Pushing monads forward

Adrián Doña Mateo 15 Apr 2024

 ${\sf University} \,\, {\sf of} \,\, {\sf Edinburgh} \,\,$

Table of Contents

1. Pushforward monads

2. Pushing forward along $FinSet \hookrightarrow Set$

3. The codensity monad of $\textbf{Field} \hookrightarrow \textbf{Ring}$

Pushforward monads

Pushing a monad forward along a functor

Let T be a monad on $\mathcal C$ and $G\colon \mathcal C\to \mathcal D$. Under what conditions do we get a monad on $\mathcal D$?

Pushing a monad forward along a functor

Let T be a monad on $\mathcal C$ and $G\colon \mathcal C\to \mathcal D$. Under what conditions do we get a monad on $\mathcal D$?

Well-known answer

If $F \dashv G$, then GTF is a monad on \mathcal{D} .

If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.

Pushing a monad forward along a functor

Let T be a monad on $\mathcal C$ and $G\colon \mathcal C\to \mathcal D$. Under what conditions do we get a monad on $\mathcal D$?

Well-known answer

If $F \dashv G$, then GTF is a monad on \mathcal{D} .

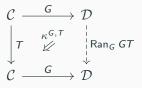
If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.

Little-known answer

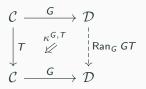
If a certain Kan extension exists, then we get a monad on \mathcal{D} .

Even when $G:\mathcal{C}\to\mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.

Even when $G: \mathcal{C} \to \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.



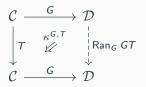
Even when $G: \mathcal{C} \to \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.



Definition

The **pushforward** of T along G is $G_*T := Ran_G GT$, when the latter exists.

Even when $G: \mathcal{C} \to \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.



Definition

The **pushforward** of T along G is $G_*T := Ran_G GT$, when the latter exists.

This comes with a monad structure, which I will now describe.

The monad structure

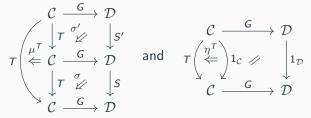
We have a strict monoidal category $\mathcal{K}(G,T)$, where objects are pairs (S,σ) fitting into a diagram

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{G} & \mathcal{D} \\ \tau \Big| & \stackrel{\sigma}{\swarrow} & \Big| s \\ \mathcal{C} & \xrightarrow{G} & \mathcal{D} \end{array}$$

and a morphism $(S, \sigma) \to (S', \sigma')$ is a natural transformation $\alpha \colon S \Rightarrow S'$ such that $\sigma = \sigma' \circ \alpha G$.

The monad structure

The monoidal product of (S, σ) and (S', σ') and the monoidal unit are



The monad structure

The monoidal product of (S, σ) and (S', σ') and the monoidal unit are

$$\begin{array}{c|cccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow \tau & \swarrow & \downarrow s' & & \mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow \tau & \swarrow & \downarrow s & & & \mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow \tau & \swarrow & \downarrow s & & & \mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow \tau & \swarrow & \downarrow s & & & \mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

 $\operatorname{Ran}_G GT$ is, by definition, the terminal object of $\mathcal{K}(G,T)$, and hence it has a unique monoid structure. This gives it a canonical monad structure.

Reconciling with the adjunction situation

Proposition

If G has a left adjoint F, then $G_*T = GTF$.

Reconciling with the adjunction situation

Proposition

If G has a left adjoint F, then $G_*T = GTF$.

Proof sketch. This follows from the fact that right Kan extending along a right adjoint is the same as precomposing with the left adjoint:

$$G_*T = Ran_G GT = GTF$$

Some easy examples

Recall the limit formula for a right Kan extension:

$$(Ran_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Some easy examples

Recall the limit formula for a right Kan extension:

$$(Ran_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

• Let $G: \mathbf{0} \to \mathcal{D}$ and \mathcal{D} have a terminal object $\mathbb{1}$. Then G_*1 is constant at $\mathbb{1}$ with its unique monad structure.

Some easy examples

Recall the limit formula for a right Kan extension:

$$(Ran_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

- Let $G: \mathbf{0} \to \mathcal{D}$ and \mathcal{D} have a terminal object $\mathbb{1}$. Then G_*1 is constant at $\mathbb{1}$ with its unique monad structure.
- Let $d: \mathbf{1} \to \mathcal{D}$ and \mathcal{D} have powers. Then A_*1 is the endomorphism monad of d, given by $d' \mapsto [\mathcal{D}(d', d), d]$.

