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1 Introduction
Mathematicians use different algebraic invariants to tell topological spaces apart. For
example, every topological space has an associated sequence of abelian groups: its
singular homology. In the study of knots up to isotopy, many of these invariants come
in the form of polynomials. The Alexander polynomial, the Jones polynomial and the
HOMFLY-PT polynomial, in order of appearance, are examples of these. These two
kinds of invariants are in essence very different: the first kind is a sequence of algebraic
structures, while the second kind is just a polynomial. In a highly influential paper [8],
Khovanov constructed a series of cohomology modules for each oriented link diagram,
and showed that this construction is invariant under link isotopy. Moreover, he showed
that taking the graded Euler characteristic of this series gives the Jones polynomial.
This was the first time that a link invariant of the second kind was shown to originate
from a invariant of the first kind, a process that is known as categorification. This new
invariant, which we now know as Khovanov homology, has sparked great interest in the
past two decades. For instance, it was shown that it detects the unknot [13], a question
that is still unanswered for the Jones polynomial.

Shortly after the discovery of Khovanov homology, other knot polynomials, includ-
ing the Alexander polynomial, were found to be the Euler characteristic of certain
knot homology theories. In [12], Khovanov and Rozansky showed that the same is
true for the HOMFLY-PT polynomial using complexes of matrix factorisations. This
construction was later recast into the language of Hochschild homology of Soergel bi-
modules in [11]. This essay develops this homology theory, introducing all the necessary
background.
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Section 2 gives an brief overview of braid groups and Hecke algebras, with a short
introduction to the Kazhdan–Lusztig basis. Section 3 constructs the HOMFLY-PT
polynomial, following [4], using the Ocneanu trace on the Hecke algebra. Section 4
introduces Soergel bimodules, as certain bimodules over a polynomial algebra. Discus-
sion of the link homology of [11] properly begins in Section 5. Unlike in the original
paper, which proves invariance by relating it to the homology defined in [12] using ma-
trix factorisations, we will prove the result using Soergel bimodules exclusively. First,
Rouquier complexes are introduced as a categorification of the standard basis of the
Hecke algebra. Second, Hochschild homology is defined for algebras over a field, and
Koszul complexes are used to compute the Hochschild homology some simple Soergel
bimodules. Next, Khovanov’s triply graded homology of links is constructed and a
proof of its invariance is sketched. The essay finishes with a careful computation of the
homology of the (2, n)-torus link. Appendix A provides a quick overview of graded rings
and modules, mostly to establish the conventions used. Complexes and the homotopy
category, which are ubiquitous in Section 5, are discussed in Appendix B. Examples
are provided throughout and effort is put in making the details of calculations explicit.

2 Braid groups and Hecke algebras
A braid consists of n points on a horizontal plane in Euclidean space connected by
n strands to n points in another horizontal plane directly below it. The strands are
only allowed to move downwards, i.e. if γ : [0, 1] → R3 is a normalized arc-length
parameterisation of a strand then its z-coordinate is strictly monotone. Two braids
can be concatenated by placing one below the other so that the endpoints coincide.
This operation descends to isotopy classes of braids, which then form the braid group
on n strands Bn. For an alternative definition of the braid group as a fundamental
group see [1, §1.1]. We may take representatives of isotopy classes of braids where
the n endpoints are equally spaced on a line. This allows us to embed Bn ↪→ Bn+1
canonically by adding an endpoint after the previous n and a completely vertical strand
connected to it. Artin proved that Bn is given by the presentation with generators
σ1, . . . , σn−1 and relations

σiσj = σjσi for |i− j| ≥ 2,
σiσi+1σi = σi+1σiσi+1 for i ∈ {1, . . . , n− 2}.

We may visualise these generators as follows.

1 2 n− 1 ni i+ 1

. . . . . .

σi

1 2 n− 1 ni i+ 1

. . . . . .

σ−1
i

If we add the relation σ2
i = e for all i, we get a presentation of the symmetric group

Sn. This gives a surjective homomorphism Bn → Sn.
Given a braid α ∈ Bn, its closure α̂ is the oriented link given by attaching n more

strands connecting each endpoint to the one below it as shown here:
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α = σ1σ2σ2

α̂

Alexander proved that every tame link is isotopic to the closure of a braid. However,
two different braids (even with different number of strands) may have isotopic closures.
Markov addressed this problem by giving an algebraic criterion to detect when this
happens.

Theorem 2.1. Two braids have isotopic closures if and only if they are related by a
sequence of the following moves:

(M1) Change α ∈ Bn to βαβ−1, for any β ∈ Bn.
(M2) Change α ∈ Bn to ασ±1

n ∈ Bn+1, or the inverse of this operation.

Proofs of the results mentioned so far can be found in the first two chapters of [1].
By Theorem 2.1, if our goal is to find an invariant of links, it now suffices to find a
function of

⋃
n≥1Bn that is invariant under (M1) and (M2). In order to define such a

function, we first introduce an intermediate algebraic structure.

Definition 2.2. The Hecke algebra Hn is the unital associative algebra over Z[v, v−1]
generated by δ1, . . . , δi−1 subject to the relations

δ2i = (v−1 − v)δi + 1 for i ∈ {1, . . . , n− 1}, (2.1)
δiδj = δjδi for |i− j| ≥ 2,

δiδi+1δi = δi+1δiδi+1 for i ∈ {1, . . . , n− 2}.

Equivalently, Hn is the quotient of the group algebra of Bn over Z[v, v−1] by the
relations (2.1). As such, Hn is a representation of Bn where we send σi to δi. Given
a commutative ring A and an invertible element x ∈ A, there is a unique ring homo-
morphism ϕ : Z[v, v−1] → A sending v to x. This gives A the structure of a Z[v, v−1]
algebra, and allows us to form the specialisation (Hn)ϕ := A ⊗Z[v,v−1] Hn of Hn. For
instance, taking x = 1 ∈ Z, (Hn)ϕ becomes the group algebra Z[Sn]. In this sense, Hn

is seen as a deformation of the latter algebra.

Remark 2.3. Slightly different definitions of the Hecke algebra are in use throughout
the literature. Essentially, they are all reparametrisations of our definitions. The
explicit relation is given here for the benefit of the reader. Consider the homomorphism
ϕ : Z[v, v−1] → Z[q1/2, q−1/2] that sends v to q−1/2. Then (Hn)ϕ is the Hecke algebra
defined in [2], except that their generators are scaled by the invertible element q1/2

instead, i.e. Ti = q1/2δi. In [4], this is further specialised by letting q be a nonzero
complex number. Our choice of presentation is the one used in [17], which makes the
statement of Theorem 2.4 below significantly simpler.
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If we wish to rewrite a product of generators, relations (2.1) are as good as δ2i = 1,
except that they create additional linear terms. Formally [17, Theorem 3.5], ifW is a set
of minimal-length words in s1, . . . , sn−1 (the generators of Sn) representing all elements
of Sn, then {δw | w ∈ W} is a Z[v, v−1]-linear basis for Hn, where δw = δi1δi2 . . . δim if
w = si1si2 . . . sim ∈ W . In particular, this gives an obvious isomorphism of Z[v, v−1]-
modules between Hn and (Z[v, v−1])[Sn]. A useful choice for W [4] is given by the
words

β1β2 . . . βn, where, for each i, βi = sisi−1 . . . si−ki for some 0 ≤ ki < i. (2.2)

We call the corresponding basis of Hn the standard basis. It follows from (2.1) that
each of the generators is invertible, with δ−1

i = δi + (v − v−1), and then so are all of
the standard basis elements.

The Hecke algebra admits another interesting basis, introduced in [2]. First we
define an Z-linear ring automorphism Hn → Hn, denoted h 7→ h, uniquely determined
by setting v = v−1 and δi = δ−1

i for each i. This self-inverse homomorphism is called
the Kazhdan–Lusztig involution. They proved:

Theorem 2.4. There is a unique set {bw | w ∈ W} ⊆ Hn with the property that, for
any w ∈ W ,
(a) bw = bw, and
(b) bw = δw +

∑
x<w

hx,wδx for some hx,w ∈ vZ[v], where < denotes the Bruhat order1.

Such a set is a Z[v, v−1]-linear basis for Hn, called the Kazhdan–Lusztig basis. The
change of basis coefficients hx,w are called the Kazhdan–Lusztig polynomials.

Example 2.5. The only x ∈ W with x < si is the identity, so there is some f(v) ∈ vZ[v]
such that bsi = δi + f(v). Condition (a) forces

δi + f(v) = δ−1
i + f(v−1) = δi + (v − v−1) + f(v−1),

which implies f(v) = v and so bsi = δi + v. This then gives, for instance,

b2si = δ2i + 2vδi + 1 = (v−1 − v)δi + 2vδi + 1 = vbsi + v−1bsi . (2.3)

The proof of Theorem 2.4 can be found in [17, §3], where the Kazhdan–Lusztig
basis is constructed by induction on the Bruhat order. Since the δi generate Hn as an
algebra, so do the bsi = δi + v.

