Pushforward monads

Adrián Doña Mateo (www.maths.ed.ac.uk/~adona) 27 June 2024, CT2024

University of Edinburgh

Given a functor $G: \mathcal{C} \to \mathcal{D}$ and a monad T on \mathcal{C} , the **pushforward of** T **along** G is $G_{\#}T = \operatorname{Ran}_G GT$, which is canonically a monad on \mathcal{D} .

Today's main examples:

- The pushforward of *P* along FinSet → Set gives the theory of continuous lattices.
- The pushforward of 1 along Field → Set gives the theory of products of fields.

1. Pushforward monads

2. Pushing forward along $FinSet \hookrightarrow Set$

3. The codensity monad of **Field** \hookrightarrow **Ring**

Pushforward monads

Let T be a monad on C and $G: C \to D$. Under what conditions do we get a monad on D? Let T be a monad on C and $G: C \to D$. Under what conditions do we get a monad on D?

Well-known answer

If $F \dashv G$, then *GTF* is a monad on \mathcal{D} .

E.g. if T = 1, this is the monad induced by the adjunction $F \dashv G$.

Let T be a monad on C and $G: C \to D$. Under what conditions do we get a monad on D?

Well-known answer

If $F \dashv G$, then *GTF* is a monad on \mathcal{D} .

E.g. if T = 1, this is the monad induced by the adjunction $F \dashv G$.

Little-known answer

When $\operatorname{Ran}_{G} GT$ exists, then it is canonically a monad on \mathcal{D} .

Definition

The **pushforward** of T along G is $G_{\#}T := \operatorname{Ran}_G GT$, when the latter exists.

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{G} & \mathcal{D} \\ & & & \\ T & \swarrow & & \\ T & \swarrow & & \\ \mathcal{C} & \xrightarrow{G} & \mathcal{D} \end{array}$$

This comes with a monad structure, which I will now describe.

Let $G: \mathcal{C} \to \mathcal{D}$ and $T: \mathcal{C} \to \mathcal{C}$, and define a category $\mathcal{K}(G, T)$:

• The objects are pairs (S, σ) fitting into a diagram

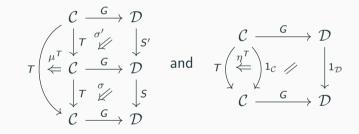
$$\begin{array}{ccc} \mathcal{C} & \stackrel{\mathsf{G}}{\longrightarrow} & \mathcal{D} \\ \tau & \stackrel{\sigma}{\swarrow} & \downarrow s \\ \mathcal{C} & \stackrel{\mathsf{G}}{\longrightarrow} & \mathcal{D} \end{array}$$

A morphism (S, σ) → (S', σ') is a natural transformation α: S ⇒ S' such that σ = σ' ∘ αG.

The monad structure of $G_{\#}T$

If T is a monad, $\mathcal{K}(G, T)$ becomes strict monoidal.

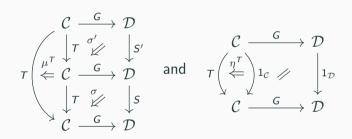
The monoidal product of (S, σ) and (S', σ') and the monoidal unit are



The monad structure of $G_{\#}T$

If T is a monad, $\mathcal{K}(G, T)$ becomes strict monoidal.

The monoidal product of (S, σ) and (S', σ') and the monoidal unit are



 $G_{\#}T = \operatorname{Ran}_G GT$ is the terminal object of $\mathcal{K}(G, T)$, so it has a unique monoid structure. This gives $G_{\#}T$ a canonical monad structure.

Example

If $F \dashv G$, then $G_{\#}T = GTF$.

Example

If $F \dashv G$, then $G_{\#}T = GTF$.

Proof. Recall that

right Kan extending along a right adjoint = precomposing with the left adjoint,

SO

$$G_{\#}T = \operatorname{Ran}_G GT = GTF.$$

Definition

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor. $G_{\#}1_{\mathcal{C}}$ is the **codensity monad** of G.

Definition

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor. $G_{\#}1_{\mathcal{C}}$ is the **codensity monad** of G.

Examples

- The codensity monad of FinSet → Set is the *ultrafilter monad*, whose algebras are compact Hausdorff spaces.
- The codensity monad of Vect^{fd}_k → Vect_k is the *double dualisation monad*, whose algebras are linearly compact vector spaces.
- The codensity monad of FinGrp → Grp is the profinite completion monad, whose algebras are profinite groups.

The right Kan extension comparison transformation κ gives a functor K:

Hence, *K* is an arrow in **CAT**/ \mathcal{D} .

The right Kan extension comparison transformation κ gives a functor K:

Hence, K is an arrow in **CAT**/ \mathcal{D} .