Definition

For any functor $G \colon \mathcal{C} \to \mathcal{D}$, if $G_*1_{\mathcal{C}}$ exists, it is called the **codensity monad** of G.

Definition

For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G_*1_{\mathcal{C}}$ exists, it is called the **codensity monad** of G.

Many codensity monads have been studied in the literature.

Examples

g

Definition

For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G_*1_{\mathcal{C}}$ exists, it is called the **codensity monad** of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of $\mathbf{Vect}_k^{\mathrm{fd}} \hookrightarrow \mathbf{Vect}_k$ is the *double* dualisation monad.

Definition

For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G_*1_{\mathcal{C}}$ exists, it is called the **codensity monad** of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of $\mathbf{Vect}_k^{\mathsf{fd}} \hookrightarrow \mathbf{Vect}_k$ is the *double* dualisation monad.
- The codensity monad of FinGrp

 Grp is the profinite completion monad, whose algebras are profinite groups.

The comparison transformation $\kappa^{G,T}\colon G_*T\circ G\to GT$ of the Kan extension gives a functor $K^{G,T}$ making the following square commute

$$\begin{array}{ccc}
\mathcal{C}^{T} & \xrightarrow{K^{G,T}} \mathcal{D}^{G_{*}T} \\
\downarrow U^{T} & \downarrow U^{G_{*}T} \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

We can hence see $K^{G,T}$ as an arrow in **CAT**/ \mathcal{D} .

The comparison transformation $\kappa^{G,T}\colon G_*T\circ G\to GT$ of the Kan extension gives a functor $K^{G,T}$ making the following square commute

$$\begin{array}{ccc}
\mathcal{C}^{T} & \xrightarrow{K^{G,T}} \mathcal{D}^{G_{*}T} \\
\downarrow U^{T} & & \downarrow U^{G_{*}T} \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}$$

We can hence see $K^{G,T}$ as an arrow in **CAT**/ \mathcal{D} .

Recall that we have a functor $\mathbf{Alg} \colon \mathbf{Mnd}(\mathcal{D})^{\mathrm{op}} \to \mathbf{CAT}/\mathcal{D}$, which sends a monad S on \mathcal{D} to its category of algebras, \mathcal{D}^S . Then:

Theorem

 $K^{G,T}$ is a universal arrow from GU^T to **Alg**.

Theorem (continued)

More explicitly, we have an isomorphism, natural in S,

$$\mathsf{Mnd}(\mathcal{D})(S, G_*T) \cong (\mathsf{CAT}/\mathcal{D}) \left(\begin{array}{cc} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{GU^T} & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{array} \right)$$

sending θ to $\mathbf{Alg}(\theta) \circ K^{G,T}$. Hence, U^{G_*T} is the universal monadic replacement of GU^T .

Theorem (continued)

More explicitly, we have an isomorphism, natural in S,

$$\mathsf{Mnd}(\mathcal{D})(S,G_*T) \cong (\mathsf{CAT}/\mathcal{D}) \left(\begin{array}{cc} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{GU^T} & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{array} \right)$$

sending θ to $Alg(\theta) \circ K^{G,T}$. Hence, U^{G_*T} is the *universal* monadic replacement of GU^T .

Putting $G \mapsto GU^T$ and $T \mapsto 1$ in the last sentence, we get:

Corollary

 $G_*T\cong (GU^T)_*1$, i.e. G_*T is the codensity monad of UG^T .

Some functoriality properties

Proposition

If G_*T exists for all $T \in \mathbf{Mnd}(\mathcal{C})$, then G_* becomes a functor $\mathbf{Mnd}(\mathcal{C}) \to \mathbf{Mnd}(\mathcal{D})$.

This is the case, for example, if $\mathcal C$ is small and $\mathcal D$ is complete.

Some functoriality properties

Proposition

If G_*T exists for all $T \in \mathbf{Mnd}(\mathcal{C})$, then G_* becomes a functor $\mathbf{Mnd}(\mathcal{C}) \to \mathbf{Mnd}(\mathcal{D})$.

This is the case, for example, if C is small and D is complete.

If we further have $H: \mathcal{D} \to \mathcal{E}$, then:

Proposition

If H preserves limits, or if G is a right adjoint, then

$$(HG)_*T\cong H_*(G_*T),$$

and both of these conditions are sharp.

Consider the following endofunctors of **Set**:

• For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.