There is another important involution of Hn, which we call the Kazhdan–Lusztig
anti-involution. This is the Z-linear automorphism ω given by setting ω(v) = v−1 and
ω(δi) = δ−1

i , as for the Kazhdan–Lusztig involution, but instead of ω being a ring
automorphism we set ω(ab) = ω(b)ω(a) for any a, b ∈ Hn. Taking a reduced word for
w ∈ Sn, it is easy to see that ω(δw) = δ−1

w . We also have

ω(bsi) = ω(δi + v) = δ−1
i + v−1 = (δi + v − v−1) + v−1 = bsi ,

so that Kazhdan–Lusztig basis elements of the form bsi are also self-dual under ω. Using
this anti-involution we can define two important functionals on the Hecke algebra: the
standard trace and the standard form.

1The Bruhat order is defined for any Coxeter system in [17, §1.2.6]
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Definition 2.6. The standard trace is the Z[v, v−1]-linear functional ϵ : Hn → Z[v, v−1]
that extracts the coefficient of δid, i.e. ϵ(1) = 1 and ϵ(δw) = 0 for all w ̸= id.

Definition 2.7. The standard form is the Z-bilinear form (−,−) : Hn×Hn → Z[v, v−1]
given by (x, y) = ϵ(ω(x)y) for x, y ∈ Hn. This is Z[v, v−1]-linear in the second argument
and satisfies (vx, y) = v−1(x, y). We call such a form sesquilinear.

It follows from the definition that if ω(z) = z, then (xz, y) = (x, zy), so in particular
(xbsi , y) = (x, bsiy). The standard form will play a crucial role in the theory of Soergel
bimodules.

3 The Ocneanu trace and the HOMFLY-PT polynomial
We now define a function of

⋃
n≥1Hn that is invariant under the Markov move (M1)

and almost invariant under (M2). This union should be seen as the direct limit of the
sequence of embeddings Hn ↪→ Hn+1 given by sending δi to δi. A function f that is
invariant under (M1) is called a trace, since this condition is equivalent to requiring
that f(αβ) = f(βα). The following trace was introduced by Ocneanu in [3], although
the proof here is adapted from [4] using Remark 2.3.

Theorem 3.1. There is unique Z[v, v−1]-linear map

Tr :
⋃
n≥1

Hn → Z[v, v−1, z]

such that
(a) Tr(ab) = Tr(ba) for all a, b ∈

⋃
n≥1Hn,

(b) Tr(1) = 1, and
(c) Tr(xδn) = zvTr(x) for x ∈ Hn.

Proof. First observe from (2.2) that an element of the standard basis of Hn+1 is either
of the form x ∈ Hn or y1δny2 for some y1, y2 ∈ Hn. We define our trace inductively
by specifying its values on these basis elements. We have H1 ∼= Z[v, v−1] so we must
set Tr(1) = 1. For Hn+1 we need only define the trace for basis elements of the second
form above, and then properties (a) and (b) force Tr(y1δny2) = zvTr(y1y2). Note that
this definition is determined by the properties in the statement of the theorem, so such
a map is unique. By construction, Tr satisfies (b) and (c). It remains to check (a).

It suffices to check this for elements of the standard basis. First let b be a basis
element of Hn+1. We show that for i ≤ n we have Tr(δib) = Tr(bδi). This certainly
holds when i < n. Indeed, this follows by induction if b ∈ Hn, and otherwise we can
remove the single δn factor by (c) and reduce to the b ∈ Hn case. Similarly, if b ∈ Hn

then Tr(δnb) = Tr(bδn). We are left with the case b = y1δny2 with y1, y2 ∈ Hn and
i = n. This further subdivides into four cases, depending on whether y1 or y2 are in
Hn−1. For brevity, here is the case when y1 = x1δn−1x2 and x1, x2, y2 ∈ Hn−1:

Tr(δnb) = Tr(δnx1δn−1x2δny2) = Tr(x1δnδn−1δnx2y2)
= Tr(x1δn−1δnδn−1x2y2)
= zvTr(x1δ2n−1x2y2)
= zv(v−1 − v) Tr(x1δn−1x2y2) + zvTr(x1x2y2),
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while

Tr(bδn) = Tr(x1δn−1x2δny2δn) = Tr(x1δn−1x2y2δ
2
n)

= (v−1 − v) Tr(x1δn−1x2y2δn) + Tr(x1δn−1x2y2)
= zv(v−1 − v) Tr(x1δn−1x2y2) + zvTr(x1x2y2).

The other cases are similar. Now if a = δi1δi2 . . . δik , we can pass the δij through b one
at a time to get Tr(ab) = Tr(ba).

This trace is promising, but it is not quite invariant under (M2). Luckily, this can
be solved if we scale the standard basis elements by a suitable factor. The idea is to
choose an assignment ρ : Bn → Hn such that Tr ◦ρ changes the same way under both
moves of type (M2), that is to say Tr(ρ(ασn)) = Tr(ρ(ασ−1

n )) for α ∈ Bn. A natural
way of specifying ρ is setting ρ(σi) = θδi for some scalar θ and

ρ
(
σϵ1
i1
σϵ2
i2
. . . σϵk

ik

)
= ρ(σi1)ϵ1ρ(σi2)ϵ2 · · · ρ(σik)

ϵk .

This is well-defined because the δi satisfy all the relations that the σi satisfy. For such
an assignment we would need Tr(θδi) = Tr((θδi)−1), which gives

θ2 =
Tr(δ−1

i )
Tr(δi)

= Tr(δi + v − v−1)
zv

= z + 1− v−2

z
.

Evidently θ2 does not lie in Z[v, v−1, z], let alone θ. The answer is to specialise Hn

using the ring homomorphism Z[v, v−1] → C sending v to a nonzero complex number
which we still denote v, and letting z be some other undetermined nonzero complex
number. Our trace is then exactly that of [4, Theorem 5.1] after setting q = v−2. We
can then fix a square root θ of θ2 and define ρ as above. Note that we can eliminate z,
since z = (1− v−2)/(θ2 − 1) and then

Tr(ρ(σi)) = Tr(ρ(σi)−1) = θ(v − v−1)
θ2 − 1 = v − v−1

θ − θ−1 .

Proposition 3.2. For a braid α ∈ Bn, the two-variable rational function

Xα(θ, v) =
(
θ − θ−1

v − v−1

)n−1

Tr(ρ(α))

only depends on α̂.

Proof. By Theorem 2.1 we only need to check that Xα is invariant under the Markov
moves. It is invariant under (M1) because Tr is, and invariant under (M2) because

Xασ±1
n
(θ, v) =

(
θ − θ−1

v − v−1

)n

Tr(ρ(ασ±1
n ))

=
(
θ − θ−1

v − v−1

)n

· v − v−1

θ − θ−1 · Tr(ρ(α)) = Xα(θ, v).
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For any link L we can then define XL = Xα where α is any braid such that α̂ = L.
This invariant, or rather its reparametrisation in the next theorem [4, Proposition 6.2],
is the HOMFLY-PT polynomial.

Theorem 3.3. For each oriented link L there is a Laurent polynomial PL(t, x) in
variables t and x uniquely defined by P = 1 and the skein relation t−1PL+ − tPL− =
xPL0. Here L+, L− and L0 are oriented links with identical projections except at one
crossing, where they are as shown here:

L+ L− L0

Moreover, if t = θ and x = v−1 − v, then PL(t, x) = XL(θ, v).

Proof. Let L be an oriented link with a preferred crossing. If the crossing is positive,
we set L+ = L, otherwise we set L− = L. Take a braid α such that α̂ = L−. The
crossing then corresponds to some σ−1

i in the word α, and after a suitable (M1) move
we may assume that α ends with σ−1

i . Then L0 = α̂σi and L+ = α̂σ2
i , and

Tr(ρ(ασ2
i )) = θ2Tr(ρ(α)δ2i ) = θ2(v−1 − v) Tr(ρ(α)δi) + θ2Tr(ρ(α))

= θ(v−1 − v) Tr(ρ(ασi)) + θ2Tr(ρ(α)).

After multiplying by θ−1, we see that θ−1XL+−θXL− = (v−1−v)XL0 , which is exactly
the relation satisfied by P . Note also that P = 1 = X .

To show that invariance under isotopy and the skein relation is sufficient to compute
PL we induct on the number of crossings of a projection of L. A projection with no
crossings represents the n-component unlink. By adding a kink to one of the circles
in such a projection, the skein relation gives PL = ((t−1 − t)/x)n−1 = XL. For the
inductive step, note that given a link projection one can always change a subset of the
crossings from over- to under-crossing or vice versa in such a way that a diagram of the
n-component unlink is left. Performing these changes in some order we get a sequence
of link diagrams L0 = L,L1, . . . , Lk, where Lk is the unlink. Assuming we have already
computed P for all link projections with one fewer crossing and showed that it agrees
with X, the skein relation gives an equation for PLi in terms of PLi+1 . Since we already
know PLk

we can compute PL. Moreover, since X satisfies the same relation we have
PL = XL. As the latter is uniquely defined, so is PL. In particular, if we had chosen
a different way of changing the crossings in our projection to get the unlink we would
still arrive at the same value for PL.

The existence of this polynomial invariant can be proved purely combinatorially
with a careful induction argument [5]. Our algebraic method greatly simplifies the
proof that the skein relation uniquely defines the polynomial. It also gives a method
of finding the HOMFLY-PT polynomial from a braid word that is easy for a computer
to perform.
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4 Soergel bimodules
Our path towards a categorification of the HOMFLY-PT polynomial has the theory
of Soergel bimodules at its foundation. These are certain graded bimodules over a
polynomial algebra. They were first studied by Soergel with the goal of giving an
algebraic proof of the Kazhdan–Lusztig conjecture, which relates certain quantities
important to Lie theory to the value at 1 of the Kazhdan–Lusztig polynomials. This
section gives an introduction to the Soergel bimodules of the Coxeter group Sn. For
an extensive treatment of the general case see [17]. The reader unfamiliar with graded
rings and modules should find Appendix A useful at this point.