Let Alg: $Mnd(\mathcal{D})^{op} \to CAT/\mathcal{D}$ be the functor $S \mapsto \mathcal{D}^S$.

Theorem (Street)

K is a universal arrow from GU^T to **Alg**.

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,

$$\mathsf{Mnd}(\mathcal{D})(S, G_{\#}T) \cong (\mathsf{CAT}/\mathcal{D}) \begin{pmatrix} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{GU^T}, & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{pmatrix}.$$

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,

$$\mathsf{Mnd}(\mathcal{D})(S, G_{\#}T) \cong (\mathsf{CAT}/\mathcal{D}) \begin{pmatrix} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{GU^T}, & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{pmatrix}.$$

Motto

 $U^{G_{\#}T}$ is the universal monadic replacement of GU^{T} .

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S,

$$\mathsf{Mnd}(\mathcal{D})(S, G_{\#}T) \cong (\mathsf{CAT}/\mathcal{D}) \begin{pmatrix} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{GU^T}, & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{pmatrix}.$$

Motto

 $U^{G_{\#}T}$ is the universal monadic replacement of GU^{T} .

Corollary

 $G_{\#}T \cong (GU^{T})_{\#}1$, i.e. $G_{\#}T$ is the codensity monad of GU^{T} .

Pushing forward along FinSet \hookrightarrow Set

Some monads on Set and FinSet

Let $i: FinSet \rightarrow Set$ be the inclusion. What happens when we push a monad forward along i? Let i: **FinSet** \rightarrow **Set** be the inclusion.

What happens when we push a monad forward along i?

Any monad on **FinSet** is the restriction of a monad on **Set** (just take the pushforward), so we pick monads that restrict to **FinSet**.

Monad on Set	Algebras	On FinSet
$P_E := (-) + E$ for a finite set E	<i>E</i> -pointed sets	$P_E^{\rm f}$
$A_M \coloneqq M imes (-)$ for a finite monoid M	left <i>M</i> -sets	$A_M^{ m f}$
The powerset monad ${\cal P}$	suplattices	\mathcal{P}^{f}

Pushing forward along FinSet \hookrightarrow Set

Question

What is $i_{\#}T^{f}$ for each of these monads?

Pushing forward along FinSet \hookrightarrow Set

Question

What is $i_{\#}T^{f}$ for each of these monads?

Two hints:

- The unit $1 \rightarrow T^{f}$ gives a map of monads $i_{\#}1 \rightarrow i_{\#}T^{f}$. Recall that $U \coloneqq i_{\#}1$ is the **ultrafilter monad**.
- Because T^{f} is the restriction of T, we also get a map of monads $T \rightarrow i_{\#}T^{f}$. This gives forgetful functors $\mathbf{Set}^{i_{\#}T^{f}} \rightarrow \mathbf{Set}^{U}$ and $\mathbf{Set}^{i_{\#}T^{f}} \rightarrow \mathbf{Set}^{T}$.

Pushing forward along $\mathsf{FinSet} \hookrightarrow \mathsf{Set}$

Question

What is $i_{\#}T^{f}$ for each of these monads?

Two hints:

- The unit $1 \to T^{f}$ gives a map of monads $i_{\#}1 \to i_{\#}T^{f}$. Recall that $U \coloneqq i_{\#}1$ is the **ultrafilter monad**.
- Because T^{f} is the restriction of T, we also get a map of monads $T \rightarrow i_{\#}T^{f}$.

This gives forgetful functors $\mathbf{Set}^{i_{\#}T^{f}} \to \mathbf{Set}^{U}$ and $\mathbf{Set}^{i_{\#}T^{f}} \to \mathbf{Set}^{T}$.

Intuition

 $i_{\#}T^{f}$ -algebras have an underlying T-algebra structure and compact Hausdorff topology, compatible in some way.

Proposition (D)

There are distributive laws (which are isomorphisms)

 $UP_E \cong P_E U$ and $UA_M \cong A_M U$.

Proposition (D)

There are distributive laws (which are isomorphisms)

$$UP_E \cong P_E U$$
 and $UA_M \cong A_M U$.

This makes UP_E and UA_M monads on **Set**.

Theorem (D)

$$i_{\#}P_{E}^{f}\cong UP_{E}$$
 and $i_{\#}A_{M}^{f}\cong UA_{M}$.

The case of \mathcal{P}^{f}

The filter monad F restricts to \mathcal{P}^{f} on **FinSet**. This gives a map $F \to i_{\#} \mathcal{P}^{f}$.

Theorem (D)

This map is an isomorphism of monads $F \cong i_{\#} \mathcal{P}^{f}$.

