/p).

peSpec R
The unit n embodies the philosophy of algebraic geometry: it realises an
element r € R as a (dependent) function on SpecR.

To understand 1K, we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to
ultrafilters on the indexing set.
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The monad K

KR= [ Frac(R/p).

peSpec R
The unit n embodies the philosophy of algebraic geometry: it realises an
element r € R as a (dependent) function on SpecR.

To understand 1K, we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to
ultrafilters on the indexing set.

The multiplication p& only depends on those components indexed by primes

corresponding to principal ultrafilters. o



The category of K-algebras

What might the K-algebras be?
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The category of K-algebras

What might the K-algebras be?

e The functor Field — Ring® makes each field into a K-algebra.
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The category of K-algebras

What might the K-algebras be?

e The functor Field — Ring® makes each field into a K-algebra.
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Field has equalisers, but not products. It turns out that’s all it's missing!
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The category of K-algebras

What might the K-algebras be?

e The functor Field — Ring” makes each field into a K-algebra.
e Since Ring is complete and UX creates limits, Ring” is complete.

Field has equalisers, but not products. It turns out that's all it's missing!

Theorem (D)
Ring”" = Prod(Field) over Ring.

Proof sketch. K-algebra axioms = every K-algebra is a product of fields,
with a unique structure map (the projection onto the components that

correspond to principal ultrafilters).
19



Pushing forward to Set

Let R denote the free ring monad on Set. What is U%K?

UK UR
~ —
Prod(Field) T Ring T Set
~—_— ~_ —

FK FR
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Pushing forward to Set

Let R denote the free ring monad on Set. What is U%K?

UK UR
— ~—
Prod(Field) T Ring T Set
Y~ — Y~ ~—
FK FR

UR is a right adjoint = USK = UZ(ixl) = (URi)41,
so URK is the codensity monad of the forgetful functor Field — Set.

20



Pushing forward to Set

Let R denote the free ring monad on Set. What is U%K?

UK UR
— >
Prod(Field) T Ring T Set
~—_— ~_ —
FK FR

UR is a right adjoint = USK = UZ(ixl) = (URi)41,
so URK is the codensity monad of the forgetful functor Field — Set.

Proposition (D)

Prod(Field) has and URUX preserves reflexive coequalisers.
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The codensity monad of Field — Set

Corollary (Kennison & Gildenhuys, Diers)

Prod(Field) — Set is monadic and the corresponding monad is the codensity
monad of Field — Set.
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The codensity monad of Field — Set

Corollary (Kennison & Gildenhuys, Diers)

Prod(Field) — Set is monadic and the corresponding monad is the codensity
monad of Field — Set.

The theory of products of fields is the ‘smallest’ algebraic theory containing the
theory of fields.

21



The codensity monad of Field — Set

Corollary (Kennison & Gildenhuys, Diers)

Prod(Field) — Set is monadic and the corresponding monad is the codensity
monad of Field — Set.

The theory of products of fields is the ‘smallest’ algebraic theory containing the
theory of fields.

This is a monad without rank with many interesting operations.
E.g. there are n-ary operations that vanish on all fields with fewer than n
elements algebraically independent over the prime subfield.
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e Pushforwards of lifted/restricted monads seem to give composite monads
induced by different kinds of distributive laws.
Can pushforwards be a generalisation of the latter?

e What happens if one pushes forward a monad along another?
E.g. the category of algebras of the codensity monad of (-) + 1 on Set is a
‘modification’ of the product completion of Set,.

e Is there a pushforward construction in the world of relative monads?
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Thank you!
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Constants in Prod(Field)

e Constants: Q x Fp x F3 x Fg x F7 x - -+

Given a field k, with char k = p. The constant c in k is just c,,.



Operations in Prod(Field)

e n-ary operations: ] cooecryn. . o Frac(Zlta, ..., ta]/p)

Let k be a field, and € an n-ary operation . A choice of n elements of k is
equivalent to a ring homomorphism h: Z[t;,...,t,] — k. Then p := ker h is a
prime ideal of Z[ty, ..., t,], and applying 6 to the elements h(t;), ..., h(t,) gives
the image of 0, under the rightmost morphism of

Z[tlv"'utn] L> Z[tl77tn]/p —I> FraC(Z[tl7"'7tn]/p)

J# | |

k k k




Operations in Prod(Field)

Let 7 € [ especzpy Frac(Z[t]/p) be the unary operation with

e for each p = 0 or prime, set 7(,) = 1;

e 7, = 0 for every other p € SpecZ]t].

For k a field and x € k, 7(x) = 1 iff x is transcendental over the prime subfield
of k.
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