4.1 Bott–Samelson bimodules

We begin by defining Bott–Samelson bimodules, which are the first examples of Soergel
bimodules. To introduce our base ring, fix a positive integer n. Let k be a field
of characteristic zero and let Sn act on kn by permuting the standard basis vectors
x1, . . . , xn. The subspace U of kn consisting of the vectors whose coordinates add up
to zero is preserved by this action. It has a basis y1, . . . , yn−1 where yi = xi − xi+1.
Let T be the graded polynomial ring k[x1, . . . , xn] with the xi placed in degree 2, and
R be the graded subring k[y1, . . . , yn−1]. The action of Sn extends to T : we know how
a permutation acts on the variables x1, . . . , xn and we extend this so that f 7→ σ(f) is
a k-algebra endomorphism for every σ ∈ Sn. Since U was Sn-invariant, so is R.

Write s1, . . . , sn−1 for the adjacent transpositions in Sn. For explicitness, we note
that si(yi) = −yi, si(yi+1) = yi + yi+1, si(yi−1) = yi + yi−1 and si(yj) = yj for all
j /∈ {i− 1, i, i+ 1}2. For each i, we write T si for the subring of si-invariants of T , i.e.

T si = {f ∈ T | si(f) = f}.

Similarly, we write Rsi for the ring of si-invariants of R. Explicitly, we have

T si = k[x1, . . . , xi−1, xi + xi+1, xixi+1, xi+2, . . . , xn],
Rsi = k[y1, . . . , yi−2, yi + 2yi−1, y

2
i , yi + 2yi+1, yi+2, . . . , yn−1]

[see 17, Example 4.12].

Proposition 4.1. We have R ∼= Rsi ⊕Rsi(−2) as graded Rsi-bimodules.

Proof. Note that for any f ∈ R we can write

f = f + si(f)
2 + f − si(f)

2 .

The first term is easily seen to be in Rsi . The second is an si-antiinvariant, i.e. it
satisfies si(g) = −g. The ideal (yi) of R is invariant under the action of si, so {e, si}
acts on the quotient ring R/(yi). What is more, examining the explicit action of si
above we see that its action on R/(yi) is trivial. In particular, if g is an si-antiinvariant
then g + (yi) = si(g + (yi)) = −g + (yi) which implies that g ∈ (yi). This shows that
g = yih for some unique h ∈ R. In fact, −yih = si(yih) = −yisi(h) implies that

2In particular, this shows that U is isomorphic as an Sn-module to the geometric representation of
Sn seen as the Coxeter group of type An−1.
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h ∈ Rsi . In other words, the Rsi-submodule of si-antiinvariants is exactly Rsiyi. The
decomposition of f above and the fact that Rsi ∩Rsiyi = 0 show that we have a direct
sum decomposition

R = Rsi ⊕Rsiyi ∼= Rsi ⊕Rsi(−2),

where the isomorphism is of graded Rsi-bimodules (recall that yi has degree 2).

Definition 4.2. Let Bsi = R ⊗Rsi R(1), where R is seen as an R-bimodule. This is
the simplest Soergel bimodule, other than R itself.

Proposition 4.3. We have Bsi
∼= R(1) ⊕ R(−1) as left (resp. right) R-modules and

as Rsi-bimodules.

Proof. Using Proposition 4.1 and distributivity of the tensor product and direct sum,
we can rewrite this as

Bsi = (R⊗Rsi R)(1) ∼= (R⊗Rsi [Rsi ⊕Rsi(−2)])(1)
∼= (R⊗Rsi Rsi ⊕R⊗Rsi Rsi(−2))(1)
∼= (R⊕R(−2))(1)
= R(1)⊕R(−1).

Because the isomorphism in the first line is of graded Rsi-bimodules, we can only assert
that Bsi

∼= R(1)⊕R(−1) as graded (R,Rsi)-bimodules and in particular as graded left
R-modules. We could just as well have used Proposition 4.1 on the left factor to show
that we also have an isomorphism of graded right R-modules.

We will see in the next subsection, that this cannot be an isomorphism of R-
bimodules. In either case, we conclude that Bsi is graded-free of rank v+ v−1 as a left
(resp. right) R-module.

For the rest of this text, we abbreviate M ⊗R N as MN .

Definition 4.4. The Bott–Samelson bimodule of a word w = (si1 , si2 , . . . , sim) with
ij ∈ {1, 2, . . . , n− 1} is the graded R-bimodule

BS(w) := Bsi1
⊗R Bsi2

⊗R · · · ⊗R Bsim = Bsi1
Bsi2

. . . Bsim .

By convention, if w is the empty word then BS(w) = R.

Because each Bsi is graded-free as a left (resp. right) R-module, so are all Bott–
Samelson bimodules. By induction on m we have a canonical isomorphism

BS(w) ∼= R⊗R
si1 R⊗R

si2 · · · ⊗Rsim R(m). (4.1)

We see that Bott–Samelson bimodules are not closed under grading shift. They are,
however, closed under tensor product over R by definition. Bott–Samelson bimodules
are our first examples of Soergel bimodules, and play a central role in the categorifica-
tion of the HOMFLY-PT polynomial.
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4.2 Soergel bimodules

Definition 4.5. A Soergel bimodule is a direct summand of a finite direct sum of
grading shifts of Bott–Samelson bimodules. The category of Soergel bimodules, denoted
SBimn, has objects the Soergel bimodules and morphisms the graded R-bimodule
homogeneous homomorphisms of degree zero.

Since tensor product distributes over direct sums, SBimn is closed under tensor
product over R. It is also closed, by definition, under grading shifts, finite direct sums
and direct summands. Recall that Bott–Samelson bimodules are graded-free of finite
rank, and then so are their direct sums and grading shifts. Proposition A.4 then implies
that all Soergel bimodules are graded-free of finite rank as left and right R-modules.

We will be particularly interested in the indecomposable Soergel bimodules. A
nonzero bimodule is indecomposable if it cannot be written as the direct sum of two
nonzero graded submodules. Since SBimn is closed under direct summands, a bimodule
in SBimn is indecomposable if and only if it is indecomposable in the category of graded
R-bimodules. It is easy to see that any grading shift of an indecomposable is also
indecomposable. The following lemma allows us to identify the first indecomposable
Soergel bimodules.

Lemma 4.6. If a graded R-bimodule M is generated by a single homogeneous element
m as an R-bimodule, i.e. RmR = M , then M is indecomposable.

Proof. Set d = degm and suppose M = N ⊕ P . We must have Md = R0mR0 = km.
Since Md is isomorphic to Nd ⊕ P d as k-vector spaces, we may assume without loss of
generality that m ∈ Nd and Ld = 0. But then M = RmR ⊆ N so P = 0.

We immediately see that R is indecomposable. For each i, Bsi is easily seen to be
generated as an R-bimodule by the degree −1 homogeneous element 1⊗ 1, so it is also
indecomposable. In particular this confirms that the isomorphism in Proposition 4.3
could not have been of R-bimodules. Any Soergel bimodule can be written as a direct
sum of indecomposable ones. In fact, this decomposition is unique up to reordering and
isomorphism because SBimn satisfies the Krull-Schmidt property [see 17, Appendix
1]. For example, we have the following:

Proposition 4.7. We have BsiBsi
∼= Bsi(1)⊕Bsi(−1) in SBimn.

Proof. Consider the chain of isomorphisms

BsiBsi
∼= R⊗Rsi R⊗Rsi R(2) by (4.1)
∼= R⊗Rsi (Rsi ⊕Rsi(−2))⊗Rsi R(2) by Proposition 4.1
∼= R⊗Rsi Rsi ⊗Rsi R(2)⊕R⊗Rsi Rsi(−2)⊗Rsi R(2)
∼= R⊗Rsi R(2)⊕R⊗Rsi R

= Bsi(1)⊕Bsi(−1).

Note crucially that the middle R in the first line acts only as an Rsi-bimodule, which
means that unlike in Proposition 4.3 this is genuinely an isomorphism of R-bimodules.
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This gives a decomposition of BsiBsi as a direct sum of indecomposable Soergel
bimodules. If we view grading shift by 1 as multiplying by v, this isomorphism reminds
us of (2.3). In fact, something much stronger is true: SBimn is a categorification of
the Hecke algebra in a sense that we will now make precise.

Definition 4.8. Given an essentially small3 additive category A, its split Grothendieck
group, denoted [A]⊕, is the abelian group generated by the symbols [A] for each object
A of A and subject to the relations

[A] = [A′] whenever A ∼= A′,

[A] = [B] + [C] whenever A ∼= B ⊕ C.

In our case, SBimn is not only additive but also monoidal (since it is closed under
tensor products), so we can define a ring structure on [SBimn]⊕ by setting [A][B] =
[AB]. We can also encode the grading shift by giving [SBimn]⊕ a Z[v, v−1]-algebra
structure via v[A] = [A(1)]. The following theorem of Soergel [6] identifies this algebra
as Hn.