The case of \mathcal{P}^{f}

The filter monad F restricts to \mathcal{P}^{f} on **FinSet**. This gives a map $F \to i_{\#} \mathcal{P}^{f}$.

Theorem (D)

This map is an isomorphism of monads $F \cong i_{\#} \mathcal{P}^{f}$.

Proof sketch. Take

$$\varphi \in i_{\#}\mathcal{P}^{\mathsf{f}}(X) = \lim_{X \to n} \mathcal{P}n.$$

For $A \subseteq X$, let $\chi_A \colon X \to \{\bot, \top\}$ be the characteristic function. Get a filter \mathcal{F} on X by setting

$$A \in \mathcal{F} \iff \pi_{\chi_A}(\varphi) \subseteq \{\top\}.$$

Theorem (D)

This map is an isomorphism of monads $F \cong i_{\#} \mathcal{P}^{\mathrm{f}}$.

Theorem (D)

This map is an isomorphism of monads $F \cong i_{\#} \mathcal{P}^{\mathsf{f}}$.

The *F*-algebras are **continuous lattices**, i.e. a certain kind of complete lattices with a compatible compact Hausdorff topology.

The definition of a continuous lattice is complicated. We get it naturally from \mathcal{P} and **FinSet** \hookrightarrow **Set**.

The codensity monad of Field \hookrightarrow Ring

The monad *K*

Let $i: \text{Field} \to \text{Ring}$ be the inclusion, and let $K := i_{\#}1$ be its codensity monad. Recall that i is famously **not monadic** (Field doesn't have products). U^{K} is its monadic replacement.

The monad *K*

Let $i: \text{Field} \to \text{Ring}$ be the inclusion, and let $K := i_{\#}1$ be its codensity monad. Recall that i is famously **not monadic** (Field doesn't have products). U^{K} is its monadic replacement.

For $R \in \mathbf{Ring}$, we have

$$KR = \lim_{R \to k} k.$$

The monad *K*

Let $i: \text{Field} \to \text{Ring}$ be the inclusion, and let $K := i_{\#}1$ be its codensity monad. Recall that i is famously **not monadic** (Field doesn't have products). U^{K} is its monadic replacement.

For $R \in \mathbf{Ring}$, we have

$$KR = \lim_{R \to k} k.$$

A map from a ring to a field factors through the fraction field Frac(R/p) for a unique prime ideal p. Hence,

$$KR = \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{Frac}(R/\mathfrak{p}).$$

The monad *K*

$$\mathcal{K}R = \prod_{\mathfrak{p}\in \operatorname{Spec} R} \operatorname{Frac}(R/\mathfrak{p}).$$

The unit η_R^{κ} embodies the philosophy of algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

$$KR = \prod_{\mathfrak{p}\in \operatorname{Spec} R} \operatorname{Frac}(R/\mathfrak{p}).$$

The unit η_R^{κ} embodies the philosophy of algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_R^K , we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

$$KR = \prod_{\mathfrak{p}\in \operatorname{Spec} R} \operatorname{Frac}(R/\mathfrak{p}).$$

The unit η_R^{κ} embodies the philosophy of algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_R^K , we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The multiplication μ_R^K only depends on those components indexed by primes corresponding to *principal ultrafilters*.

The category of *K*-algebras

What might the *K*-algebras be?

The category of *K*-algebras

What might the *K*-algebras be?

• The functor **Field** \rightarrow **Ring**^K makes each field into a K-algebra.

The category of *K*-algebras

What might the *K*-algebras be?

- The functor **Field** \rightarrow **Ring**^{*K*} makes each field into a *K*-algebra.
- Since **Ring** is complete and U^{K} creates limits, **Ring**^K is complete.

What might the K-algebras be?

- The functor **Field** \rightarrow **Ring**^{*K*} makes each field into a *K*-algebra.
- Since **Ring** is complete and U^{K} creates limits, **Ring**^K is complete.

Field has equalisers, but not products. It turns out that's all it's missing!

What might the K-algebras be?

- The functor **Field** \rightarrow **Ring**^{*K*} makes each field into a *K*-algebra.
- Since **Ring** is complete and U^{K} creates limits, **Ring**^K is complete.

Field has equalisers, but not products. It turns out that's all it's missing!

Theorem (D) Ring^K \cong Prod(Field) over Ring.

Proof sketch. K-algebra axioms \implies every K-algebra is a product of fields, with a unique structure map (the projection onto the components that correspond to principal ultrafilters).

