Pushforward monads

Adrián Doña Mateo

1 Oct 2024, CATNIP

University of Edinburgh

Pushing a monad forward along an adjunction

Let T be a monad on C, and suppose we have an **adjunction**:

How can we get a monad on \mathcal{D} ?

Pushing a monad forward along an adjunction

Let T be a monad on C, and suppose we have an **adjunction**:

$$C^{T} \stackrel{F^{T}}{\smile} C \stackrel{F}{\smile} D$$

How can we get a monad on \mathcal{D} ?

The composite adjunction $F^TF \dashv GU^T$ gives a monad on \mathcal{D} .

Pushing a monad forward along a functor

Let T be a monad on C, and suppose we have a **functor**:

$$\stackrel{\mathcal{T}}{\mathcal{C}} \xrightarrow{G} \mathcal{D}$$

How can we get a monad on \mathcal{D} ?

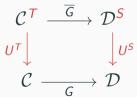
Pushing a monad forward along a functor

Let T be a monad on C, and suppose we have a **functor**:

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
T \downarrow & \swarrow & \downarrow \operatorname{Ran}_{G} GT \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

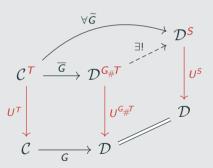
How can we get a monad on \mathcal{D} ?

If $Ran_G GT$ exists, then it has a canonical monad structure, and we call it the **pushforward of** T **along** G, denoted by $G_{\#}T$.

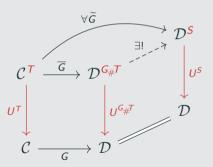

We can consider a category **Mnd** of monads in **CAT**, à la Street.

We can consider a category Mnd of monads in CAT, à la Street.

• An **object** of **Mnd** is a category equipped with a monad, e.g. (C, T).


We can consider a category Mnd of monads in CAT, à la Street.

- An **object** of **Mnd** is a category equipped with a monad, e.g. (C, T).
- A **morphism** $(C, T) \to (D, S)$ is a *lax transformation of monads* or, equivalently, a pair of functors (G, \overline{G}) such that the following square commutes:


Theorem (Street)

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor, and \overline{T} be a monad on \mathcal{C} . When $G_{\#}\overline{T}$ exists, there is a canonical morphism $(G, \overline{G}): (\mathcal{C}, \overline{T}) \to (\mathcal{D}, G_{\#}\overline{T})$ in \mathbf{Mnd} , and:

Theorem (Street)

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor, and \overline{T} be a monad on \mathcal{C} . When $G_{\#}\overline{T}$ exists, there is a canonical morphism $(G, \overline{G}): (\mathcal{C}, \overline{T}) \to (\mathcal{D}, G_{\#}\overline{T})$ in \mathbf{Mnd} , and:

Thus, $\mathcal{D}^{G_{\#}T}$ is the initial monadic-over- \mathcal{D} replacement of \mathcal{C}^{T} .

G	T	\mathcal{C}^{T}	$G_\# T$	$\mathcal{D}^{G_\# \mathcal{T}}$

T	\mathcal{C}^{T}	$G_{\#}T$	$\mathcal{D}^{\textit{G}_{\#} T}$
id	FinSet	ultrafilter monad	CHaus
			π

G	Т	\mathcal{C}^{T}	$G_{\#}T$	$\mathcal{D}^{G_{\#}\!T}$
	id	FinSet	ultrafilter monad	CHaus
$\textbf{FinSet} \rightarrow \textbf{Set}$	+1	FinSet _*	'ultrafilter $+1$ ' monad	CHaus _*

G	T	\mathcal{C}^{T}	$G_{\#}T$	$\mathcal{D}^{G_{\#}T}$
	id	FinSet	ultrafilter monad	CHaus
$\textbf{FinSet} \rightarrow \textbf{Set}$	+1	FinSet _*	'ultrafilter $+1$ ' monad	CHaus _*
	\mathcal{P}	FinSupLat	filter monad	ContLat

G	T	$\mathcal{C}^{\mathcal{T}}$	$G_\# T$	$\mathcal{D}^{G_{\#}T}$
	id	FinSet	ultrafilter monad	CHaus
$\textbf{FinSet} \rightarrow \textbf{Set}$	+1	$FinSet_*$	'ultrafilter $+1$ ' monad	CHaus _*
	\mathcal{P}	FinSupLat	filter monad	ContLat
$FinSet \to CHaus$	id	FinSet	ultrafilters on clopens	?

G	Т	$\mathcal{C}^{\mathcal{T}}$	$G_\# T$	$\mathcal{D}^{G_{\#}T}$
	id	FinSet	ultrafilter monad	CHaus
$\textbf{FinSet} \rightarrow \textbf{Set}$	+1	$FinSet_*$	'ultrafilter $+1$ ' monad	CHaus _*
	\mathcal{P}	FinSupLat	filter monad	ContLat
$FinSet \to CHaus$	id	FinSet	ultrafilters on clopens	?
	\mathcal{P}	FinSupLat	filters on clopens	?

G	Т	$\mathcal{C}^{\mathcal{T}}$	$G_{\#}T$	$\mathcal{D}^{\textit{G}_{\#} T}$
	id	FinSet	ultrafilter monad	CHaus
$FinSet \to Set$	+1	FinSet _*	'ultrafilter $+1$ ' monad	CHaus _*
	\mathcal{P}	FinSupLat	filter monad	ContLat
$FinSet \to CHaus$	id	FinSet	ultrafilters on clopens	?
	\mathcal{P}	FinSupLat	filters on clopens	?
$fdVect_k o Vect_k$	id	$fdVect_k$	double dualisation	$IcVect_k$

G	Т	\mathcal{C}^{T}	$G_{\#}T$	$\mathcal{D}^{G_{\#}T}$
	id	FinSet	ultrafilter monad	CHaus
$\textbf{FinSet} \rightarrow \textbf{Set}$	+1	$FinSet_*$	'ultrafilter $+1$ ' monad	CHaus _*
	\mathcal{P}	FinSupLat	filter monad	ContLat
$FinSet \to CHaus$	id	FinSet	ultrafilters on clopens	?
	\mathcal{P}	FinSupLat	filters on clopens	?
$fdVect_k o Vect_k$	id	$fdVect_k$	double dualisation	$IcVect_k$
$Field \to Ring$	id	Field	product of residue fields	Prod(Field)

Thank you!

For more details and references:

Adrián Doña Mateo, *Pushforward monads* https://arxiv.org/abs/2406.15256