Theorem 4.9. The assignment bsi 7→ [Bsi ] for each i gives a Z[v, v−1]-algebra iso-
morphism Hn

∼= [SBimn]⊕. Moreover, there is a bijection between Sn and the set of
indecomposable Soergel bimodules up to shift and isomorphism denoted w 7→ Bw. The
indecomposable bimodule Bw is a direct summand of BS(w) for a reduced word for w
and all other summands are shifts of Bx for x < w in the Bruhat order.

The first half of [17] is devoted to proving this theorem using diagrammatic tech-
niques. This result is the starting point of our effort to categorify the HOMFLY-PT
polynomial. There is one more part of this theorem which we state separately here. In
order to state it, let us write ch : [SBimn]⊕ → Hn for the inverse of the isomorphism
in Theorem 4.9.

Theorem 4.10 (Soergel Hom formula). For any two Soergel bimodules B and B′ the
space of graded R-bimodule homomorphisms Hom•

R(B,B′) is graded-free as a left (resp.
right) graded R-module. Its graded rank is (ch(B), ch(B′)), where (−,−) denotes the
standard form on Hn of Definition 2.7.

Everything we have done so far was for a fixed n. Writing Tn andRn for k[x1, . . . , xn]
and k[y1, . . . , yn−1], respectively, we have an inclusion of rings Tn ↪→ Tn+1, which
restricts to an inclusion Rn ↪→ Rn+1 (note that R1 = k). We can use this to define an
inclusion of categories SBimn ↪→ SBimn+1, which is determined by setting Bsi 7→ Bsi ,
or more explicitly

Rn ⊗R
si
n
Rn(1) 7−→ Rn+1 ⊗R

si
n+1

Rn+1(1).

This is the categorified equivalent of the inclusions Hn ↪→ Hn+1 of Section 3.

5 Triply graded link homology
In this section, we use the theory of Soergel bimodules to construct an invariant of links
that categorifies the HOMFLY-PT polynomial. This is done in way that is analogous

3A category is essentially small if the isomorphism classes of its objects form a set.
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to the construction in Section 3. First we find a categorification of the standard basis
of the Hecke algebra. This is the role of Rouquier complexes, which are complexes of
Soergel bimodules. Next, we study the categorified equivalent of the Ocneanu trace,
which turns out to be a combination of Hochschild homology and homology of Rouquier
complexes. We then define Khovanov’s triply graded link homology and sketch a proof
of its invariance under the Markov moves. Last, we demonstrate how to do calculations
of this homology by computing the homology of the (2, n)-torus link in great detail.

This construction first appeared in [12], where it was built it terms of complexes of
matrix factorisations, which are certain 2-periodic sequences of maps of modules. This
was later rephrased in terms of Soergel bimodules in [11]. However, the latter proves
invariance under link isotopy by showing the equivalence of the two theories. In this
essay, we avoid matrix factorisations altogether and we sketch a proof of invariance
directly from the properties of Soergel bimodules and Hochschild homology.

5.1 Rouquier complexes

We have so far seen how Soergel bimodules categorify the Kazhdan–Lusztig basis of a
Hecke algebra. However, in Section 3 the Ocneanu trace was defined on the standard
basis instead. In this section we introduce a categorification of this basis after Rouquier
[10].

Recall that we have bsi = δi + v and then δi = bsi − v. In SBimn, bsi corresponds
to Bsi and v to R(1), but the element of the split Grothendieck group [Bsi ] − [R(1)]
corresponding to δi is not the isomorphism class of any Soergel bimodule. This is
because, while [A]+[B] is the isomorphism class of A⊕B, there is no concrete analogue
for [A]−[B]. Rouquier showed that a concrete realisation of subtraction can be achieved
by passing instead to the homotopy category of bounded (cochain) complexes of Soergel
bimodules. We refer the reader to Appendix B for a brief exposition of complexes and
the homotopy category. In particular, we will find Lemma B.4 very useful throughout
the remainder of this essay. We will refer to it as Gaussian elimination.

If A is an additive category, we write Cb(A) and Kb(A) for the category of bounded
complexes in A and its homotopy category, respectively. If A is essentially small, we
can define the Euler characteristic of a bounded complex A by

χ(A) :=
∑
i∈Z

(−1)i[Ai] ∈ [A]⊕.

It is easy to see that this descends to a group homomorphism χ : [Cb(A)]⊕ → [A]⊕.
Crucially, for a chain map f : A → B we have χ(Cone(f)) = χ(B) − χ(A), where
Cone(f) is the mapping cone of f (see Definition B.1). This gives a way of categorifying
subtraction in the split Grothendieck group.

Definition 5.1. The triangulated Grothendieck group of Kb(A), denoted [Kb(A)]△,
is the quotient of [Kb(A)]⊕ by the relations [Cone(f)] = [B] − [A] for any morphism
f : A → B.

Then χ and the inclusion functor φ : A → Kb(A) descend to inverse group isomor-
phisms [see 17, §19.2.3]:

[Kb(A)]△ [A]⊕
χ

φ

12



Therefore, we can categorify [B]− [A] as the cone of some chain map f : A → B. Note
that the triangulated Grothendieck group structure is oblivious of which specific map
we choose; choosing a suitable map is the job of the ‘categorifier’.

We now turn to SBimn and work in Cb(SBimn). Note that a complex of Soergel
bimodules is doubly graded: by its cohomological degree and by the internal degree of
each graded bimodule. Recall that we want to categorify δi = bsi −v. From our discus-
sion of the triangulated Grothendieck group, we could take the cone in Kb(SBimn) of
a morphism f : R(1) → Bsi . However, the right thing do to instead is to take the coho-
mological shift of the cone of a morphism Bsi → R(1). We denote this morphism µi and
set µi(a⊗b) = ab. Recall that Bsi = (R⊗Rsi R)(1), so this map is indeed homogeneous
of degree zero. Then we define the complex Fi to be Cone(µi)[−1]. Explicitly,

Fi := · · · 0 Bsi R(1) 0 · · · .µi

We specify which module sits in cohomological degree zero by underlining it. The
following result, which is a special case of [10, Proposition 3.2], shows that F1, . . . , Fn

are promising as possible categorifications of δ1, . . . , δn. Recall that we omit the symbol
⊗R.

Proposition 5.2. The complexes F1, . . . , Fn satisfy the braid relations up to homotopy
equivalence, i.e.

FiFj ≃ FjFi for |i− j| ≥ 2,
FiFi+1Fi ≃ Fi+1FiFi+1 for i ∈ {1, . . . , n− 2}.

Proof. For brevity, we only sketch the proof of the second homotopy equivalence; the
first one is similar. Moreover, for ease of notation we will only consider the i = 1 case.
The complex F1F2F1 is given by

Bs2Bs1(1) Bs1(2)

⊕ ⊕

Bs1Bs2Bs1 Bs1Bs1(1) Bs2(2) R(3).

⊕ ⊕

Bs1Bs2(1) Bs1(2)

−µ2⊗1
−1⊗µ1 µ1

1⊗µ2⊗1

µ1⊗
1⊗1

1⊗1⊗µ1

µ1⊗
1

−1⊗µ1

−µ2

1⊗µ2

µ1⊗
1 µ1

Appealing to Soergel’s categorification theorem (Theorem 4.9), we have isomorphisms
Bs1Bs2Bs1

∼= Bs1s2s1 ⊕ Bs1 , Bs2Bs1
∼= Bs2s1 , Bs1Bs2

∼= Bs1s2 and Bs1Bs1
∼= Bs(−1)⊕

Bs(1) (this last one is Proposition 4.7). Translating the complex through these isomor-
phisms results in a complex where the map from Bs1 in degree 0 to that in degree 1
(the first direct summand of Bs1Bs1(1)) is the identity. Hence, we can apply Gaussian
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elimination to find that F1F2F1 is homotopy equivalent to

Bs2s1(1) Bs1(2)

⊕ ⊕

Bs1s2s1 Bs1(2) Bs2(2) R(3).

⊕ ⊕

Bs1s2(1) Bs1(2)

Moreover, in this complex the map that used to be µ1⊗1 is now the identity on Bs1(2),
so we can perform one more step of Gaussian elimination to give a complex

K =

Bs2s1(1) Bs1(2)

Bs1s2s1 ⊕ ⊕ R(3).

Bs1s2(1) Bs1(2)

Since we have s1s2s1 = s2s1s2, this symmetric in s1 and s2 (of course one has to check
that the actual maps are also symmetric). Because of this symmetry, if we repeat this
process with F2F1F2 instead, we will equally arrive at K. Therefore, F1F2F1 ≃ K ≃
F2F1F2.

In fact, more familiar relations hold by Gaussian elimination:

FiFi ≃ · · · 0 Bsi(−1) Bsi(1) R(2) 0 · · · , (5.1)

where the Euler characteristic of the right-hand side corresponds under Theorem 4.9
to

v−1bsi − vbsi + v2 = (v−1 − v)δi + 1.
We can also define a complex that categorifies δ−1

i = δi + v − v−1 = bsi − v−1. In this
case we do take the cone of a map ηi : R(−1) → Bs given by ηi(1) = (1⊗yi+yi⊗1)/2.
Explicitly,

F−1
i := · · · 0 R(−1) Bsi 0 · · · .ηi

One can show that F−1
i Fi ≃ R ≃ FiF

−1
i , again using Gaussian elimination. We then

have the following:

Theorem 5.3. The function F : Bn → Kb(SBimn) given by

σϵ1
i1
σϵ2
i2
. . . σϵk

ik
7→ F ϵ1

i1
F ϵ2
i2

. . . F ϵk
ik
,

for k ≥ 0, ij ∈ {1, . . . , n − 1} and ϵj ∈ {±1} for each i, is well-defined and induces a
group homomorphism from Bn to the group of isomorphism classes of invertible objects
in Kb(SBimn).

