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The main idea

Given a functor G : C → D and a monad T on C,
the pushforward of T along G is G#T = RanG GT ,

which is canonically a monad on D.

Today’s main examples:

� The pushforward of P along FinSet ↪→ Set gives

the theory of continuous lattices.

� The pushforward of 1 along Field ↪→ Set gives

the theory of products of fields.
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Pushforward monads



Pushing a monad forward along a functor

Let T be a monad on C and G : C → D.

Under what conditions do we get a monad on D?

Well-known answer

If F ⊣ G , then GTF is a monad on D.

E.g. if T = 1, this is the monad induced by the adjunction F ⊣ G .

Little-known answer

When RanG GT exists, then it is canonically a monad on D.
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The pushforward of a monad

Definition

The pushforward of T along G is G#T := RanG GT , when the latter exists.

C D

C D

G

T RanG GT
κ

G

This comes with a monad structure, which I will now describe.
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The monad structure of G#T

Let G : C → D and T : C → C, and define a category K(G ,T ):

� The objects are pairs (S , σ) fitting into a diagram

C D

C D

G

T S
σ

G

� A morphism (S , σ) → (S ′, σ′) is a natural transformation α : S ⇒ S ′

such that σ = σ′ ◦ αG .
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The monad structure of G#T

If T is a monad, K(G ,T ) becomes strict monoidal.

The monoidal product of (S , σ) and (S ′, σ′) and the monoidal unit are

C D

C D

C D

G

T

T

S ′
σ′

G

T

µT

S
σ

G

and

C D

C D

G

1CT 1D

G

ηT

G#T = RanG GT is the terminal object of K(G ,T ), so it has a unique monoid

structure. This gives G#T a canonical monad structure.
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Pushforward along a right adjoint

Example

If F ⊣ G , then G#T = GTF .

Proof. Recall that

right Kan extending along a right adjoint = precomposing with the left adjoint,

so

G#T = RanG GT = GTF .
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Codensity monads

Definition

Let G : C → D be a functor. G#1C is the codensity monad of G .

Examples

� The codensity monad of FinSet ↪→ Set is the ultrafilter monad, whose

algebras are compact Hausdorff spaces.

� The codensity monad of Vectfdk ↪→ Vectk is the double dualisation monad,

whose algebras are linearly compact vector spaces.

� The codensity monad of FinGrp ↪→ Grp is the profinite completion monad,

whose algebras are profinite groups.
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A universal property of the pushforward

The right Kan extension comparison transformation κ gives a functor K :

C D

C D

G

T G#T=RanG GT
κ

G

⇝
CT DG#T

C D

K

UT U
G#T

G

Hence, K is an arrow in CAT/D.

Let Alg : Mnd(D)op → CAT/D be the functor S 7→ DS .

Theorem (Street)

K is a universal arrow from GUT to Alg.
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A universal property of the pushforward

Theorem (Street) (continued)

More explicitly, we have an isomorphism, natural in S ,

Mnd(D)(S ,G#T ) ∼= (CAT/D)

(
CT

D
GUT ,

DS

D
US

)
.

Motto

UG#T is the universal monadic replacement of GUT .

Corollary

G#T ∼= (GUT )#1, i.e. G#T is the codensity monad of GUT .
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Pushing forward along

FinSet ↪→ Set



Some monads on Set and FinSet

Let i : FinSet → Set be the inclusion.

What happens when we push a monad forward along i?

Any monad on FinSet is the restriction of a monad on Set (just take the

pushforward), so we pick monads that restrict to FinSet.

Monad on Set Algebras On FinSet

PE := (−) + E for a finite set E E -pointed sets P f
E

AM := M × (−) for a finite monoid M left M-sets Af
M

The powerset monad P suplattices P f
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Pushing forward along FinSet ↪→ Set

Question

What is i#T
f for each of these monads?

Two hints:

� The unit 1 → T f gives a map of monads i#1 → i#T
f .

Recall that U := i#1 is the ultrafilter monad.

� Because T f is the restriction of T , we also get a map of monads T → i#T
f .

This gives forgetful functors Seti#T
f → SetU and Seti#T

f → SetT .

Intuition

i#T
f-algebras have an underlying T -algebra structure and compact Hausdorff

topology, compatible in some way.
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The case of P f
E and Af

M

Proposition (D)

There are distributive laws (which are isomorphisms)

UPE
∼= PEU and UAM

∼= AMU .

This makes UPE and UAM monads on Set.