Pushing forward to Set

Let *R* denote the free ring monad on **Set**. What is $U_{\#}^{R}K$?

$$\mathsf{Prod}(\mathsf{Field}) \xrightarrow[]{U^{K}} \\ \xrightarrow[]{\mathcal{F}^{K}} \\ \underset{\mathcal{F}^{K}}{\overset{\mathcal{U}^{R}}{\underset{\mathcal{F}^{R}}{\overset{\mathcal{U}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}^{R}}}{\overset{\mathcal{F}^{R}}{\overset{\mathcal{F}}}}$$

Pushing forward to Set

Let *R* denote the free ring monad on **Set**. What is $U_{\#}^{R}K$?

 U^R is a right adjoint $\implies U^R_{\#}K = U^R_{\#}(i_{\#}1) = (U^Ri)_{\#}1$, so $U^R_{\#}K$ is the codensity monad of the forgetful functor **Field** \rightarrow **Set**.

Pushing forward to Set

Let *R* denote the free ring monad on **Set**. What is $U_{\#}^{R}K$?

 U^R is a right adjoint $\implies U^R_{\#}K = U^R_{\#}(i_{\#}1) = (U^Ri)_{\#}1$, so $U^R_{\#}K$ is the codensity monad of the forgetful functor **Field** \rightarrow **Set**.

Proposition (D)

Prod(**Field**) has and $U^R U^K$ preserves reflexive coequalisers.

Corollary (Kennison & Gildenhuys, Diers)

 $Prod(Field) \rightarrow Set$ is monadic and the corresponding monad is the codensity monad of Field $\rightarrow Set$.

Corollary (Kennison & Gildenhuys, Diers)

 $\textbf{Prod}(\textbf{Field}) \rightarrow \textbf{Set}$ is monadic and the corresponding monad is the codensity monad of $\textbf{Field} \rightarrow \textbf{Set}.$

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

Corollary (Kennison & Gildenhuys, Diers)

 $\textbf{Prod}(\textbf{Field}) \rightarrow \textbf{Set}$ is monadic and the corresponding monad is the codensity monad of $\textbf{Field} \rightarrow \textbf{Set}.$

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

This is a monad without rank with many interesting operations. E.g. there are n-ary operations that vanish on all fields with fewer than n elements algebraically independent over the prime subfield.

- Pushforwards of lifted/restricted monads seem to give composite monads induced by different kinds of distributive laws.
 Can pushforwards be a generalisation of the latter?
- What happens if one pushes forward a monad along another?
 E.g. the category of algebras of the codensity monad of (·) + 1 on Set is a 'modification' of the product completion of Set_{*}.
- Is there a pushforward construction in the world of relative monads?

Thank you!

- Y. Diers. Complétions monadiques de quelques catégories sans produit. *Rend. Mat.*, 7(1):659–669, 1981.
- R. Garner. The Vietoris Monad and Weak Distributive Laws. *Applied Categorical Structures*, 28(2):339–354, 2020.
- J. F. Kennison and D. Gildenhuys. Equational completion, model induced triples and pro-objects. *Journal of Pure and Applied Algebra*, 1(4):317–346, 1971.
- T. Leinster. Codensity and the ultrafilter monad. *Theory and Applications of Categories*, 28(13):332–370, July 2013.
- R. Street. The formal theory of monads. *Journal of Pure and Applied Algebra*, 2(2):149–168, 1972.

• Constants: $\mathbb{Q} \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \mathbb{F}_7 \times \cdots$

Given a field k, with char k = p. The constant c in k is just c_p .

• *n*-ary operations: $\prod_{\mathfrak{p}\in \text{Spec }\mathbb{Z}[t_1,\ldots,t_n]} \operatorname{Frac}(\mathbb{Z}[t_1,\ldots,t_n]/\mathfrak{p})$

Let k be a field, and θ an n-ary operation θ . A choice of n elements of k is equivalent to a ring homomorphism $h: \mathbb{Z}[t_1, \ldots, t_n] \to k$. Then $\mathfrak{p} := \ker h$ is a prime ideal of $\mathbb{Z}[t_1, \ldots, t_n]$, and applying θ to the elements $h(t_1), \ldots, h(t_n)$ gives the image of $\theta_{\mathfrak{p}}$ under the rightmost morphism of

Let $au\in\prod_{\mathfrak{p}\in\mathsf{Spec}\,\mathbb{Z}[t]}\mathsf{Frac}(\mathbb{Z}[t]/\mathfrak{p})$ be the unary operation with

- for each p = 0 or prime, set $\tau_{(p)} = 1$;
- $au_{\mathfrak{p}} = 0$ for every other $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[t]$.

For k a field and $x \in k$, $\tau(x) = 1$ iff x is transcendental over the prime subfield of k.