It follows from (5.1) that F factors through the quotient map Bn → Hn, so that in
fact we have a categorification of the standard basis of the Hecke algebra. We call the
objects in the image of F Rouquier complexes.
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5.2 Hochschild homology

We now introduce Hochschild homology of algebras over a field. We will see in the next
section that taking Hochschild homology partly categorifies the Ocneanu trace on the
Hecke algebra.

Let A be a k-algebra. The opposite ring of A, denoted Aop, has the same elements
and addition as A but multiplication written in reverse order, i.e. if a, b ∈ A then the
element ba ∈ Aop corresponds to the element ab ∈ A. For instance, with this notation,
the anti-involution ω used in Definition 2.7 is a ring homomorphism Hn → Hop

n . The
enveloping algebra of A is Ae := A ⊗k Aop. We consider A-bimodules M for which
we have (am)b = a(mb) and km = mk for all m ∈ M , a, b ∈ A and k ∈ k. Such a
bimodule is essentially the same thing as a left Ae-module, or a right Ae module, where
the actions are related by

(a⊗ b)m = amb = m(b⊗ a).4

This allows us to transfers concepts from the theory of modules to the theory of bi-
modules seamlessly. For example, a projective resolution of A-bimodules is simply a
projective resolution of Ae-modules.

Given such an A-bimodule M , the space of A-invariants is the subset {m ∈ M |
am = ma for all a ∈ A}. It is a k-vector subspace of M , and it is isomorphic as such to
HomAe(A,M) via the k-linear isomorphism sending m to the Ae-linear map a 7→ am.
Similarly, we define

[A,M ] := {am−ma | a ∈ A,m ∈ M}

which is again a k-vector subspace. The space of A-coinvariants is M/[A,M ], which
is isomorphic to A⊗Ae M (where we take A to be a right Ae-module) via the k-linear
isomorphism sending m + [A,M ] to 1 ⊗ m. We then have two covariant additive
functors from the category of Ae-modules (equivalently, A-bimodules) to the category
of k-vector spaces: A⊗Ae − and HomAe(A,−). Because of the tensor-hom adjunction,
we know that A⊗Ae − is right exact and HomAe(A,−) is left exact.

Definition 5.4. The i-th Hochschild homology of M is HHi(A,M) := TorAe

i (A,M),
i.e. the i-th left derived functor of A⊗Ae −. Similarly, the i-th Hochschild cohomology
of M is HHi(A,M) := ExtiAe(A,M), i.e. the i-th right derived functor of HomAe(A,−).
In both cases, we assemble these objects into graded5 k-vector spaces which we call the
Hochschild homology and cohomology of M :

HH∗(A,M) :=
⊕
i≥0

HHi(A,M) and HH∗(A,M) :=
⊕
i≥0

HHi(A,M).

Since A ⊗Ae − is already right exact, we have HH0(A,M) ∼= A ⊗Ae M ∼= M/[A,M ].
Similarly, HH0(A,M) = HomAe(A,M) is isomorphic to the space of A-invariants.

In order to calculate Hochschild homology of M , we begin with a projective reso-
lution for A in the category of right Ae-modules, i.e. an exact sequence of the form

· · · P2 P1 P0 A 0

4We need the assumption that the left and right actions of k on M commute, since k ⊗ 1 = 1 ⊗ k
in Ae.

5We see k as a graded ring concentrated in degree zero.
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where Pi is projective for each i. We then apply − ⊗Ae M to each term and truncate
the last one to get a complex

· · · P2 ⊗Ae M P1 ⊗Ae M P0 ⊗Ae M 0

whose homology is by definition HH∗(A,M). Taking an injective resolution of A by
left Ae-modules and applying HomAe(−,M) will give a complex with cohomology
HH∗(A,M).

If A is a graded ring with k ⊆ A0 and M is a graded A-bimodule, then we can see A
as a graded (k,Ae)-bimodule and M as a graded (Ae, k)-bimodule, so that A⊗Ae M is
already a graded k-vector space. In this case HH∗(A,−) is a functor from the category
of graded A-bimodules to the category of doubly graded k-vector spaces. Similarly,
HomAe(A,M) becomes a graded k-vector space and HH∗(A,M) is doubly graded.

The Koszul complex
For R a commutative ring, the theory of Koszul complexes gives a convenient way to
find free resolutions of R-modules of the form R/I for some special ideals I. This will
prove useful when computing the Hochschild homology of Bot–Samelson bimodules.

Definition 5.5. If x ∈ R, we define the Koszul complex of x to be

K(x) = 0 R R 0x

in homological degrees 1 and 0. If R is graded and x is homogeneous of degree d, we
make the middle map homogeneous of degree 0 by instead writing

K(x) = 0 R(−d) R 0.x

If x = (x1, . . . , xn) is a sequence of elements in R, then we define its Koszul complex
K(x) to be the tensor product

K(x1)⊗R K(x2)⊗R · · · ⊗R K(xn).

We say that a sequence x = (x1, . . . , xn) of elements of R is regular if xi is not a
zero divisor for R/(x1, . . . , xi−1) for each 1 ≤ i ≤ n. It can be shown [see 7, Corollary
4.5.5] that if x is regular, then K(x) is a free resolution of R/(x1, . . . , xn).

If we now set A = k[x1, . . . , xn] and R = Ae, it is an easy exercise to show that Ae

is a polynomial ring in the 2n variables x1 ⊗ 1, . . . , xn ⊗ 1, 1 ⊗ x1, . . . , 1 ⊗ xn. Then
x = (x1 ⊗ 1− 1⊗ x1, . . . , xn ⊗ 1− 1⊗ xn) is easily seen to be a regular sequence, and
R/x ∼= A. Hence, the Koszul complex K(x) is a free resolution for A. Explicitly, if we
write V for a k-vector space of dimension n and ΛiV for its i-th exterior power6, then
the resulting resolution can be written explicitly as

ΛnV ⊗k A
e · · · Λ2V ⊗k A

e V ⊗k A
e Ae A 0,µ (5.2)

where µ(a ⊗ b) = ab. In particular, we see that HHi(A,M) is trivial for i not in the
range 0 ≤ i ≤ n. This resolution satisfies a certain ‘self-duality’ that stems out of the

6For an introduction to exterior powers and the exterior algebra see for example [9, Chapter XIX].
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k-vector space isomorphisms (ΛiV )∗ ∼= Λd−iV , which can be used to prove a ‘Poincaré
duality’ result for polynomial algebras:

HHi(A,M) ∼= HHn−i(A,M).

It then follows that HH∗(A,M) is isomorphic to HH∗(A,M) up to a reflection of the
outermost grading.

Example 5.6. If A = k[x] is graded so that deg x = 2, then we have the resolution

0 k[x]e(−2) k[x]e k[x] 0,x⊗1−1⊗x µ

where the degree shift is added so that all maps are homogeneous of degree 0. Applying
−⊗k[x]e k[x] we get the complex

0 k[x](−2) k[x] 0,xl−xr

where xl, xr : k[x](−2) → k[x] are given by multiplication by x on the left and right,
respectively. Of course, since k[x] is commutative, xl = xr and hence the homology of
this complex is just k[x](−2) in degree 1 and k[x] in degree zero. Its graded rank as a
doubly graded k-module will be a Laurent series in two variables: if we write q for the
inner grading of each module and a for the Hochschild grading then

rkHH∗(k[x], k[x]) = (1 + aq−2) · rk k[x] = (1 + aq−2)(1 + q2 + q4 + · · · ) = 1 + aq−2

1− q2

Example 5.7. We can also use a Koszul complex to compute the Hochschild homology
of Bot–Samelson bimodules. The most basic case after the polynomial ring itself is the
bimodule Bs1 over R = k[y1]. Recall that Bs1 = R⊗Rs1R(1) by definition. Temporarily
ignoring the grading shift, R⊗Rs1 R can be seen as a quotient of Re = R⊗k R by the
ideal generated by the homogeneous element y21 ⊗1−1⊗y21. This element is not a zero
divisor for Re, so we have a free resolution

0 Re(−3) Re(1) Bs1 0.
y21⊗1−1⊗y21

Applying the functor R⊗Re − identifies the variables y1 ⊗ 1 and 1⊗ y1, which results
in a complex

0 R(−3) R(1) 0.0

Its homology, which we can simply read off the complex, is the Hochschild homology
of Bs1 , and its graded rank is

rkHH∗(R,Bs1) = (q + aq−3) · rkR = q + aq3

1− q2
.

5.3 Link homology

We are now ready to define the homology theory of links introduced in [11]. For this
last step, we specialise our field k to the rationals Q. Given a braid word α ∈ Bn of
length m, the corresponding Rouquier complex F (α) has m+ 1 nontrivial terms:

F (α) = · · · F j(α) F j+1(α) · · ·d d d .
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Now we apply Hochschild homology (or equivalently, cohomology) to each term to get
a complex of doubly graded Q-vector spaces

HH∗(R,F (α)) = · · · HH∗(R,F j(α)) HH∗(R,F j+1(α)) · · · .