Consider the following endofunctors of **Set**:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.

Consider the following endofunctors of **Set**:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.
- \bullet The covariant powerset functor ${\cal P}$ has a monad structure, whose algebras are complete lattices.

Consider the following endofunctors of **Set**:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.
- \bullet The covariant powerset functor ${\cal P}$ has a monad structure, whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to monads on **FinSet**, which we denote $P_E^{\rm f}$, $A_M^{\rm f}$ and $\mathcal{P}^{\rm f}$, respectively.

Let i: **FinSet** \hookrightarrow **Set** denote the obvious inclusion. What is i_*T^f , for T^f each of the monads in the previous slide?

Let $i: \mathbf{FinSet} \hookrightarrow \mathbf{Set}$ denote the obvious inclusion. What is i_*T^f , for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \to T^f$. Using the functoriality of i_* , get a map of monads $i_*1 \to i_*T^f$.

Let i: **FinSet** \hookrightarrow **Set** denote the obvious inclusion. What is i_*T^f , for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \to T^f$. Using the functoriality of i_* , get a map of monads $i_*1 \to i_*T^f$. Recall that $U := i_*1$ is the **ultrafilter monad**, whose algebras are compact Hausdorff spaces.

Pushing forward along FinSet \hookrightarrow Set

Let $i: \mathbf{FinSet} \hookrightarrow \mathbf{Set}$ denote the obvious inclusion. What is i_*T^f , for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \to T^f$. Using the functoriality of i_* , get a map of monads $i_*1 \to i_*T^f$. Recall that $U := i_*1$ is the **ultrafilter monad**, whose algebras are compact Hausdorff spaces.

Moreover, each T^f is the restriction of a monad T on \mathbf{Set} , which gives a map of monads $T \to i_* T^f$.

Pushing forward along FinSet \hookrightarrow Set

Let $i: \mathbf{FinSet} \hookrightarrow \mathbf{Set}$ denote the obvious inclusion. What is $i_* T^f$, for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \to T^f$. Using the functoriality of i_* , get a map of monads $i_*1 \to i_*T^f$. Recall that $U := i_*1$ is the **ultrafilter monad**, whose algebras are compact Hausdorff spaces.

Moreover, each T^f is the restriction of a monad T on **Set**, which gives a map of monads $T \to i_* T^f$.

Intuition

Thus, i_*T^f -algebras have an underlying T-algebra structure and compact Hausdorff topology, which are compatible in some way.

Proposition

U preserves finite coproducts. In particular,

$$UP_E \cong P_E U$$
 and $UA_M \cong A_M U$.

Moreover, these isomorphisms are distributive laws.

Proposition

U preserves finite coproducts. In particular,

$$UP_E \cong P_E U$$
 and $UA_M \cong A_M U$.

Moreover, these isomorphisms are distributive laws.

This makes UP_E and UA_M monads on **Set**, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.

Proposition

U preserves finite coproducts. In particular,

$$UP_F \cong P_F U$$
 and $UA_M \cong A_M U$.

Moreover, these isomorphisms are distributive laws.

This makes UP_E and UA_M monads on **Set**, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for $i_*P_E^f$ and $i_*A_M^f$ -algebras!

Theorem

We have isomorphisms of monads

$$i_*P_E^f\cong UP_E$$
 and $i_*A_M^f\cong UA_M$.

Theorem

We have isomorphisms of monads

$$i_*P_E^f\cong \mathit{UP}_E$$
 and $i_*A_M^f\cong \mathit{UA}_M.$

Proof sketch. A general construction gives a transformation $\alpha \colon UP_E \to i_*P_E^{\mathsf{f}}$. For $X \in \mathbf{Set}$, this is

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N,$$

where, for $f: X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E f}$.

Theorem

We have isomorphisms of monads

$$i_*P_E^f\cong \mathit{UP}_E$$
 and $i_*A_M^f\cong \mathit{UA}_M.$

Proof sketch. A general construction gives a transformation $\alpha \colon UP_E \to i_*P_E^f$. For $X \in \mathbf{Set}$, this is

$$\alpha_X: \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N,$$

where, for $f: X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E f}$. We will construct an inverse for α_X .

Proof sketch.

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N.$$

For $f: X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E f}$. We will construct an inverse for α_X .

Proof sketch.

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N.$$

For $f: X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E f}$. We will construct an inverse for α_X .