Theorem (D)

i#P
f
E
∼= UPE and i#A

f
M
∼= UAM .
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The case of P f

The filter monad F restricts to P f on FinSet. This gives a map F → i#P f .

Theorem (D)

This map is an isomorphism of monads F ∼= i#P f .

Proof sketch. Take

φ ∈ i#P f(X ) = lim
X→n

Pn.

For A ⊆ X , let χA : X → {⊥,⊤} be the characteristic function.

Get a filter F on X by setting

A ∈ F ⇐⇒ πχA
(φ) ⊆ {⊤}.
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The case of P f

Theorem (D)

This map is an isomorphism of monads F ∼= i#P f .

The F -algebras are continuous lattices, i.e. a certain kind of complete lattices

with a compatible compact Hausdorff topology.

The definition of a continuous lattice is complicated.

We get it naturally from P and FinSet ↪→ Set.
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The codensity monad of

Field ↪→ Ring



The monad K

Let i : Field → Ring be the inclusion, and let K := i#1 be its codensity monad.

Recall that i is famously not monadic (Field doesn’t have products).

UK is its monadic replacement.

For R ∈ Ring, we have

KR = lim
R→k

k .

A map from a ring to a field factors through the fraction field Frac(R/p) for a

unique prime ideal p. Hence,

KR =
∏

p∈SpecR

Frac(R/p).
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The monad K

KR =
∏

p∈SpecR

Frac(R/p).

The unit ηKR embodies the philosophy of algebraic geometry: it realises an

element r ∈ R as a (dependent) function on SpecR .

To understand µK
R , we need to understand SpecKR .

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to

ultrafilters on the indexing set.

The multiplication µK
R only depends on those components indexed by primes

corresponding to principal ultrafilters.
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The category of K -algebras

What might the K -algebras be?

� The functor Field → RingK makes each field into a K -algebra.

� Since Ring is complete and UK creates limits, RingK is complete.

Field has equalisers, but not products. It turns out that’s all it’s missing!

Theorem (D)

RingK ∼= Prod(Field) over Ring.

Proof sketch. K -algebra axioms =⇒ every K -algebra is a product of fields,

with a unique structure map (the projection onto the components that

correspond to principal ultrafilters).
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Pushing forward to Set

Let R denote the free ring monad on Set. What is UR
#K?

Prod(Field) Ring Set

UK

⊣

UR

FK

⊣

FR

UR is a right adjoint =⇒ UR
#K = UR

#(i#1) = (UR i)#1,

so UR
#K is the codensity monad of the forgetful functor Field → Set.

Proposition (D)

Prod(Field) has and URUK preserves reflexive coequalisers.
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The codensity monad of Field → Set

Corollary (Kennison & Gildenhuys, Diers)

Prod(Field) → Set is monadic and the corresponding monad is the codensity

monad of Field → Set.

The theory of products of fields is the ‘smallest’ algebraic theory containing the

theory of fields.

This is a monad without rank with many interesting operations.

E.g. there are n-ary operations that vanish on all fields with fewer than n

elements algebraically independent over the prime subfield.
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Future work

� Pushforwards of lifted/restricted monads seem to give composite monads

induced by different kinds of distributive laws.

Can pushforwards be a generalisation of the latter?

� What happens if one pushes forward a monad along another?

E.g. the category of algebras of the codensity monad of (·) + 1 on Set is a

‘modification’ of the product completion of Set∗.

� Is there a pushforward construction in the world of relative monads?
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Thank you!
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Constants in Prod(Field)

� Constants: Q× F2 × F3 × F5 × F7 × · · ·

Given a field k , with char k = p. The constant c in k is just cp.



Operations in Prod(Field)

� n-ary operations:
∏

p∈SpecZ[t1,...,tn] Frac(Z[t1, . . . , tn]/p)

Let k be a field, and θ an n-ary operation θ. A choice of n elements of k is

equivalent to a ring homomorphism h : Z[t1, . . . , tn] → k . Then p := ker h is a

prime ideal of Z[t1, . . . , tn], and applying θ to the elements h(t1), . . . , h(tn) gives

the image of θp under the rightmost morphism of

Z[t1, . . . , tn] Z[t1, . . . , tn]/p Frac(Z[t1, . . . , tn]/p)

k k k

h

q l



Operations in Prod(Field)

Let τ ∈
∏

p∈SpecZ[t] Frac(Z[t]/p) be the unary operation with

� for each p = 0 or prime, set τ(p) = 1;

� τp = 0 for every other p ∈ SpecZ[t].

For k a field and x ∈ k , τ(x) = 1 iff x is transcendental over the prime subfield

of k .
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