Taking the homology of this complex then yields a triply graded Q-vector space which
we call HHH(α). The inner grading is the one introduced by each F j(α), the middle
is the Hochschild homology grading, and the outer one is the homology of the complex
HH∗(R,F (α)).

By construction, the resulting vector space is graded-free. Its graded rank is then
a Laurent series with positive coefficients in three variables, which we denote q, a and
t for the inner, middle and outer gradings, respectively. The Euler characteristic of
HHH(α) is then the Laurent series in q and a resulting from setting t = −1. Khovanov
then proved the following in [11]:

Theorem 5.8. Up to an overall grading shift, HHH(α) only depends on α̂, i.e. it is
an invariant of oriented links. Taking the Euler characteristic of HHH(α) gives the
HOMFLY-PT polynomial of Section 3 after some renormalisation.

We call HHH(α) the HOMFLY-PT homology of the link α̂. In order to show that
this only depends on α̂, we proceed as in Section 3: we check that it is invariant
under Markov moves of boh types. For moves of the first type, it suffices to show that
HH∗(R,MN) is isomorphic to HH∗(R,NM) for any graded R-bimodules M and N .

Lemma 5.9. The doubly graded Q-vector spaces HH∗(R,MN) and HH∗(R,NM) are
isomorphic.

Proof. It suffices to show that HHi(R,MN) ∼= HHi(R,NM) for each i. Note from
(5.2) that each term in the complex used to commute HHi(R,MN) is of the form
ΛiV ⊗Q (R ⊗Re MN). Hence, it would be enough to show that R ⊗Re MN and
R ⊗Re NM are naturally isomorphic. To begin with, we have four actions of R on M
and N : the left and right action on M and the left and right actions on M . This gives
for actions on M ⊗QN , and passing to the quotient M ⊗RN identifies the right action
on M and the left action on N . When we apply R ⊗Re − we identify the remaining
two actions. Meanwhile, N ⊗R M identifies the right action on N and the left action
on M , and then R ⊗Re NM identifies the remaining two actions. But this is exactly
what we did with R ⊗Re MN in the opposite order. This shows that the bijection
m⊗ n 7→ n⊗m induces an isomorphism HH∗(R,MN) → HH∗(R,NM).

Invariance under (M2) is harder to see. Since this involves a change in the number
of strands, we adopt the notation at the end of Section 4.2, and write I for the inclusion
of categories SBimn ↪→ SBimn+1. Given α ∈ Bn, we need to relate the complexes
HH∗(Rn, F (α)) and HH∗(Rn+1, IF (α)F±1

n ).
For simplicity, we only consider the case where α is the identity in B1. In this case,

R1 = Q and F (α) = 0 R1 0. The Hochschild homology of R1 is just R1 in
degree 0, so HHH(α) = Q with graded rank 1. Next, with R = R2 = Q[y1], we have
F1 = 0 Bs1 R(1) 0µ1 . From Example 5.7, we know what the Hochschild
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homology of each of these terms looks like. To find the maps induced by µ1 we write:

Re(−3) Re(−1)

Re(1) Re(1)

Bs1 R(1)

y1⊗1+1⊗y1

y21⊗1−1⊗y21 y1⊗1−1⊗y1

1

p µ

µ1

⇝

R(−3) R(−1)

R(1) R(1)

2y1

0 0

1

(5.3)

The lower complex has trivial homology. The upper one has trivial homology in
degree 0 and Q in degree 1, so HHH(σ1) = Q with graded rank taq−1. We in-
deed see that HHH(α) ∼= HHH(σ1) up to a shift in the grading. Lastly, we have
F−1
1 = 0 R(−1) Bs1 0η . In this case we have:

Re(−3) Re(−3)

Re(−1) Re(1)

R(−1) Bs1

1/2

y1⊗1−1⊗y1 y21⊗1−1⊗y21
(1⊗y1+y1⊗1)/2

µ p

(1⊗y1+y1⊗1)/2

⇝

R(−3) R(−3)

R(−1) R(1)

1/2

0 0
y1

The upper complex has trivial homology. The lower complex has trivial homology in
degree −1 and Q in degree 0. Hence, HHH(σ−1

1 ) = Q with graded rank 1. The general
case for α ∈ Bn involves n variables, but only the n-th produces a change to the
Hochschild homology, which causes the same effect to HHH as in this simple case. We
conclude that applying (M2) with positive exponent incurs in a degree shift of taq−1,
whereas a negative exponent does not affect the grading.

To see that taking the Euler characteristic recovers the HOMFLY-PT polynomial,
recall from Section 5.1 that the Euler characteristic of F (α) represents the image of
α in Hn. It is then enough to argue that taking Hochschild homology and then the
homology of the resulting complex categorifies the Ocneanu trace on the Hecke algebra.
But this exactly what we have shown, since after taking t = −1, the degree shift of
taq−1 corresponds to the multiplication by zv in Theorem 3.1. Therefore, going through
a renormalisation analogous to the one in Section 3 gives the same invariant of links.
Explicitly, we introduce an artificial grading shift variable w which is a square root of
taq−1 and for α ∈ Bn we set

H(α) = wn−1−e(α)HHH(α),

where e is the number of positive crossings minus the number of negative crossings
in α. This is invariant under both Markov moves, and hence is an invariant of links.
Moreover, after setting t = −1, it satisfies the familiar skein relation w−1H(L+) −
wH(L−) = (q−1−q)H(L0) of Theorem 3.3, confirming its relation with the HOMFLY-
PT polynomial.
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5.4 HOMFLY-PT homology of the (2, n)-torus link

As an example, we will demonstrate how to compute the link homology of σn
1 ∈ B2 for

n > 0, which represents the (2, n)-torus link. In general, computing HHH explicitly is
hard, but this case is small enough that it can be done using only elementary techniques,
such as Gaussian elimination. These results are succinctly stated at the end of [11],
which uses a different convention for Rouquier complexes. The detailed treatment here
will surely be worthwhile for the reader following our definition. To simplify notation,
we will write s := s1, B := Bs and R := Q[y]. Given the isomorphism R ∼= Rs⊕Rs(−2)
of Proposition 4.1, we write π and τ for the projections onto the first and second direct
summand, respectively. Explicitly, this is

π(f) = f + s(f)
2 and τ(f) = f − s(f)

2y .

We note that π(fy) = y2τ(f) and τ(fy) = π(f). The injection Rs ↪→ R is the
inclusion, and Rs(−2) ↪→ R is multiplication by y. With this notation, we can write
the isomorphism BB ∼= B(1) ⊕ B(−1) of Proposition 4.7 explicitly: for a ⊗ b ⊗ c ∈
R⊗RsR⊗RsR(2) ∼= BB, the projections onto the first and second factors give aπ(b)⊗c =
a⊗π(b)c and aτ(b)⊗ c = a⊗ τ(b)c, respectively. The injection B(1) ↪→ BB sends 1⊗1
to 1⊗ 1⊗ 1, and B(−1) ↪→ BB sends 1⊗ 1 to 1⊗ y ⊗ 1.

Proposition 5.10. The complex F (σn
1 ) is homotopy equivalent to Gn given by

B(1− n) B(3− n) · · · B(n− 3) B(n− 1) R(n),dn−1 dn−2 d2 d1 µ

where µ(a⊗ b) = ab and di = yr + (−1)iyl, with yl and yl being multiplication by y on
the left and right, respectively.

Proof. We proceed by induction on n. The n = 1 case is true by definition. Now
F (σn+1

1 ) = F (σn
1 )F1, which by the induction hypothesis is homotopy equivalent GnF1:

BB(1− n) BB(3− n) · · · BB(n− 1) B(n)

⊕ ⊕

B(2− n) B(4− n) · · · B(n) R(n+ 1)

dn−1⊗1

1⊗µ

dn−2⊗1

−1⊗µ

d1⊗1 µ⊗1

(−1) n−1⊗µ

(−1) n
µ

dn−1 dn−2 d1 µ

We focus on the first three terms of the complex. Using the isomorphism of Proposition
4.7, we can rewrite this as

B(2− n)⊕B(−n) BB(3− n)⊕B(2− n) BB(5− n)⊕B(4− n),D

where D is given by(
(1⊗ y + (−1)n−1y ⊗ 1)⊗ 1 (1⊗ y2 + (−1)n−1y ⊗ y)⊗ 1

1 yr

)
.

Since the bottom-left entry is the identity, we can use simplify this complex using
Gaussian elimination. The remaining map B(−n) → BB(3− n) sends 1⊗ 1 to

f := 1⊗ y2 ⊗ 1 + (−1)n−1y ⊗ y ⊗ 1− 1⊗ y ⊗ y − (−1)n−1y ⊗ 1⊗ y.
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The beginning of our complex is now simplified to

B(−n) BB(3− n) BB(5− n) · · ·

⊕

B(4− n) · · · .

f dn−2⊗1

−1⊗µ

dn−3⊗1

dn−2

Ignoring the first term, we have exactly the complexGn−1(−F1), where−F1 denotes the
complex F1 with all differentials negated. Of course, −F1 ≃ F1 and then Gn−1(−F1) ≃
Gn−1F1. By induction, this complex can be simplified using Gaussian elimination to
produce Gn. We must however study how f is changed after the next step of Gaussian
elimination. For this, it suffices to write f as a map B(−n) → B(4 − n) ⊕ B(2 − n)
using the projection formulas above:(

1⊗ y2 − (−1)n−1y ⊗ y
(−1)n−1y ⊗ 1− 1⊗ y

)
.