Given $x \in i_*P_F^f X$, consider the diagram

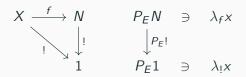
We see that $\lambda_f x \in E$ iff $\lambda_! x \in E$.

Proof sketch.

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N.$$

For $f: X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E f}$. We will construct an inverse for α_X .

Given $x \in i_*P_E^f X$, consider the diagram



We see that $\lambda_f x \in E$ iff $\lambda_! x \in E$. Hence, either x is constant at $\lambda_! x \in E$, or x can be seen as an element of UX. This gives an element of $P_E UX \cong UP_E X$.

The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P} . But there is a well known monad on **Set** that restricts to \mathcal{P}^f on **FinSet**, the filter monad F.

The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P} . But there is a well known monad on **Set** that restricts to \mathcal{P}^f on **FinSet**, the filter monad F. This gives us a map $F \to i_* \mathcal{P}^f$, and:

Theorem

This map is an isomorphism of monads $F \cong i_* \mathcal{P}^f$.

The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P} . But there is a well known monad on **Set** that restricts to \mathcal{P}^f on **FinSet**, the filter monad F. This gives us a map $F \to i_* \mathcal{P}^f$, and:

Theorem

This map is an isomorphism of monads $F \cong i_* \mathcal{P}^f$.

The algebras for *F* are *continuous lattices*, which are a certain kind of complete lattices with a compatible compact Hausdorff topology.

The codensity monad of Field → Ring

For this last section, let i: **Field** \rightarrow **Ring** be the obvious inclusion, and let $K := i_*1$ be its codensity monad.

For this last section, let $i: \mathbf{Field} \to \mathbf{Ring}$ be the obvious inclusion, and let $K:=i_*1$ be its codensity monad. Recall that i is famously **not monadic** (since, for instance, **Field** doesn't have products). Our general theory tells us that U^K is its monadic replacement.

For this last section, let $i: \mathbf{Field} \to \mathbf{Ring}$ be the obvious inclusion, and let $K:=i_*1$ be its codensity monad. Recall that i is famously **not monadic** (since, for instance, **Field** doesn't have products). Our general theory tells us that U^K is its monadic replacement.

For $R \in \mathbf{Ring}$, we have

$$KR = \lim_{R \to k} k.$$

For this last section, let i: **Field** \rightarrow **Ring** be the obvious inclusion, and let $K := i_*1$ be its codensity monad. Recall that i is famously **not monadic** (since, for instance, **Field** doesn't have products). Our general theory tells us that U^K is its monadic replacement.

For $R \in \mathbf{Ring}$, we have

$$KR = \lim_{R \to k} k$$
.

Any map from a ring to a field factors through a fraction field $Frac(R/\mathfrak{p})$ for a unique prime ideal \mathfrak{p} . This means that:

$$KR \cong \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{Frac}(R/\mathfrak{p}).$$

The unit η_R^K embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

The unit η_R^K embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_R^K , we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The unit η_R^K embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_R^K , we need to understand Spec KR.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The multiplication μ_R^K only depends on those components indexed by $\mathfrak{p} \in \operatorname{Spec} KR$ corresponding to principal ultrafilters.

What might the *K*-algebras be?

What might the K-algebras be?

• The functor $K^{i,1}$: **Field** \to **Ring**^K tells us that each field is a K-algebra.

What might the *K*-algebras be?

- The functor $K^{i,1}$: **Field** \to **Ring**^K tells us that each field is a K-algebra.
- Since **Ring** is complete, \mathbf{Ring}^K is complete and the forgetful functor U^K creates limits.

What might the K-algebras be?

- The functor $K^{i,1}$: **Field** \to **Ring**^K tells us that each field is a K-algebra.
- Since **Ring** is complete, **Ring**^K is complete and the forgetful functor U^K creates limits.

Field has equalisers, but not products. It turns out that this is all it's missing!

What might the *K*-algebras be?

- The functor $K^{i,1}$: **Field** \to **Ring**^K tells us that each field is a K-algebra.
- Since **Ring** is complete, **Ring**^K is complete and the forgetful functor U^K creates limits.

Field has equalisers, but not products. It turns out that this is all it's missing!

Theorem

There is an isomorphism of categories over Ring

$$\mathsf{Ring}^K \cong \mathsf{Prod}(\mathsf{Field})$$

Let R denote the free ring monad on **Set**. What happens if we push K forward along U^R ?

Let R denote the free ring monad on **Set**. What happens if we push K forward along U^R ?