After eliminating the B(4 − n) component, we are left with the map given by the
second row, which is precisely (−1)n−1yl − yr. Since multiplying a differential by an
invertible scalar does not change the homotopy class of a complex, we can change this
to yr − (−1)nyl, which is indeed the leftmost map in Gn+1.

Since Hochschild homology is an additive functor, it preserves chain homotopies and
homotopy equivalences. As homotopy equivalent complexes have the same homology,
this allows us to compute HHH(σn

1 ) using, instead of F (σn
1 ), the much simpler complex

Gn. In fact, the Hochschild homology of Gn is easy to compute. The last differential
(or a grading shift of it) was computed in (5.3). The remaining ones are the subject of
the following proposition.

Proposition 5.11. The Hochschild homology of B(m) B(m+ 2)yr±yl is

R(m− 3) R(m− 1)
⊕ ⊕

R(m+ 1) R(m+ 3).

y±y

y±y

Proof. We proceed as with the proof of invariance under (M2), using the Koszul reso-
lution of B:

Re(m− 3) Re(m− 1)

Re(m+ 1) Re(m+ 3)

B(m) B(m+ 2)

1⊗y±y⊗1

y2⊗1−1⊗y2 y2⊗1−1⊗y2

1⊗y±y⊗1

p p

yr±yl

Applying R⊗Re − to the four upper terms gives the claimed result.
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It is now easy to compute HHH(σn
1 ). The Hochschild homology complex splits into

the direct sum of two complexes in Hochschild degree 0 and 1. The degree 0 complex
is

R(2− n) · · · R(n− 4) R(n− 2) R(n) R(n).y+(−1)n−1y 0 2y 0 1

If n is even, this has homology Q[y]/(2y) ∼= Q in even degrees between 1 and n − 1,
and Q[y] in degree 0. If n is odd, then it has homology Q in odd degrees between 1
and n− 1. Similarly, the degree 1 complex is

R(−2− n) · · · R(n− 6) R(n− 4) R(n− 2).y+(−1)n−1y 2y 0 2y

If n is even, it has homology Q in even degrees between 1 and n, and Q[y] in degree 0.
If n is odd, then it has homology Q in odd degrees between 0 and n. We summarise
our results in the following theorem.

Theorem 5.12. For n > 0, HHH(σn
1 ) has graded-rank

atq−n + (t+ at3)(q4−n + t2q8−n + · · ·+ tn−5qn−6 + tn−3qn−2)

if n is odd, and

aq−2−n + q2−n

1− q2
+ at2q2−n + (t2 + at4)(q6−n + t2q10−n + · · ·+ tn−6qn−6 + tn−4qn−2)

if n is even. In particular, for odd n, the (2, n)-torus knot has ungraded homology Qn.

6 Conclusion
As outlined earlier, we have seen how the HOMFLY-PT polynomial can be defined as a
trace on the Hecke algebra, and how each of these elements can be categorified to give
a homology theory for links. In order to do this, we employed the theory of Soergel
bimodules, which were first introduced to answer a question relating Lie theory to the
Kazhdan–Lusztig polynomials. We saw how these bimodules categorify the Kazhdan–
Lusztig basis of the Hecke algebra. However, since the Ocneanu trace was defined on
the standard basis instead, we needed to pass to the homotopy category of Rouquier
complexes, which categorifies the latter basis. Lastly, we saw how Hochschild homology
followed by homology of complexes plays the role of the trace on the Hecke algebra.
We concluded with a detailed computation of the homology of the (2, n)-torus link.

The interested reader is directed to [15], where more sophisticated techniques are
developed to compute the HOMFLY-PT homology of a larger class of torus links. In
[14], HHH is related to earlier link homology theories that categorify quantum link
invariants through a spectral sequence. This is then used to prove that, for certain
knots, HHH is determined by the HOMFLY-PT polynomial and the signature, which
in particular allows the computation of HHH for all knots with 9 crossings or fewer.
Much remains to be understood about HOMFLY-PT homology. It is conjectured [18]
that HHH is related to the algebraic geometry of certain schemes. Work in this direction
can be found in [16], where a recursive formula is given to compute the HOMFLY-PT
homology of the (m,n)-torus link for m,n ≥ 0.
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A Overview of graded objects
We give some brief definitions of graded objects, mostly to settle the notation used. The
words module, ideal, etc. are used in their left-handed variant. Of course everything is
still true for the right-handed variants with the obvious modifications. For generality,
we let I be an ordered commutative monoid.

An I-graded ring R is a ring with a decomposition R =
⊕

i∈I R
i as abelian groups,

such that RiRj ⊆ Ri+j (i.e. for all x ∈ Ri and y ∈ Rj one has xy ∈ Ri+j). We call
an element of Ri homogeneous of degree i. For example, if k is any commutative ring
then k[x1, . . . , xn] is N-graded, where the homogeneous elements of degree i are the
monomials in x1, . . . , xn of degree i.

For R an I-graded ring, a graded R-module M is an R-module with a decomposition
M =

⊕
i∈I M

i as abelian groups, such that RiM j ⊆ M i+j . As with rings, we call the
elements of M i homogeneous of degree i. If M is a graded R-module and n ∈ I,
we define M(n) to be the graded R-module where M(n)i = Mn+i. For example, if
x ∈ M is homogeneous of degree n, then x ∈ M(n) is homogeneous of degree 0. A
submoduleN ≤ M is a graded submodule if it is generated by its homogeneous elements,
equivalently if it is a graded R-module in its own right and N i = N ∩M i. An ideal of R
is homogeneous if it is a graded submodule of R over it self. If N is a graded submodule,
then M/N can be given a grading by setting (M/N)i = (M i +N)/N ∼= M i/N i.

If S is another I-graded ring then a graded (R,S)-bimodule is an (R,S)-bimodule
that is an R-graded module on the left and an S-graded module on the right, i.e.
RiM j ⊆ M i+j and M iSj ⊆ M i+j . We require that the left an right actions commute,
i.e. (rm)s = r(ms) for all r ∈ R, s ∈ S and m ∈ M .

If {Mα | α ∈ A} is an indexed family of graded R-modules, we give the direct sum
M ′ =

⊕
α∈AMα a grading by setting (M ′)i =

⊕
α∈AM i

α. Given a function p : I → N
we define

M⊕p =
⊕
i∈I

M(i)⊕p(i).

We say that N is a direct summand of M if there exists another graded R-module
P such that M ∼= N ⊕ R as graded R-modules. A graded-free R-module M is one
with a basis consisting of homogeneous elements. For any mi in this basis, we have an
isomorphism R(−degmi) → Rmi ⊆ M given by r 7→ rm. If the basis is finite, then
we have an isomorphism M ∼= R⊕p where p(k) is the number of mi of degree −k. In
this case, we say that p is the graded rank of M and write rkM = p.

If M and N are graded R-modules, an R-linear map M → N is homogeneous of
degree n if it sends M i to N i+n for each i. Note that a homogeneous map M → N of
degree n is the same as a homogeneous map M → N(n) (or M(−n) → N) of degree 0.
The homogeneous maps of degree 0 form an R0-module which we denote HomR(M,N).
The space of homogeneous maps of any degree is a graded R-module via

Hom•
R(M,N) =

⊕
i∈I

HomR(M,N(i)).

If M is a graded (R,S)-bimodule and N is a graded (S, T )-bimodule, their tensor
product over S is a graded (R, T )-bimodule with grading

(M ⊗S N)k =
〈
m⊗ n

∣∣∣ m ∈ M i, n ∈ N j , i+ j = k
〉
Z
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where ⟨S⟩Z denotes the abelian subgroup generated by S. For example, if m ∈ M i and
n ∈ N j then m ⊗ n is homogeneous of degree i + j in M ⊗R N . It follows from this
definition that M(n)⊗R N , M ⊗R N(n) and (M ⊗R N)(n) have the same grading, so
they are equal as graded (R, T )-bimodules.

If I = Zn for some positive integer n, then the rank of a graded-free module is a
Laurent series in n variables with positive coefficients. We will be interested in graded
rings and modules with I = Z,Z2 and Z3. From now on, we will simply say ‘graded’
to mean Z-graded, ‘doubly graded’ to mean Z2-graded and ‘triply graded’ to mean
Z3-graded. We will build triply graded modules by adding one Z-grading at time, so
that we talk about an ‘inner’, ‘middle’ and ‘outer’ grading.

The following results are Z-graded versions of Nakayama’s lemma for commutative
rings that we shall find useful. If R is a graded ring (not necessarily commutative),
then the set R+ =

⊕
i>0R

i is a two-sided homogeneous ideal. For the remainder of
this section, we assume M is a finitely generated graded R-module. In fact, this is
equivalent to saying that M is generated by a finite set of homogeneous elements.

Lemma A.1. If a ⊆ R+ is a homogeneous left ideal of R such that aM = M , then
M = 0.

Proof. Since a ⊆ R+, any homogeneous element of a must have degree at least 1.
If M ̸= 0, since it is finitely generated, it must have some homogeneous element m
of minimal degree. But then all homogeneous elements of aM have degree at least
degm+ 1, so m /∈ aM .

Corollary A.2. With a as above and N a graded submodule of M , M = N + aM
implies N = M .

Proof. We have a(M/N) = (N + aM)/N = M/N , so M/N = 0 by the previous
lemma.

Corollary A.3. If R0 is a field, and m1, . . . ,mn are homogeneous elements of M such
that m1, . . . ,mn form a basis of the R0-vector space M/R+M , then m1, . . . ,mn is a
minimal generating set for M .

Proof. Let N be the graded submodule of M generated by m1, . . . ,mn and let π be
the quotient map M → M/R+M . By assumption π(N) = M , so M = N + R+M
and by the previous corollary N = M . A generating set with fewer elements would
give a spanning set for M/R+M with fewer than n elements, which contradicts the
assumption that M/R+M is n-dimensional.

Proposition A.4. If R0 is a field and N is a direct summand of a graded-free R-module
M of finite graded rank, then N is graded-free of finite graded rank.

Proof. Let π : M → N and ι : N → M be the projection and injection, so that
πι = idN . By the previous corollary, we may take n1, . . . , nk to be a minimal generating
set for N consisting of homogeneous elements. Let F =

⊕k
i=1R(−degni) and consider

consider the degree-0 homogeneous surjection p : F → N given by ei 7→ mi. Since
M is free (and hence projective) we have a map q : M → F such that pq = π. Then
qι : N → F splits p because pqι = πι = idN . This shows that we have a split exact
sequence

0 ker p F N 0,p
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so F ∼= N ⊕ ker p. Then p descends to a map p : F/R+F → N/R+N that sends
ei 7→ mi. This is an isomorphism of R0-vector spaces so 0 = ker p ⊇ ker p+ R+F and
then ker p ⊆ R+F . Therefore

F = qι(N) + ker p ⊆ qι(N) +R+F ⊆ F,

so F = qι(N) ∼= N by Corollary A.2.

B Introduction to complexes and the homotopy category
Given an additive category A, we write C(A) for category of cochain complexes in
A. An object in C(A) is a sequence (Ai, di)i∈Z where Ai is an object of A and di :
Ai → Ai+1 are such that di+1di = 0 for all i ∈ Z. We will often abbreviate such an
object as (A, dA) or A. A morphism in C(A) from (A, dA) to (B, dB) is a sequence
(f i : Ai → Bi)i∈Z such that diBf i = f i+1diA for each i ∈ Z. The category C(A) has a
cohomological shift automorphism [1] given by

(A[1])i = Ai+1 and diA[1] = −di+1
A ,

for an object A and (f [1])i = f i+1 for a morphism f : A → B.
For each pair of objects A and B in C(A), we define an equivalence relation on

the set of morphisms A → B by f ≃ g if there exists a sequence of morphisms (hi :
Ai → Bi−1)i∈Z such that f i − gi = hi+1diA + di−1

B hi. We say f and g are homotopic
if f ≃ g and call such a h a homotopy. One can show that f ≃ g implies hf ≃ hg
and fk ≃ gk whenever the composites are defined, so that we can form the quotient
category K(A) := C(A)/ ≃. Its objects are complexes in A and its morphisms are
homotopy classes of morphisms in C(A). We say that two complexes A and B are
homotopy equivalent, denoted A ≃ B, if they are isomorphic in K(A). Explicitly,
A ≃ B if there are morphisms f : A → B and g : B → A in C(A) such that gf ≃ idA
and fg ≃ idB. If two complexes are homotopy equivalent then they have the same
homology. We say A is contractible if A ≃ 0.

Definition B.1. For a morphism f : A → B in C(A), its mapping cone is the complex
Cone(f) with

Cone(f)i = Ai+1 ⊕Bi and diCone(f) =
(
diA[1] 0
f [1]i diB

)
=
(
−di+1

A 0
f i+1 diB

)
.

It is an easy exercise to show that f ≃ 0 if and only if Cone(f) is contractible.

Denote by Cb(A) (resp. Kb(A)) the full subcategory of C(A) (resp. K(A)) on
bounded complexes, i.e. A such that Ai = 0 for all but finitely many i ∈ Z. If A is
monoidal, then so are Cb(A) and Kb(A):

Definition B.2. If A is an additive monoidal category, we define the tensor product
of two complexes A,B ∈ Cb(A) by

(A⊗B)n =
⊕

i+j=n

Ai ⊗Bj and dn(a⊗ b) = diA(a)⊗ b+ (−1)ia⊗ djB(b),

where a ∈ Ai and b ∈ Bj with i + j = n. Given maps f : A → C and g : B → D, we
have a map f⊗g : A⊗B → C⊗D given by the components f i⊗gj , i.e. (f⊗g)n(a⊗b) =
f i(a)⊗ gj(b) for i+ j = n, a ∈ Ai and b ∈ Bj .
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Note that the (−1)i term is needed so that the resulting sequence is still a complex.
An alternative way of viewing this construction is through the following double complex:

...
...

...

· · · A0 ⊗B0 A1 ⊗B0 A2 ⊗B0 · · ·

· · · A0 ⊗B1 A1 ⊗B1 A2 ⊗B1 · · ·

· · · A0 ⊗B2 A1 ⊗B2 A2 ⊗B2 · · ·

...
...

...

1⊗dB −1⊗dB 1⊗dB

dA⊗1 dA⊗1

1⊗dB

dA⊗1

−1⊗dB

dA⊗1

1⊗dB

dA⊗1 dA⊗1

1⊗dB

dA⊗1

−1⊗dB

dA⊗1

1⊗dB

dA⊗1 dA⊗1

1⊗dB

dA⊗1

−1⊗dB

dA⊗1

1⊗dB

Then A ⊗ B is given by taking direct sums along the diagonals Ai ⊗ Bj with i + j
constant. Looking at tensor products of complexes this way can be enlightening: for
example taking the tensor product of m complexes of the form 0 → A → B → 0 has
the structure of an m-dimensional hypercube.

Proposition B.3. If h is a homotopy between two maps f, g : B → C, then h̃ is a
homotopy between 1⊗ f, 1⊗ g : A⊗B → A⊗ C, where

h̃n(a⊗ b) = (−1)ia⊗ hn(b)

if i+ j = n, a ∈ Ai and b ∈ Bj. Similarly, f ⊗1, g⊗1 : B⊗A → C⊗A are homotopic.

Proof. With n, i, j, a and b as above, we have

h̃n+1dn(a⊗ b) + dn−1h̃n(a⊗ b)
= h̃n+1[dia⊗ b+ (−1)ia⊗ djb] + (−1)idn−1(a⊗ hjb)
= (−1)i+1dia⊗ hjb+ (−1)2ia⊗ hj+1djb+ (−1)idia⊗ hjb+ (−1)2ia⊗ dj−1hjb

= a⊗ (hj+1djb+ dh−1hjb)
= a⊗ (fb− gb).

The second statement is similar, with homotopy ĥ given by ĥn(b⊗ a) = hj(b)⊗ a.

It follows that if f1, g1 : A1 → B1 and f2, g2 : A2 → B2 are homotopic, then

f1 ⊗ f2 = (f1 ⊗ 1)(1⊗ f2) ≃ (g1 ⊗ 1)(1⊗ g2) = g1 ⊗ g2.

Moreover, if f and g are inverse homotopy equivalences between A and C, and f ′ and
g′ are inverse homotopy equivalences between B and D, then

gf ⊗ g′f ′ ≃ idA ⊗ idB = idA⊗B and fg ⊗ f ′g′ ≃ idC ⊗ idD = idC⊗D.
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It follows that A⊗B ≃ C⊗D whenever A ≃ C and B⊗D, so that the tensor product
of complexes is well-defined in Kb(A), making it a monoidal category.

The following lemma is often useful for reducing a complex into a simpler, homotopy
equivalent one.

Lemma B.4 (Gaussian elimination). A complex of the form

A = · · · Ai−1 Ãi ⊕X Ãi+1 ⊕ Y Ai+2 · · · ,
(a
b

) (c d
e φ

)
(f g)

where φ : X → Y is an isomorphism, is homotopy equivalent to the complex

Ã = · · · Ai−1 Ãi Ãi+1 Ai+2 · · · .a c−dφ−1e f

Proof. Let B be the complex X Y
φ , with X in degree i. Since φ is an isomorphism,

the map φ−1 gives a homotopy idB ∼= 0, showing that B is contractible. It is then
enough to show that A ∼= Ã⊕B, since Ã⊕B ≃ Ã. We have:

Ai−1 Ãi ⊕X Ãi+1 ⊕ Y Ai+2

Ai−1 Ãi ⊕X Ãi+1 ⊕ Y Ai+2

(a
b

)
1

(c d
e φ

)
( 1 0
φ−1e 1

)
(f g)

(1 −dφ−1

0 1
)

1

( a
b+φ−1ea

) (c−dφ−1e 0
0 φ

)
( 1 0
−φ−1e 1

)
(f g+fdφ−1)

(1 dφ−1

0 1
)

Since A is a complex, we have φb + ea = 0 and gφ + fd = 0, and then b + φ−1ea = 0
and g + fdφ−1 = 0, so that the bottom complex is exactly Ã⊕B.

In fact, one can prove that if all idempotents split in A then a complex in Cb(A) is
contractible if and only if it is a finite direct sum of complexes of the form 0 → A →
B → 0, where the middle map is an isomorphism [17, Lemma 19.13]. We say that a
complex is minimal if it has no contractible summands, i.e. it cannot be simplified
using Gaussian elimination.
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