Since we are pushing forward along a right adjoint,

$$U_*^R(i_*1)\cong (U^Ri)_*1,$$

so this gives the codensity monad of U^Ri : **Field** \rightarrow **Set**.

Let R denote the free ring monad on **Set**. What happens if we push K forward along U^R ?

Since we are pushing forward along a right adjoint,

$$U_*^R(i_*1) \cong (U^Ri)_*1,$$

so this gives the codensity monad of U^Ri : **Field** \rightarrow **Set**.

Proposition

 $\mathbf{Prod}(\mathbf{Field})$ has and U^RU^K preserves reflective coequalisers.

Corollary

 $U^R U^K \colon \mathbf{Prod}(\mathbf{Field}) \to \mathbf{Set}$ is monadic.

Corollary

 $U^R U^K : \mathbf{Prod}(\mathbf{Field}) \to \mathbf{Set}$ is monadic.

Corollary

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

Corollary

 $U^R U^K : \mathbf{Prod}(\mathbf{Field}) \to \mathbf{Set}$ is monadic.

Corollary

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

This is an *infinitary theory* with many interesting operations. For example, there are n-ary operations that vanish on all fields with fewer than n algebraically independent elements.

References

- J. F. Kennison and Dion Gildenhuys. "Equational completion, model induced triples and pro-objects". In: Journal of Pure and Applied Algebra 1.4 (1971), pp. 317–346.
- Ross Street. "The formal theory of monads". In: Journal of Pure and Applied Algebra 2.2 (1972), pp. 149–168.
- Tom Leinster. "Codensity and the ultrafilter monad". In: *Theory and Applications of Categories* 28.13 (July 2013), pp. 332–370.
- Barry Devlin. "Codensity, compactness and ultrafilters". PhD thesis. University of Edinburgh, 2016.
- Richard Garner. "The Vietoris Monad and Weak Distributive Laws". In: *Applied Categorical Structures* 28.2 (2020), pp. 339–354.

Filters and ultrafilters

Definition

A **filter** on a set X is a collection $\mathcal{F} \subseteq \mathcal{P}X$ such that

- $X \in \mathcal{F}$;
- if $A \subseteq B$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$;
- if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

An **ultrafilter** on X is a filter \mathcal{U} such that

• for each $A \subseteq X$, exactly one of A and $X \setminus A$ is in \mathcal{U} .

For example, for $A \subseteq X$, the collection $\uparrow A := \{B \subseteq X \mid A \subseteq B\}$ is a filter on X. For $x \in X$, $\uparrow \{x\}$ is an ultrafilter.

Constants in Prod(Field)

 $\bullet \ \ \text{Constants:} \ \ \mathbb{Q} \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \mathbb{F}_7 \times \cdots$

Given a field k, with char k = p. The constant c in k is just c_p .

Operations in Prod(Field)

• *n*-ary operations: $\prod_{\mathfrak{p}\in\mathsf{Spec}\,\mathbb{Z}[t_1,\ldots,t_n]}\mathsf{Frac}(\mathbb{Z}[t_1,\ldots,t_n]/\mathfrak{p})$

Let k be a field, and θ an n-ary operation θ . A choice of n elements of k is equivalent to a ring homomorphism $h\colon \mathbb{Z}[t_1,\ldots,t_n]\to k$. Then $\mathfrak{p}:=\ker h$ is a prime ideal of $\mathbb{Z}[t_1,\ldots,t_n]$, and applying θ to the elements $h(t_1),\ldots,h(t_n)$ gives the image of $\theta_{\mathfrak{p}}$ under the rightmost morphism of

$$\mathbb{Z}[t_1,\ldots,t_n] \xrightarrow{q} \mathbb{Z}[t_1,\ldots,t_n]/\mathfrak{p} \xrightarrow{l} \operatorname{Frac}(\mathbb{Z}[t_1,\ldots,t_n]/\mathfrak{p})$$

$$\downarrow h \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$k = = = k$$

Operations in Prod(Field)

Let $au\in\prod_{\mathfrak{p}\in\mathsf{Spec}\,\mathbb{Z}[t]}\mathsf{Frac}(\mathbb{Z}[t]/\mathfrak{p})$ be the unary operation with

- for each p = 0 or prime, set $\tau_{(t,p)} = 1$;
- $\tau_{\mathfrak{p}} = 0$ for every other $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[t]$.

For k a field and $x \in k$, $\tau(x) = 1$ iff x is transcendental over the prime subfield of k.